
2902
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

LETTER

Cache Optimization for H.264/AVC Motion Compensation∗

Sangyong YOON†a), Student Member and Soo-Ik CHAE†, Nonmember

SUMMARY In this letter, we propose a cache organization that sub-
stantially reduces the memory bandwidth of motion compensation (MC) in
the H.264/AVC decoders. To reduce duplicated memory accesses to P and
B pictures, we employ a four-way set-associative cache in which its index
bits are composed of horizontal and vertical address bits of the frame buffer
and each line stores an 8 × 2 pixel data in the reference frames. Moreover,
we alleviate the data fragmentation problem by selecting its line size that
equals the minimum access size of the DDR SDRAM. The bandwidth of
the optimized cache averaged over five QCIF IBBP image sequences re-
quires only 129% of the essential bandwidth of an H.264/AVC MC.
key words: cache, H.264, motion compensation, memory bandwidth, DDR
SDRAM

1. Introduction

H.264/AVC is currently the most popular video standard be-
cause it provides good video quality at a substantially lower
bit rate than other video standards. However it requires more
computation and higher memory bandwidth from an exter-
nal SDRAM. Its memory bandwidth requirement becomes
a performance bottleneck, especially in the high-definition
video decoder systems [5].

Motion compensation accounts for about 75% of the
total external memory bandwidth in the H.264/AVC de-
coders [1]. Therefore, reducing the memory bandwidth of
MC is very important in designing H.264/AVC decoders
for high-performance video and mobile applications [5],
[6]. MC bandwidth reduction methods used in the previous
works can be summarized into two types of data fetches:
1) motion-vector precision aware ones which load less data
for integer motion vectors [3], [4]; 2) block-size aware ones
which load less data for MC blocks larger than 4×4 [3]–[6].

A system-on-a-chip requires higher memory band-
width because multiple multimedia applications share an
external SDRAM. Therefore, adopting a double data rate
(DDR) SDRAM becomes inevitable to achieve higher mem-
ory bandwidth especially for high-definition video decoders.
However, the DDR SDRAMs have a larger minimum access
size than the single data rate (SDR) SDRAMs, which incurs
a data fragmentation problem that part of data loaded from

Manuscript received May 9, 2008.
Manuscript revised July 31, 2008.
†The authors are with the School of Electrical Engineering and

Computer Sciences, Seoul National University, 151–742 Korea.
∗This work was supported by “System IC 2010” project of

Korea Ministry of Knowledge Economy and the Brain Korea 21
project.

a) E-mail: syyoon@sdgroup.snu.ac.kr
DOI: 10.1093/ietisy/e91–d.12.2902

the SDRAM is not utilized especially in non-sequential ac-
cess patterns from MC. To further reduce this bandwidth
loss, it is necessary to keep loaded data for later use even if
they are not used immediately.

In designing an H.264/AVC video decoder, we decided
to use MC with a cache because using a cache is generally
effective in reducing memory bandwidth for duplicated data
accesses. Moreover, we selected a line size of the cache
that equals the minimum access size of the DDR SDRAM
to alleviate this data fragmentation problem. Direct-mapped
caches for the H.264/AVC MC were proposed using a split-
index mapping [1] and a tile-based mapping [2]. However,
these direct-mapped caches show degraded performance es-
pecially in B pictures. Therefore, we also tuned cache orga-
nization based on the memory access patterns of the MC to
maximize the data reuse by increasing the data locality in the
cache. To find an optimized cache for H.264/AVC motion
compensation, we first examine its memory access patterns
including P and B pictures and then explore the cache design
space by configuring cache size, set-associativity, cache in-
dex mapping, and cache offset mapping.

This letter is organized as follows. We explain the mo-
tivation of using a cache for H.264 MC in Sect. 2. We de-
scribe typical memory access patterns of H.264 MC and a
cache organization suitable to memory bandwidth reduction
in Sect. 3. We show experimental results for MC bandwidth
reduction in Sect. 4 and conclude this letter in Sect. 5.

2. Data Reuse in H.264 Motion Compensation

In this letter, we assume that all MC engines employ a
motion-vector precision aware method [3], [4] and focus on
finding an effective data reuse method to reduce memory
bandwidth loss for H.264/AVC MC. Note that the motion-
vector precision aware method is orthogonal to a method us-
ing a cache for data reuse or block-size aware methods [3]–
[6]. Memory data accesses of the H.264/AVC MC can be
divided into three types: 1) essential data accesses; 2) dupli-
cated data accesses loading already-loaded data again; 3) re-
dundant data accesses loading data that are not utilized im-
mediately. Bandwidth used by duplicated and redundant ac-
cesses can be minimized by effectively reusing previously
loaded data.

Although the H.264 standard employs quarter-pel inter
prediction for several different sized blocks such as 4 × 4,
4 × 8, 8 × 4, and 16 × 16, hardware implementation of the
MC is based on a 4 × 4 block to simplify its control logic

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers



LETTER
2903

Fig. 1 Data Fragmentation due to minimum access size in SDRAM.

and to reduce its hardware complexity [3]. However, this
approach introduces severe bandwidth overhead because in-
terpolation operations of MC for each 4 × 4 block use 6-tab
filtering, which requires a 9 × 9 interpolation window. In
the block-size aware method, overlapped pixels between the
9 × 9 interpolation windows of two adjacent 4 × 4 blocks
are reused by storing them in a register file for an MC block
larger than 4× 4. For example, the block-size aware method
loads only 13 × 13 bytes instead of 4 times 9 × 9 bytes if the
MC block is 8 × 8. However, it cannot reuse the data be-
tween two 4 × 4 MC blocks having different motion vectors
even though they have substantially overlapped region be-
tween their interpolation windows. Therefore, we employed
a cache for motion compensation to substantially reduce the
bandwidth loss incurred by the duplicated memory accesses
because the cache can provide more general data reuse.

The DDR SDRAM achieves high-speed external trans-
fers by using an internal prefetch architecture, which deter-
mines the minimum access size in the external bus. The
minimum access sizes of SDR, DDR1 and DDR2 SDRAM
are 32, 64 and 128 bits, respectively, for 32-bit data width.
If the memory accesses are not sequential, the minimum ac-
cess size causes a data fragmentation problem that part of
data loaded from SDRAM is not used, as shown in Fig. 1.
Moreover, this bandwidth loss due to the fragmentation in-
creases for the DDR SDRAMs, which have a larger mini-
mum access size. To reduce the overhead of the redundant
accesses, we employed a cache with line size equal to the
minimum access size of the DDR SDRAMs to further reuse
data even if they are not used immediately.

3. Cache Organization Optimized for MC Memory Ac-
cess Patterns

To minimize the miss rate of a cache, its organization must
properly be tuned to the memory access patterns of MC. We
explain memory access patterns of H.264/AVC MC and the
suitable cache organization in this section.

To predict a 4×4 block with a quarter-pel precision mo-
tion vector, forward prediction in P pictures loads a 9×9 in-
terpolation window while bidirectional prediction in B pic-
tures loads two 9 × 9 interpolation windows from two dif-
ferent reference frames. MC memory access patterns for a
4 × 4 block in B pictures are quite different from those in
P pictures, as shown in Fig. 2. Therefore, the cache organi-
zation supporting both P and B pictures for H.264/AVC MC
should be able to store two-dimensional (2D) overlapped re-

Fig. 2 Typical MC memory access patterns in P and B pictures.

Fig. 3 Non-conflict regions for (a) direct-mapped cache with row-major
mapping, (b) direct-mapped cache with block-index mapping, (c) 2-way
set-associate cache with block-index mapping, (d) 2-way set-associative
cache with block-index and block-offset mapping.

gion of interpolation windows without conflict and reduce
cache conflicts during interleaved access to different refer-
ence frames.

Here, we introduce two concepts: a line memory seg-
ment (l-segment) and a non-conflict region (NCR) to ex-
plain a cache organization that satisfies these constraints.
An l-segment is defined as a collection of memory loca-
tions that can be loaded together into a cache line and ob-
viously its size is equal to the cache line size. An NCR
is defined as a collection of l-segments that can be loaded
together into the cache without conflicts. The shape of an
NCR in the three-dimensional (3D) memory space of the
reference frame buffer depends on cache parameters like set-
associativity, index mapping, and offset mapping, which is
shown in Fig. 3.

In a direct-mapped cache with row-major mapping, as
shown in Fig. 3 (a), an NCR is a horizontal grouping of l-
segments, each of which is loaded into a different cache line.



2904
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

An NCR for a direct-mapped cache with block-index map-
ping is shown in Fig. 3 (b) where the cache index is com-
posed of both horizontal and vertical addresses of the frame
buffer. Because the NCR is a 2D array of l-segments, cache
conflict misses are minimized and data reuse is maximized
when overlapped 2D interpolation windows for MC need
to be loaded into the cache. In a two-way set-associative
cache with block-index mapping, an NCR is a 3D array
of l-segments and two l-segments that are not located in
the same frame are mapped into the same set with the
same cache index as shown in Fig. 3 (c), which can sub-
stantially reduce cache conflict misses when two different
frames are alternately accessed for motion compensation in
B pictures. Because MC memory access patterns have 2D
locality, we can improve this set-associative cache further
by using l-segments that are a 2D arrays of pixels as shown
in Fig. 3 (d), where cache offset bits are composed of both
horizontal and vertical addresses of the frame buffer, which
we call block-offset mapping. While an l-segment is a 16×1
array of pixels in Figs. 3 (a), (b), (c), it is an 8 × 2 array of
pixels in Fig. 3 (d).

4. Experimental Results

By using an evaluation flow shown in Fig. 4, we evaluated
the performance of caches for main-profile bit streams of
five image sequences of QCIF (Forman, Carphone, Claire,
Coastguard, and Salesman) coded at 30 frames/s by a JM
8.6 encoder [7] in which its rate control was disabled. First,
we collected traces of motion vectors and reference indices
by decoding the bit streams with a JM 8.6 decoder [7].
Then, we generated cache access traces with a model for
an H.264 MC engine using a motion-vector precision aware
method [3], [4]. In the next step, for each cache configu-
ration we generated memory access traces from the cache
access traces by using its cache model and repeated this
step by changing cache size, cache index mapping, set-
associativity, and cache offset mapping. In this experiment,
the cache line size was fixed to 16 bytes, which is equal to
the minimum access size of the DDR2 SDRAMs. Finally,
we evaluated the memory access traces with a bandwidth an-
alyzer for various types of SDRAMs such as SDR, DDR1,
and DDR2 memories, each of which has a different mini-
mum access size. In this letter, we focus only on the mem-
ory bandwidth for luma MC.

As shown in Fig. 5 (a), we compared the average mem-
ory bandwidth of direct-mapped caches for two cache index
mappings: a row-major one and a block-index one. The lat-
ter mapping reduces the memory bandwidth substantially in

Fig. 4 Cache performance evaluation flow.

P pictures by reducing the cache conflicts in loading a 2D
region for motion compensation because a 2D region in the
3D memory address space of the reference frame buffer is
an NCR for a direct-mapped cache with block-index map-
ping. In B pictures, however, the bandwidth reduction is
relatively lower due to the cache conflicts from interleaved
accesses to different frames. This type of cache conflicts
can substantially be reduced especially in B pictures by us-
ing set-associative caches because a 3D cube is an NCR for
a set-associative cache. As shown in Fig. 5 (b), we com-
pared the bandwidth of the caches with block-index map-
ping by changing the set-associativity. Finally, we com-
pared the bandwidth of four-way set-associative caches with
block-index mapping for several offset mappings, as shown
in Fig. 5 (c). Cache offset mapping changes the shape of
each l-segment, which is a rectangle for block-offset map-
ping. About 10% improvement can be obtained in both P
and B pictures by block-offset mapping. Based on the over-
all experimental results, we propose to employ a 1-Kbytes
four-way set-associative cache adopting block-index map-
ping with 8×2 cache line for H.264 luma MC, which is opti-
mal in reducing the memory bandwidth. Although the cache
performance for 4 × 4 cache lines is slightly better than that
for 8×2 cache lines, as shown in Fig. 5 (c), we selected 8×2

Fig. 5 Bandwidth evaluation for the luma MCs with a cache by configur-
ing three cache parameters: (a) cache index mapping, (b) set-associativity,
and (c) cache offset mapping. Left and right graphs show the average band-
width of P and B pictures, respectively, for the five bit-streams.



LETTER
2905

Fig. 6 Average memory bandwidth of the MC (a) using the block-size
aware method and (b) with the proposed cache for several types of the
SDRAMs in a sequence of IPP (N=15, without B picture).

Fig. 7 MC memory bandwidth comparisons of several bandwidth reduc-
tion schemes averaged for (a) 5 QCIF image sequences and (b) 3 SD1 video
clips.

cache lines simply because the line buffer size in the LCD
controller based on a raster scanning pattern depends on the
height of l-segments which determines memory mapping in
the SDRAMs.

Block-size aware MC engines suffer from a significant
amount of bandwidth loss from data fragmentation in the
DDR SDRAMs, as shown in Fig. 6 (a). By introducing a
cache with a line size that equals to the minimum access size
of the DDR2 SDRAMs, we reduce their bandwidth losses
substantially, which are equal to those for SDR SDRAM, as
shown in Fig. 6 (b). The memory bandwidths of three differ-
ent cache organizations and a block-size aware MC engine
are compared in Fig. 7 for two differently encoded versions
of the bit streams: one for IPP (N=15, without B picture)

and the other for IBBP (N=15, M=3). Figure 7 (a) shows
averaged results of 5 QCIF (176 × 144) image sequences
mentioned earlier in this section, and Fig. 7 (b) illustrates
those of three SD1 (720 × 480) 30-frames video clips sam-
pled from The Rock, War of the Worlds, and Underworld
Evolution. By using the proposed cache, we could sub-
stantially reduce the non-essential memory bandwidth from
SDRAM. Compared to the motion-vector precision aware
H.264 MC, the non-essential bandwidth is reduced to 18%
and 16% for the QCIF and SD1 IBBP sequences, respec-
tively. The split index cache [1] is a direct-mapped cache
with block-index mapping and the tile-based cache [2] is a
direct-mapped cache adopting block-index and block-offset
mapping, where their cache size and line size were also set
to 1 Kbytes and 16 bytes, respectively, for fair comparison.
Note that the split index cache requires substantially higher
memory bandwidth for the IBBP sequence because of in-
creased conflicts due to cache thrashing.

5. Conclusions

To reduce the bandwidth loss in the DDR SDRAM, we
propose a four-way set-associative cache for H.264 MC in
which its index bits are composed of horizontal and verti-
cal address bits of the frame buffer and each line stores an
8 × 2 pixel data in the reference frames. The experimen-
tal results show that the proposed cache is effective for re-
ducing the required memory accesses for P and B pictures
while reducing data fragmentation loss. The non-essential
memory bandwidth of the proposed cache from SDRAM is
substantially reduced, compared to that of the motion-vector
precision aware H.264 MC.

References

[1] J.-H. Kim, G.-H. Hyun, and H.-J. Lee, “Cache organization for
H.264/AVC motion compensation,” Proc. IEEE Int. Conf. Embedded
and Real-Time Computing Systems and Applications, pp.534–541,
Aug. 2007.

[2] Y. Li, Y. Qu, and Y. He, “Memory cache based motion compensation
architecture for HDTV H.264/AVC decoder,” Proc. IEEE Int. Sympo-
sium on Circuit and Systems, pp.2906–2909, May 2007.

[3] C.-Y. Tsai, et al., “Bandwidth optimized motion compensation hard-
ware design for H.264/AVC HDTV decoder,” 48th Midwest Sympo-
sium on Circuit and Systems, vol.2, pp.1199–1202, Aug. 2005.

[4] R.G. Wang, J.T. Li, and C. Huang, “Motion compensation memory
access optimization strategies for H.264/AVC decoder,” Proc. IEEE
Int. Conf. Acoustics, Speech, and Signal Processing, vol.5, pp.97–
100, March 2005.

[5] C.C. Lin, et al., “A 160K gates/4.5 KB SRAM H.264 video decoder
for HDTV applications,” IEEE J. Solid-State Circuits, vol.42, no.1,
pp.170–182, Jan. 2007.

[6] T.M. Liu, et al., “A 125 uW, fully scalable MPEG-2 and H.264/AVC
video decoder for mobile applications,” IEEE J. Solid-State Circuits,
vol.42, no.1, pp.161–169, Jan. 2007.

[7] H.264/AVC JM Reference Software, version JM 8.6, http://iphome.
hhi.de/suehring/tml/download/old jm/


