
ASIAN J. MATH. c© 1998 International Press
Vol. 2, No. 4, pp. 711–758, December 1998 006

VERTEX MODELS WITH ALTERNATING SPINS∗

JIN HONG† , SEOK-JIN KANG‡ , TETSUJI MIWA§ , AND ROBERT WESTON¶

Abstract. The diagonalisation of the transfer matrices of solvable vertex models with alternating
spins is given. The crystal structure of (semi-)infinite tensor products of finite dimensional Uq(bsl2)
crystals with alternating dimensions is determined. Upon this basis the vertex models are formulated
and then solved by means of Uq(bsl2) intertwiners.

1. Introduction. In [1], the diagonalisation of the XXZ Hamiltonian,

HXXZ = −1
2

∞∑

k=−∞

(
σx

k+1σ
x
k + σy

k+1σ
y
k + ∆σz

k+1σ
z
k

)
,(1.1)

in the anti-ferromagnetic regime (∆ = q+q−1

2 < −1) was carried out by making use of
the representation theory of the quantum affine algebra Uq(ŝl2 ). The key observation
in this method was the identification of the semi-infinite tensor product of the two-
dimensional representation V (1) ' C2 of Uq(ŝl2 ) with the level one irreducible highest
weight representation V (Λi) (i = 0, 1) of the same algebra [2],

· · · ⊗C2 ⊗C2 ⊗C2 ⊗C2 ' V (Λi).(1.2)

Using (1.2), the corner transfer matrix A(ζ) of the corresponding six-vertex model
was identified with the grading operator

A(ζ) ∼ ζ−D,(1.3)

and the half transfer matrix Φ(ζ) was identified with the vertex operator

Φ(ζ) : V (Λi) → V (Λ1−i)⊗ V
(1)
ζ ,(1.4)

where V
(1)
ζ is the evaluation representation. The choice of i = 0, 1 corresponds to the

choice of the boundary condition at infinity.
Under these identifications, the transfer matrix T (ζ) was identified with the com-

position of the vertex operators acting on the tensor product of the highest and lowest
weight representations,

T (ζ) : V (Λi)⊗ V (Λj)∗ → V (Λ1−i)⊗ V
(1)
ζ ⊗ V (Λj)∗ → V (Λ1−i)⊗ V (Λ1−j)∗,(1.5)

and then diagonalised by making use of another vertex operator [1, 3]

Ψ∗(ξ) : V
(1)
ξ ⊗ V (Λj) → V (Λ1−j).(1.6)
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A similar method was also applied to other models such as the higher spin gener-
alisation of the XXZ model [4] and the ABF models [5]. In the former, for which the
local spaces are V (n) ' Cn+1, the spaces of physical states in the semi-infinite vol-
ume with the chosen boundary conditions were identified with the level n irreducible
highest weight representations. On the other hand, in the latter, they were identified
with the coset spaces of GKO type (see also [6]).

In this paper, we study yet another example of this sort. We consider the vertex
models with alternating spins. This requires new insights, both physical and math-
ematical, and leads to new results in the connection between solvable lattice models
and representation theory.

The origin of our study is [7], in which a spin-1
2 chain with a few higher spin

components (or impurities in physical terms) was studied by using the vertex operator

Φ(n−1,n)(ζ) : V
(n−1)
ζ ⊗ V (Λi) → V (Λ1−i)⊗ V

(n)
ζ .(1.7)

This operator explains the n-fold degeneracy of the vacuum states with a chosen
boundary condition when a spin-n

2 impurity is inserted in the spin-1
2 chain. In [8],

the above vertex operator was identified with the half transfer matrix of the vertex
model that has semi-infinite spin-1

2 horizontal lines and a spin-n
2 vertical line. In

this paper we consider a vertex model with alternating spins m
2 and n

2 (m > n),
and diagonalise the corresponding transfer matrices. Such models were constructed
and analysed using the Bethe Ansatz in [9–12]. The first step in our solution is the
identification of the semi-infinite tensor product

· · · ⊗Cm+1 ⊗Cn+1 ⊗Cm+1 ⊗Cn+1(1.8)

having an appropriate boundary condition, with the tensor product of level m− n
and level n highest weight representations

V (λ(m−n)
a )⊗ V (λ(n)

b ).(1.9)

Here we set

λ(`)
a = (`− a)Λ0 + aΛ1.(1.10)

Formula (1.3) is again valid in this situation.
In the second step, we identify the half transfer matrices (see Figure 3) having

alternating spins for the horizontal lines and spin-n
2 (Case A) or m

2 (Case B) for the
vertical line, with the following vertex operators.
Case A:

φA(ζ) : V (λ(m−n)
a )⊗ V (λ(n)

b )
id⊗Φ(0,n)(ζ)−−−−−−−−→ V (λ(m−n)

a )⊗ V (λ(n)
n−b)⊗ V

(n)
ζ .(1.11)

Case B:

φB(ζ) : V (λ(m−n)
a )⊗ V (λ(n)

b )
Φ(0,m−n)(ζ)⊗id−−−−−−−−−−→ V (λ(m−n)

m−n−a)⊗ V
(m−n)
ζ ⊗ V (λ(n)

b )
id⊗Φ(m−n,m)(ζ)−−−−−−−−−−−→ V (λ(m−n)

m−n−a)⊗ V (λ(n)
n−b)⊗ V

(m)
ζ ,

(1.12)

Finally, we have two (full) transfer matrices TA(ζ) and TB(ζ) for cases A and B.
We can think of these operators as acting on the direct sum of the vectors spaces,

HomC

(
V (λ(m−n)

a )⊗ V (λ(n)
b ), V (λ(m−n)

c )⊗ V (λ(n)
d )

)

' V (λ(m−n)
c )⊗ V (λ(n)

d )⊗
(
V (λ(m−n)

a )⊗ V (λ(n)
b )

)∗
.

(1.13)
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TA(ζ) and TB(ζ) are mutually commuting and expressed in terms of the operators
φA(ζ) and φB(ζ), respectively.

The operator TA(ζ) can be viewed as the limit where the number of insertions of
the higher spin components becomes infinite. Therefore, in this case, one can expect
that the vacuum states are infinitely degenerate, and it is indeed so. The same is
true for TB(ζ). However, if we consider the product T (ζ) = TB(ζ)TA(ζ) the infinite
degeneracy resolves, and we have a unique vacuum for a fixed boundary condition.
The vacuum states are given by

(−q)D ∈ EndC

(
V (λ(m−n)

a )⊗ V (λ(n)
b )

)
.(1.14)

The excited states are constructed upon these vacua. Consider two kinds of vertex
operators with spin 0 and 1

2 , respectively.
Spin-0 case:

ψ(0)(ξ) : V (λ(m−n)
a )⊗ V (λ(n)

b )
→ V (λ(m−n)

a′ )⊗ V
(1)
ξ ⊗ V (λ(n)

b ) → V (λ(m−n)
a′ )⊗ V (λ(n)

b′ ).
(1.15)

Spin-1
2 case:

ψ( 1
2 )(ξ) : V

(1)
ξ ⊗ V (λ(m−n)

a )⊗ V (λ(n)
b ) → V (λ(m−n)

a′ )⊗ V (λ(n)
b ).(1.16)

Acting on the vacua, the operators ψ(0)(ξ) and ψ( 1
2 )(ξ) create particles with spin 0

and 1
2 , respectively. We give the exchange relations for these operators. The vacuum

states (−q)D, the operators ψ(0)(ξ) and ψ( 1
2 )(ξ) and their exchange relations are the

diagonalisation data of the transfer matrix T (ζ) in the sense of the vertex operator
approach [1]. From the view point of the representation theory this data gives the
irreducible decomposition of the space of physical states (1.13) with respect to the
action of Uq(ŝl2). We call this description of the physical space the particle picture in
comparison with the local picture consisting of the alternating infinite tensor product
of Cm+1 and Cn+1. We should say that the equivalence of the local and particle
pictures is a conjecture because we have no argument for the completeness of the
particle decomposition except in the crystal limit q = 0 (see (ii) below).

Many of the results in this paper have been announced in [13]. In this paper we
give proofs for them. (On the other hand, we will not discuss the mixing of ground
states, one of the main results in [13]. We have nothing to add to the result and a
complete proof is already given there.) To be precise, we prove the following:

(i) A crystal isomorphism between the space of semi-infinite paths Pa,b and the
crystal B(λ(m−n)

a )⊗B(λ(n)
b ).

The crystal structure of Pa,b represents by definition the semi-infinite tensor prod-
uct of the alternating finite crystals B(m) and B(n). Therefore, the crystal isomor-
phism mentioned above gives supporting evidence for the conjecture that there is an
isomorphism between (1.8) and (1.9). We give two proofs. The first one uses the
RSOS paths which describe the highest weight vectors in B(λ(m−n)

a )⊗B(λ(n)
b ). The

second proof is more direct; however, the identification of the corner transfer matrix
is made only in the first proof.

(ii) Crystal decomposition of the full-infinite path spaces.
We decompose each path uniquely to a union of ground state paths patched

together at the ‘walls’ between the ground states. Under the crystal action these walls
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behave like elements in the affinizations [14] of B(0) or B(1). This observation gives
supporting evidence for our conjecture that the particle structure of the alternating
vertex model consists of the spin-0 and spin-1

2 particles.
(iii) Commutativity of the vertex operator

(1.17)
V

(l)
ζ ⊗ V (λ(k)

a )⊗ V (Λi) → V (λ(k)
k−a)⊗ V

(l+k)
ζ ⊗ V (Λi)

→ V (λ(k)
k−a)⊗ V (Λ1−i)⊗ V

(l+k+1)
ζ

with the DVA (deformed Virasoro algebra) actions [15] on V (λ(k)
a ) ⊗ V (λi) and

V (λ(k)
k−a) ⊗ V (λ1−i). This fact is used to derive the properties of the vertex oper-

ators of higher level from those of level 1.
The plan of the paper is as follows. In Section 2, the vertex models with alter-

nating spins are formulated. The ground states and the eigenvalues of the corner
transfer matrices are determined. In Section 3, the path space, i.e., the q → 0 limit of
the model, is studied. In Section 4, we prepare some properties of the level-1 vertex
operators. In Section 5, the commutativity with the DVA is proved. The diagonal-
isation of the transfer matrices is discussed in Section 6. In Section 7 we give the
crystal isomorphism between the local and particle pictures. Finally, we present a
brief summary of our results in Sectiion 8.
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of the EPSRC through Advanced Fellowship B/96/AF/2235; he also acknowledges
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2. The Vertex Model. In this section, we recall the definition of the alternating
spin vertex model of reference [13]. We define the path space, the corner transfer
matrices, and the corner transfer matrix Hamiltonian.

2.1. The R-matrices. The Boltzmann weights of our vertex model are given
in terms of U ′

q(ŝl2) R-matrices (as usual U ′
q(ŝl2) refers to the subalgebra of Uq(ŝl2 )

generated by ei, fi, ti (i = 0, 1); our comultiplication is that of [8]). We use the spin-
n
2 principal U ′

q(ŝl2) evaluation module V
(n)
ζ defined, in terms of weight vectors u

(n)
i

(i = 0, 1, · · · , n), in Section 3.1 of [8].
In this paper, we consider the spectral parameter ζ (or z = ζ2) mainly as a generic

complex number, and Uq(ŝl2) as a C-algebra. However, in Sections 4 and 5, when we
develop the theory of vertex operators, we treat the spectral parameter as an auxiliary
variable. Namely, when we consider the evaluation module V

(n)
ζ , we always extend

the field of coefficients to a ring by adding ζ and ζ−1. Therefore, we consider V
(n)
ζ as

the rank n + 1 U ′
q(ŝl2) module over the extended ring.

The necessary R-matrix is given by the U ′
q(ŝl2) intertwiner R(`,`′)(ζ1/ζ2) : V

(`)
ζ1

⊗
V

(`′)
ζ2

→ V
(`′)
ζ2

⊗ V
(`)
ζ1

(note that R(`,`′)(ζ) here is PR(`,`′)(ζ) in the notation of [8]).
We fix the normalisation by the requirement R(`,`′)(ζ) = R̄(`,`′)(ζ)/κ(`,`′)(ζ), where
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R̄(`,`′)(ζ)(u(`)
0 ⊗ u

(`′)
0 ) = (u(`′)

0 ⊗ u
(`)
0 ), and

κ(`,`′)(ζ) = ζmin(`,`′) (q
2+`+`′ζ2 ; q4)∞(q2+|`−`′|ζ−2 ; q4)∞

(q2+`+`′ζ−2 ; q4)∞(q2+|`−`′|ζ2 ; q4)∞
.

This choice of normalisation has two nice consequences. The first is that the
partition function per site of our vertex model is equal to 1. The second is that the
R-matrix has the properties of crossing symmetry and unitarity:

R(`,`′)(ζ)i,j
i′,j′ = R(`′,`)(−q−1ζ−1)l′−j′,i

l′−j,i′ ,(2.1)
∑

i′,j′
R(`,`′)(ζ)i′,j′

i1,j1
R(`′,`)(ζ−1)j2,i2

j′,i′ = δi1,i2δj1,j2 .(2.2)

Here we use the components defined by

R(`,`′)(ζ)(u(`)
i ⊗ u

(`′)
j ) =

∑

i′,j′
R(`,`′)(ζ)i,j

i′,j′(u
(`′)
j′ ⊗ u

(`)
i′ ).

We wish to give an expansion of R̄(`,`′)(ζ) in terms of certain projectors. In order
to do this it is useful to introduce a homogeneous evaluation module (Vn)z with weight
vectors v

(n)
i (i = 0, 1, · · · , n). The action of U ′

q(ŝl2) on (Vn)z is given by

f1v
(n)
j = [n− j]v(n)

j+1, e1v
(n)
j = [j]v(n)

j−1, t1v
(n)
j = qn−2jv

(n)
j ,(2.3)

f0 = z−1e1, e0 = zf1, t0 = t−1
1 .(2.4)

We shall refer to the associated U1 = 〈e1, f1, t1〉 module as Vn. The U ′
q(ŝl2)-modules

(Vn)z and V
(n)
ζ are isomorphic. The isomorphism is given by

Cn(ζ) : V
(n)
ζ

∼−→ (Vn)z,(2.5)

u
(n)
j 7−→ c

(n)
j ζjv

(n)
j ,(2.6)

where c
(n)
j =

[
n
j

] 1
2

q
q

j
2 (n−j) and we identify ζ2 = z (in this paper, we shall use the

notation [a]q = (qa − q−a)/(q − q−1), and [a]q! and
[
a
b

]
q

for the standard q-factorial

and q-binomial coefficients). Consider the U ′
q(ŝl2) intertwiner hR̄(`,`′)(z1/z2) : (V`)z1⊗

(V`′)z2 −→ (V`′)z2 ⊗ (V`)z1 defined uniquely by

v
(`)
0 ⊗ v

(`′)
0 7−→ v

(`′)
0 ⊗ v

(`)
0 .(2.7)

The R-matrix R̄(`,`′)(ζ1/ζ2) is given in terms of this intertwiner by

R̄(`,`′)(ζ1/ζ2) =
(
C`′(ζ2)−1 ⊗ C`(ζ1)−1

)
hR̄(`,`′)((ζ1/ζ2)2) (C`(ζ1)⊗ C`′(ζ2)) .(2.8)

To proceed, we note that there is a U1 highest weight vector Ωp ∈ V` ⊗ V`′ :

Ωp =
p∑

i=0

(−1)iq(`+1−i)i

[i]q![p− i]q!
v
(`)
i ⊗ v

(`′)
p−i, 0 ≤ p ≤ min(`, `′),(2.9)
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that has the properties,

e1Ωp = 0, t1Ωp = q`+`′−2pΩp,(2.10)

(1⊗ e1)Ωp = Ωp−1, (e1 ⊗ t1)Ωp = −q`′+`−2(p−1)Ωp−1.(2.11)

Let P
(`,`′)
p be the unique U1 linear map P

(`,`′)
p : V`⊗V`′ −→ V`′⊗V` with the properties

P (`,`′)
p : Ωp 7−→ Ω′p,(2.12)

P (`,`′)
r : Ωp 7−→ 0, r 6= p,(2.13)

where Ω′p is the corresponding highest weight vector in V`′ ⊗ V`. Then one can follow

the argument of [16] to expand R(`,`′)(ζ) in terms of the projectors P
(`,`′)
p . We find

hR̄(`,`′)(z1/z2) =
min{`,`′}∑

p=0




p−1∏

j=0

z − q`′+`−2j

1− zq`′+`−2j


 P (`,`′)

p ,(2.14)

where z = z1/z2.
In the definition of our vertex model, we will use the R-matrix R(`,`′)(ζ), with ζ

and q restricted to lie in the regions −1 < q < 0, 1 < ζ < −q−1. If we expand

R̄(`,`′)(ζ) = R̄
(`,`′)
0 + (ζ − 1)R̄(`,`′)

1 + O((ζ − 1)2),(2.15)

we find

lim
q→0

R̄
(`,`′)
0 (u(`)

i ⊗ u
(`′)
j ) =





u
(`′)
i ⊗ u

(`)
j if i + j ≤ `, `′,

u
(`′)
2i+j−` ⊗ u

(`)
`−i if ` ≤ i + j ≤ `′,

u
(`′)
`′−j ⊗ u

(`)
i+2j−`′ if `′ ≤ i + j ≤ `,

u
(`′)
`′−`+i ⊗ u

(`)
j−`′+` if `, `′ ≤ i + j.

(2.16)

and

lim
q→0

R̄
(`,`′)
1 (u(`)

i ⊗ u
(`′)
j )=





(i + j) u
(`′)
i ⊗ u

(`)
j if i + j ≤ `, `′

` u
(`′)
2i+j−` ⊗ u

(`)
`−i if ` ≤ i + j ≤ `′.

`′ u(`′)
`′−j ⊗ u

(`)
i+2j−`′ if `′ ≤ i + j ≤ `.

(`′+`−i−j) u
(`′)
`′−`+i ⊗ u

(`)
j−`′+` if `, `′ ≤ i + j.

(2.17)

These formulas come from equations (2.8), (2.14) and the explicit formula for the
projectors P

(`,`′)
p in the q → 0 limit (P (`,`′)

p become diagonal in the basis v
(`)
i ⊗ v

(`′)
j

in this limit).
The matrix element R(`,`′)(ζ1/ζ2)

i,j
i′,j′ is the Boltzmann weight associated with the

following configuration of spin variables i, i′ ∈ {0, · · · , `} and j, j′ ∈ {0, · · · , `′}, and
spectral parameters ζ1 and ζ2 around a vertex.

?

¾

i

j

i′

j′
ζ1

ζ2
Figure 1
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From (2.17), we see that if we choose ζ and q close to 1 and 0− respectively,
and consider the case when ` ≤ `′, then the largest Boltzmann weights will be
R(`,`′)(ζ1/ζ2)

i,j
`−i,2i+j−` with ` ≤ i+ j ≤ `′. Similarly for `′ ≤ `, the largest Boltzmann

weights will be R(`,`′)(ζ1/ζ2)
i,j
i+2j−`′,`′−j with `′ ≤ i + j ≤ `.

2.2. Definition of the vertex model. In reference [13], we define the alternat-
ing spin vertex model as the vertex model associated with the two-dimensional lattice
consisting of alternating spin-n

2 and spin-m
2 lines (in both the horizontal and vertical

directions), where 0 < n < m. In fact, we choose two vertical and two horizontal
spin-n

2 lines next to each other at the centre of our lattice (see Figure 2, in which
the spin-n

2 and spin-m
2 lines are shown as solid and dashed lines respectively). This

simplifies our discussion of the corner transfer matrix.

j̄1

ī

j̄

ī

i

j

i

j1

j1

i

j

i

ī

j̄

ī

j̄1

j̄

ī

j̄1

ī

i

j1

i

j

j

i

j1

i

ī

j̄1

ī

j̄

j̄1

ī

j̄

ī

i

j

i

j1

j

i

j1

i

ī

j̄1

ī

j̄

j̄

ī

j̄1

ī

i

j1

i

j

j1

i

j

i

ī

j̄

ī

j̄1

j̄1

ī

j̄

ī

i

j

i

j1

j1

j̄1

j

j̄

j1

j̄

j

j̄1

j1

i

ī

i

ī

i

ī

i

ī

i

j

j̄

j1

j̄1

j

j̄1

j1

j̄

j

i

ī

i

ī

i

ī

i

ī

i

ī

i

ī

i

ī

i

ī

i

ī

j̄

j

j̄1

j1

j̄

j1

j̄1

j

j̄

ī

i

ī

i

ī

i

ī

i

ī

j̄1

j1

j̄

j

j̄1

j

j̄

j1

j̄1

Figure 2

Vertical lines will carry a spectral parameter equal to ζ, and horizontal lines a spectral
parameter equal to 1. We restrict our discussion to the anti-ferromagnetic region
−1 < q < 0, 1 < ζ < −q−1. The different local Boltzmann weights associated
with the intersection vertices of this lattice are given by the R-matrices R(n,m)(ζ),
R(m,n)(ζ), R(n,n)(ζ), and R(m,m)(ζ).

A ground state of such a vertex model is a configuration of the spin variables
for which all of the local vertex configurations are associated with one of the largest
Boltzmann weights discussed above. There are (m − n + 1)(n + 1) different anti-
ferromagnetic ground states for our model, each labelled by a pair of integers (a, b),
where 0 ≤ a ≤ m − n and 0 ≤ b ≤ n. The spin configuration in the (a, b) ground
state is given in Figure 2 in which we use the notation i = n− b, j = m− n− a + b,
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j1 = a + b, ī = b, j̄ = n + a − b, j̄1 = m − a − b. Define Za,b;N to be the partition
function (i.e., the weighted configuration sum) of such a lattice which consists of
N vertices, and whose boundary spins are fixed to the values of the (a, b) ground
state. With our normalisation of the R-matrices, the partition function per unit site,
limN→∞ Z

1/N
a,b;N , is equal to 1. We are interested in the infinite-volume lattice with

partition function Za,b = limN→∞ Za,b;N . Za,b is divergent. However, this divergence
cancels for correlation functions since they are given as ratios (see [13]).

We can identify Za,b with the trace of corner transfer matrices

Za,b = TrHa,b
(ANE(ζ)ASE(ζ)ASW (ζ)ANW (ζ)).(2.18)

Let us explain the various elements in this formula. Ha,b is the space of eigenstates of
the corner transfer matrix ANW (ζ) associated with the North-West quadrant of the
lattice. In the limit q → 0, we can identify Ha,b with the path space Pa,b. The latter
is defined to be the set of paths |p〉 = · · · p(3) p(2) p(1) with the following restrictions:

p(k) ∈ {0, 1, · · · , n} if k is odd,(2.19)
p(k) ∈ {0, 1, · · · ,m} if k is even,(2.20)
p(k) = p̄(k; a, b), k À 0, where(2.21)

p̄(k; a, b) =





n− b if k is odd;
a + b if k ≡ 0 (mod 4);
m− n− a + b if k ≡ 2 (mod 4).

(2.22)

A path |p〉 ∈ Pa,b corresponds to a particular choice of the spin variables on the half-
infinite column of horizontal edges running North from the centre of our lattice. The
boundary condition p(k) = p̄(k; a, b), k À 0 corresponds to the choice of the (a, b)
ground state. If ANW (ζ) acts on some |p〉 ∈ Pa,b, then it will produce an infinite
linear combination of paths |p′〉 ∈ Pa,b. One term will be of order q0 (see (2.16)), and
all the others of higher order in q. The infinite linear combination is not in Pa,b. For
q 6= 0, ANW (ζ) should be renormalised as a map Ha,b → Ha,b, where the space Ha,b

will be identified in terms of the representation theory of Uq(ŝl2 ) in Section 6.
The corner transfer matrices corresponding to the other quadrants can be identi-

fied as the maps ASW (ζ) : Ha,b→Hm−n−a,n−b, ASE(ζ) : Hm−n−a,n−b→Hm−n−a,n−b,
and ANE(ζ) : Hm−n−a,n−b → Ha,b. One can construct heuristic arguments along
the lines of those in [17,18] (which rely upon the crossing and unitarity properties of
our R-matrix; given by (2.1) and (2.2) respectively), to yield the following relations
among the different corner transfer matrices:

ASW (ζ) = CANW (−q−1ζ−1), ASE(ζ) = CANW (ζ)C, ANE(ζ) = ANW (−q−1ζ−1)C.

(2.23)

Here, C is the ‘conjugation operator’: In the limit q → 0, it is the operator Pa,b →
Pm−n−a,n−b defined by

p(k) →
{

n− p(k) if k is odd;
m− p(k) if k is even.

When q 6= 0, it will be the operator Ha,b → Hm−n−a,n−b which exchanges the funda-
mental weights Λ0 ↔ Λ1 of Uq(ŝl2 ).
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The corner transfer matrix ANW (ζ) has a remarkably simple form in the infinite-
volume limit. Baxter’s argument (see [19]) applied here implies ANW (ζ) = c(ζ)
ζ−HCT M . Here, c(ζ) is a divergent scalar. HCTM is the corner transfer matrix
Hamiltonian, which is independent of ζ and has a non-negative integer spectrum.
Using (2.23), we then have that up to a divergent scalar the infinite-volume partition
function Za,b is proportional to TrHa,b

((−q)2HCT M ).

2.3. The corner transfer matrix Hamiltonian HCTM . The corner transfer
matrix Hamiltonian HCTM is defined by HCTM = − d

dζ ANW (ζ)|ζ=1 : Ha,b → Ha,b.
Its action on a path |p〉 ∈ Pa,b can be calculated from (2.15):

HCTM = −
∞∑

s=1

s (H1;2s+1,2s,2s−1 + H2;2s+2,2s+1,2s + 2H3;2s+1,2s) .(2.24)

Here, H1;2s+1,2s,2s−1 acts as the identity on |p〉 ∈ Pa,b except at the positions 2s + 1,
2s, 2s− 1, where its action, written in terms of R̄

(`,`′)
0 and R̄

(`,`′)
1 as defined in (2.15),

is given by

H1 = (R̄(m,n)
0 ⊗ 1)(1⊗ R̄

(n,n)
1 )(R̄(n,m)

0 ⊗ 1).(2.25)

Similarly, H2;2s+2,2s+1,2s acts as the identity except at the positions 2s + 2, 2s + 1,
2s, where it acts as

H2 = (1⊗ R̄
(m,n)
0 )(R̄(m,m)

1 ⊗ 1)(1⊗ R̄
(n,m)
0 ).(2.26)

Finally, H3;2s+1,2s acts as the identity except at the positions 2s+1, 2s, where it acts
as

H2s+1,2s = R̄
(m,n)
0 R̄

(n,m)
1 = R̄

(m,n)
1 R̄

(n,m)
0 .(2.27)

The equality of the last two expressions follows from the unitarity property (2.2).
In the limit q → 0, H1,H2,H3 : Pa,b → Pa,b act diagonally. Let us use the

notation

lim
q→0

H1(u
(n)
i ⊗ u

(m)
j ⊗ u

(n)
k ) = h1(i, j, k)(u(n)

i ⊗ u
(m)
j ⊗ u

(n)
k ),(2.28)

lim
q→0

H2(u
(m)
i ⊗ u

(n)
j ⊗ u

(m)
k ) = h2(i, j, k)(u(m)

i ⊗ u
(n)
j ⊗ u

(m)
k ),(2.29)

lim
q→0

H3(u
(n)
i ⊗ u

(m)
j ) = h3(i, j)(u

(n)
i ⊗ u

(m)
j ).(2.30)

Using (2.16) and (2.17), we find

h1(i, j, k) =





{k + j}n if i + j ≤ m,n;
{k + i + 2j −m}n if m ≤ i + j ≤ n;
{k + n− i}n if n ≤ i + j ≤ m;
{k + n−m + j}n if n,m ≤ i + j,

(2.31)

h2(i, j, k) =





{i + j}m if j + k ≤ m,n;
{i + m− k}m if m ≤ j + k ≤ n;
{i + k + 2j − n}m if n ≤ j + k ≤ m;
{i + j + m− n}m if n,m ≤ j + k,

(2.32)

h3(i, j) =





i + j if i + j ≤ m,n;
m if m ≤ i + j ≤ n;
n if n ≤ i + j ≤ m;
m + n− i− j if n,m ≤ i + j.

(2.33)
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Here we have used the notation

{a}b =
{

a if a ≤ b;
2b− a if b ≤ a.

(2.34)

In the next section we shall make use of the ‘crystal energy’ of a path |p〉 ∈ Pa,b,
which we denote by h(p) and define as

h(p) = −
∞∑

s=1

s
(
h1

(
p(2s + 1), p(2s), p(2s− 1)

)− h1

(
p̄(2s + 1), p̄(2s), p̄(2s− 1)

)

+ h2

(
p(2s + 2), p(2s + 1), p(2s)

)− h2

(
p̄(2s + 2), p̄(2s + 1), p̄(2s)

)

+ 2h3

(
p(2s + 1), p(2s)

)− 2h3

(
p̄(2s + 1), p̄(2s)

))
.(2.35)

Here, we have abbreviated p̄(k; a, b) to p̄(k).

3. The Path Space Pa,b. The path space Pa,b was defined by (2.19)–(2.22) in
the previous section. We shall now go on to consider this space in more detail. In
particular, we wish to understand the action of Uq(ŝl2 ) on Pa,b in the limit q → 0.
The theory which systematically describes the q → 0 limit of Uq(ŝl2 ) was developed
by Kashiwara and others, and is known as the theory of crystal bases [14,20,21]. The
main content of this section is a proof of the crystal isomorphism Pa,b ' B(λ(m−n)

a )⊗
B(λ(n)

b ). Here, λ
(k)
j = (k−j)Λ0 +jΛ1, j ∈ {0, 1, · · · , k}, is a level k dominant integral

weight and B(λ(k)
j ) is the crystal associated with the highest weight module V (λ(k)

j )

(see [20]). We shall use a principal grading operator D, defined on B(λ(m−n)
a )⊗B(λ(n)

b )
by

(3.1) D = −ρ + (ρ, λ(m−n)
a + λ

(n)
b ),

where ρ = Λ0 + Λ1 and (·, ·) is the symmetric bilinear form used in [3]. We denote
by B(k) the crystal of the k + 1 dimensional U ′

q(ŝl2) module (Vk)z with z = 1. Set

σλ
(k)
j = jΛ0 + (k − j)Λ1.
We give two proofs. The first makes use of a relation between our models and the

fusion RSOS models. The second proceeds by examining the crystal isomorphism

(3.2) B(λ(m−n)
a )⊗B(λ(n)

b ) ' B(σNλ(m−n)
a )⊗B(λ(n)

b )⊗ (B(m) ⊗B(n))⊗N ,

where N ∈ Z>0.

3.1. Identification of Pa,b with the tensor product of crystals with high-
est weights. Let us give the rules for the crystal action of f̃i, ẽi (i = 0, 1) on a path
|p〉 ∈ Pa,b (for the definition of f̃i, ẽi and for a detailed discussion of the theory of
crystal bases, see [14,20,22]): First, for each k > 0, replace each p(k) by the sequence
of 1’s and 0’s

(3.3) p(k) → 1 · · · 1︸ ︷︷ ︸
#1

0 · · · 0︸ ︷︷ ︸
#0

,

where

(3.4) (#1,#0) =





(n− p(k), p(k)) for i = 0, k odd,

(m− p(k), p(k)) for i = 0, k even,

(p(k), n− p(k)) for i = 1, k odd,

(p(k),m− p(k)) for i = 1, k even.
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Then, remove repeatedly all occurrences of adjacent 01 pairs until we have a sequence
of the form 1 · · · 1 0 · · · 0. On the remaining sequence, use the rule

f̃i(1 · · · 1︸ ︷︷ ︸
j

0 · · · 0︸ ︷︷ ︸
k

) = 1 · · · 1︸ ︷︷ ︸
j+1

0 · · · 0︸ ︷︷ ︸
k−1

,(3.5)

ẽi(1 · · · 1︸ ︷︷ ︸
j

0 · · · 0︸ ︷︷ ︸
k

) = 1 · · · 1︸ ︷︷ ︸
j−1

0 · · · 0︸ ︷︷ ︸
k+1

.(3.6)

Finally, put the 01 pairs back into their original positions and rebuild the modified
path using the inverse of the replacement given in (3.3).

If we remove 01 from the sequence {p̄(k; a, b)}k≥k0 , then for i = 1, we get the
sequences, 0 · · · 0︸ ︷︷ ︸

a+b

(if k0 ≡ 1 (mod 4)), 0 · · · 0︸ ︷︷ ︸
n+a−b

(if k0 ≡ 2 (mod 4)), 0 · · · 0︸ ︷︷ ︸
m−n−a+b

(if k0 ≡ 3

(mod 4)), 0 · · · 0︸ ︷︷ ︸
m−a−b

(if k0 ≡ 4 (mod 4)). In all cases, ẽ1 annihilates the sequence. For

i = 0, the same is true with the replacement of a by m− n− a, and of b by n− b.
For k ≥ 1, we use the notation

wtk(p) =
{

(n− 2p)(Λ1 − Λ0) if k is odd;
(m− 2p)(Λ1 − Λ0) if k is even.

(3.7)

Definition 3.1. A path |p〉 ∈ Pa,b is called admissible if the sequence of weights
{λ(k)}k≥1 defined by

λ(k + 1) + wtk(p(k)) = λ(k),(3.8)

λ(1) = λ
(m)
a+b +

∑

k≥1

(
wtk(p(k))− wtk(p̄(k; a, b))

)
,(3.9)

satisfies

〈h1, λ(k + 1)〉 ≥ p(k), 〈h0, λ(k + 1)〉 ≥
{

n− p(k) if s is odd;
m− p(k) if s is even.

(3.10)

If |p〉 is admissible, we have λ(k) ∈ {λ(m)
j ; 0 ≤ j ≤ m}. Note that the path

|p̄〉 ∈ Pa,b is admissible, and that the corresponding sequence of weights is given by
the period 4 repetition

· · ·λ(m)
m−a−b λ

(m)
m−n−a+b λ

(m)
n+a−b λ

(m)
a+b.

With these definitions in hand, we can proceed to state and prove the following
theorem:

Theorem 3.2. There is a crystal isomorphism Pa,b ' B(λ(m−n)
a ) ⊗ B(λ(n)

b ),
under which the principal grading is given by D|p〉 = h(p)|p〉.
The proof is given after preparing the following lemma.

Lemma 3.3. A path |p〉 ∈ Pa,b is highest, i.e., ẽi|p〉 = 0, for i = 0, 1, if and only
if it is admissible.

Proof. First note that the tensor product rule for crystals (see [20]) implies that
if a path |p〉 ∈ Pa,b is highest, and if we split the tensor product expression for the
path at any arbitrary point l to write

|p〉 =
( · · · ⊗ p(l + 2)⊗ p(l + 1)⊗ p(l)

)⊗ (
p(l − 1)⊗ p(l − 2)⊗ · · · p(1)

)
,(3.11)
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then
( · · · ⊗ p(l + 2)⊗ p(l + 1)⊗ p(l)

)
must also be highest.

Now suppose l À 0 such that p(k) = p̄(k; a, b) for k ≥ l. Then, the reduction
of the sequence (p(k))k≥l for i = 0, 1 gives rise to 0 · · · 0︸ ︷︷ ︸

〈hi,λ̄(l;a,b)〉
. Since |p〉 is highest,

the path (p(k))k≥l−1 must also be highest. For this to be true, it is necessary and
sufficient that

〈h1, λ̄(l; a, b)〉 ≥ p(l − 1) 〈h0, λ̄(l; a, b)〉 ≥
{

n− p(l − 1) if l is even ;
m− p(l − 1) if l is odd .

(3.12)

Namely, we have (3.10) for k = l − 1. Setting λ(l − 1) = λ̄(l; a, b) + wt(p(l − 1)) we
can repeat this argument. Continuing in the same way to λ(l − 2), λ(l − 3), etc., we
can prove the lemma.
Proof of Theorem 3.2 . First let us consider the conditions (3.10) in more detail. If we
write λ(k) = λ

(m)
a(k) (where a(k) ∈ {0, 1, · · ·m}), then the conditions for k odd become

a(k + 1) + (n− 2p(k)) = a(k),(3.13)
a(k + 1) ≥ p(k),(3.14)

m− a(k + 1) ≥ n− p(k).(3.15)

Eliminating p(k), we find

a(k + 1)− a(k)∈ {−n,−n + 2, · · · , n},(3.16)
n ≤a(k + 1) + a(k)≤ 2m− n.(3.17)

On the other hand, the admissibility conditions for k even become

a(k + 1) + (m− 2p(k)) = a(k),(3.18)
a(k + 1) ≥ p(k),(3.19)

m− a(k + 1) ≥ m− p(k).(3.20)

Eliminating p(k) gives just

a(k + 1) = m− a(k).(3.21)

From these considerations, it follows that an admissible sequence of weights can
be written in the form

· · ·σ(λ(m)
r(5)) σ(λ(m)

r(4)) λ
(m)
r(4) λ

(m)
r(3) σ(λ(m)

r(3)) σ(λ(m)
r(2)) λ

(m)
r(2) λ

(m)
r(1),(3.22)

where the path |r〉 = · · · r(4) r(3) r(2) r(1) lies in the space Ra,b, defined as the set of
paths for which

r(k) ∈ {0, · · · ,m},
r(k + 1)− r(k) ∈ {−n,−n + 2, · · · , n},(3.23)
n ≤ r(k + 1) + r(k) ≤ 2m− n,

r(k) = r̄(k; a, b), k À 0, where(3.24)

r̄(k; a, b) =
{

a + b k odd;
a + n− b k even.

(3.25)
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That is, we can identify an admissible path |p〉 ∈ Pa,b with a path |r〉 ∈ Ra,b by
defining

r(k) =
{

a(2k − 1) if k is odd;
m− a(2k − 1) if k is even.(3.26)

The restrictions on |r〉 ∈ Ra,b are those on the space of states of the Uq(ŝl2 ) fusion
RSOS models. In [5], such a model is labelled by two integers (`,N) and by the level
k = ` + N . The connection with our notation is that (`,N, k) ↔ (m− n, n, m).

Let us denote by Ω
(
B(λ(m−n)

a ) ⊗ B(λ(n)
b )

)
the space of highest weight elements

in the crystal B(λ(m−n)
a )⊗B(λ(n)

b ). Then, it is a well-known theorem that

Ra,b ' Ω
(
B(λ(m−n)

a )⊗B(λ(n)
b )

)
, where(3.27)

D|r〉 =

(
1
2

∑

k>0

k|r(k + 2)− r(k)|
)
|r〉.(3.28)

This theorem appears at least implicitly in many of the original works on RSOS models
(see [23, 24] for example). A statement and proof using the language of crystals is
given in [25].

We now require two lemmas concerning the crystal energy h(p) of a path in Pa,b.
Lemma 3.4. The crystal energy of an admissible path |p〉 ∈ Pa,b is given by

h(p) =
1
2

∞∑

k=1

k|r(k + 2)− r(k)|.(3.29)

Proof. The crystal energy h(p) of a path is defined by (2.31)–(2.35). If |p〉 is
admissible we have

a(2k + 2) + n− 2p(2k + 1) = a(2k + 1),(3.30)
a(2k + 1) + m− 2p(2k) = a(2k).(3.31)

Adding these equations and using (3.17) and (3.21) gives n ≤ p(2k + 1) + p(2k) ≤ m.
Hence h1, h2 and h3 are given by

h1(p(2k + 1), p(2k), p(2k − 1)) = {p(2k − 1) + n− p(2k + 1)}n,(3.32)
h2(p(2k + 2), p(2k + 1), p(2k)) = {p(2k + 2) + p(2k) + 2p(2k + 1)− n}m,(3.33)

h3(p(2k + 1), p(2k)) = n.(3.34)

Using (3.13)–(3.21) it is simple to show that

p(2k − 1) + n− p(2k + 1) = n + a(2k + 3)− a(2k − 1),(3.35)
p(2k + 2) + p(2k) + 2p(2k + 1)− n = m.(3.36)

Writing a(2k − 1) in terms of r(k) using (3.26) then gives

h1(p(2k + 1), p(2k), p(2k − 1)) = n− 1
2
|r(k + 2)− r(k)|,(3.37)

which completes the proof.



724 J. HONG, S.-J. KANG, T. MIWA, AND R. WESTON

Lemma 3.5. The action of f̃i on a path increases h(p) by 1, and that of ẽi

decreases it by 1.
Proof. f̃1 acts on a path |p〉 ∈ Pa,b by changing p(k) → p(k) + 1 at a single value

of k. Suppose this happens for k = 2l + 1. Then the following inequalities must hold:

n− p(2l + 1) > p(2l),(3.38)
m− p(2l + 2) ≤ p(2l + 1).(3.39)

Using these inequalities, (2.31)–(2.33), and the property

{a + 1}n − {a}n =
{

1 if a < n,
−1 if a ≥ n,

(3.40)

we arrive at

h1(p(2l + 3), p(2l + 2), p(2l + 1) + 1)− h1(p(2l + 3), p(2l + 2), p(2l + 1)) = −1,

h2(p(2l + 2), p(2l + 1) + 1, p(2l))− h2(p(2l + 2), p(2l + 1), p(2l)) = −1,

h1(p(2l + 1) + 1, p(2l), p(2l − 1))− h1(p(2l + 1), p(2l), p(2l − 1)) = 0,

h3(p(2l + 1) + 1, p(2l))− h3(p(2l + 1), p(2l)) = 1.

From this we see that h(p) → h(p)+1 when we change p(2l +1) → p(2l +1)+1. The
proofs for the case when k = 2l, and for f̃0, ẽ0, ẽ1 are similar.

We have shown that the space of highest paths in Pa,b is isomorphic to the space
Ra,b which is in turn isomorphic to Ω

(
B(λ(m−n)

a ) ⊗ B(λ(n)
b )

)
. Combining this result

with (3.28), and Lemmas 3.4 and 3.5 completes the proof of Theorem 3.2. ¤

3.2. The crystal structure of the path space. In this subsection, we will give
another proof of the crystal isomorphism Pa,b

∼= B(λ)⊗B(µ) between the path space
Pa,b and the tensor product of the crystals B(λ)⊗B(µ), where λ = aΛ1+(m−n−a)Λ0

and µ = bΛ1+(n−b)Λ0. We first recall some of the fundamental results on the crystals
for the quantum affine algebra Uq(ŝl2 ) (cf. [14]).

Let ` > 0 be a positive integer and let B(`) = {[j](`) | 0 ≤ j ≤ `} be the perfect
crystal of level ` for the quantum affine algebra Uq(ŝl2 ). The crystal structure of B(`)

is given in the following:

[0](`) [1](`) [`− 1](`) [`](`)
1

0

1

0

1

0

1

0
· · · · · ·

We will write [j] in place of [j](`) whenever there is no danger of confusion.
The following theorem gives one of the most fundamental isomorphisms in the

theory of crystals for the quantum affine algebra Uq(ŝl2 ).
Theorem 3.6 (cf. [14]). For any dominant integral weight λ = sΛ1 + (`− s)Λ0

of level ` > 0, there exists a crystal isomorphism

(3.41) ψ = ψλ : B(λ) ∼−→ B(σλ)⊗B(`)

such that

(3.42) uλ 7→ uσλ ⊗ [`− s],

where uλ is the highest weight element of B(λ).



VERTEX MODELS WITH ALTERNATING SPINS 725

Let |pλ〉 = (pλ(k))∞k=1 be the sequence of elements in B(`) whose terms are given
by

(3.43) pλ(k) =

{
[`− s] if k is odd,

[s] if k is even.

For each positive integer N > 0, there exists a crystal isomorphism

(3.44) ψ(N) = ψ
(N)
λ : B(λ) ∼−→ B(σNλ)⊗ (B(`))⊗N

such that

(3.45) uλ 7→ uσN λ ⊗ pλ(N)⊗ · · · ⊗ pλ(2)⊗ pλ(1).

A sequence |p〉 = (p(k))∞k=1 with p(k) ∈ B(`) is called a λ-path in B(`) if p(k) =
pλ(k) for all sufficiently large k. Let P (λ) be the set of all λ-paths in B(`). Each
λ-path |p〉 = (p(k))∞k=1 is understood as the half-infinite tensor product |p〉 = · · · ⊗
p(k + 1)⊗ p(k)⊗ · · · ⊗ p(2)⊗ p(1) and hence the set P (λ) is given a crystal structure
for the quantum affine algebra Uq(ŝl2 ) by the tensor product rule for the crystals.

Moreover, one can prove:
Theorem 3.7 (cf. [14]). For each b ∈ B(λ), there exists a positive integer N > 0

such that

(3.46) ψ(N)(b) ∈ uσN λ ⊗ (B(`))⊗N .

Hence we have the crystal isomorphism B(λ) ∼−→ P (λ).
In [26], in his study of 6 vertex models of inhomogeneous type, Nakayashiki con-

sidered the crystal isomorphism ψ in a more general setting.
Theorem 3.8 (cf. [26, 27]). Let µ = bΛ1 + (n − b)Λ0 be a dominant integral

weight of level n > 0 and let B(k) be the perfect crystal of level k > 0 for the quantum
affine algebra Uq(ŝl2 ). Then there exists a crystal isomorphism

(3.47) Ψ : B(k) ⊗B(µ) ∼−→ B(σµ)⊗B(n+k)

such that

(3.48) [j](k) ⊗ uµ 7→ uσµ ⊗ [j + n− b](n+k).

Suppose m > n and let λ = aΛ1 + (m− n− a)Λ0 be a dominant integral weight
of level m− n. Define a crystal isomorphism

(3.49)

Φ = Φλ,µ = Ψ ◦ (ψλ ⊗ ψµ) = (id⊗Ψ⊗ id) ◦ (ψλ ⊗ id⊗ id) ◦ (id⊗ψµ) :

B(λ)⊗B(µ)
id⊗ψ−−−→ B(λ)⊗B(σµ)⊗B(n)

ψ⊗id⊗ id−−−−−−→ B(σλ)⊗B(m−n) ⊗B(σµ)⊗B(n)

id⊗Ψ⊗id−−−−−−→ B(σλ)⊗B(µ)⊗B(m) ⊗B(n)

to be the composite of the crystal isomorphisms defined in Theorem 3.6 and Theo-
rem 3.8.
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By repeating the crystal isomorphism Φ, we obtain the crystal isomorphism

Φ(2) : B(λ)⊗B(µ) ∼−→ B(λ)⊗B(µ)⊗ (B(m) ⊗B(n))⊗2

such that

uλ ⊗ uµ 7→ uλ ⊗ uµ ⊗ [a + b](m) ⊗ [n− b](n) ⊗ [m− n− a + b](m) ⊗ [n− b](n).

In general, let |pλ,µ〉 = (pλ,µ(k))∞k=1 be the sequence of elements in B(m) and B(n)

whose terms are given by

(3.50) pλ,µ(k) =





[n− b] if k is odd,

[a + b] if k ≡ 0 (mod 4),
[m− n− a + b] if k ≡ 2 (mod 4).

For each positive integer N > 0, we have a crystal isomorphism

(3.51) Φ(N) = Φ(N)
λ,µ : B(λ)⊗B(µ) ∼−→ B(σNλ)⊗B(µ)⊗ (B(m) ⊗B(n))⊗N

such that

(3.52) uλ ⊗ uµ 7→ uσN λ ⊗ uµ ⊗ pλ,µ(2N)⊗ pλ,µ(2N − 1)⊗ · · · ⊗ pλ,µ(2)⊗ pλ,µ(1).

A sequence |p〉 = (p(k))∞k=1 of elements in B(m) and B(n) is called a (λ, µ)-path
if p(k) = pλ,µ(k) for all sufficiently large k. Let P (λ, µ) be the set of all (λ, µ)-paths.
The crystal structure of P (λ, µ) is the same as that of the path space Pa,b.

Now, we would like to show that there exists a crystal isomorphism B(λ) ⊗
B(µ) ∼−→ P (λ, µ). As in the case with the crystal isomorphism B(λ) ∼−→ P (λ),
it suffices to prove that for each v ⊗ w ∈ B(λ)⊗B(µ), there exists a positive integer
N > 0 such that

(3.53) Φ(N)(v ⊗ w) ∈ uσN λ ⊗ uµ ⊗ (B(m) ⊗B(n))⊗N .

For this purpose, we need an explicit description of the crystal isomorphism R :
B(m) ⊗ B(n) ∼−→ B(n) ⊗ B(m), called the combinatorial R-matrix, normalised by the
condition R([0](m) ⊗ [0](n)) = [0](n) ⊗ [0](m). We rephrase (2.16) as follows.

Lemma 3.9. The normalised combinatorial R-matrix R : B(m)⊗B(n) ∼−→ B(n)⊗
B(m) is given by

(3.54) R([i](m) ⊗ [j](n)) =





[i](n) ⊗ [j](m) if i + j ≤ m,n,

[2i + j −m](n) ⊗ [m− i](m) if m ≤ i + j ≤ n,

[n− j](n) ⊗ [i + 2j − n](m) if n ≤ i + j ≤ m,

[n−m + i](n) ⊗ [j + m− n](m) if i + j ≥ m,n.

The following lemma plays a crucial role in proving our isomorphism theorem.
Lemma 3.10. Let µ = bΛ1+(n−b)Λ0. If m > n, the following diagram of crystal

isomorphisms is commutative.
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B(m−n) ⊗B(µ)

B(σµ)⊗B(m)

B(µ)⊗B(n) ⊗B(m)

B(m−n) ⊗B(σµ)⊗B(n)

B(µ)⊗B(m) ⊗B(n)

Ψ

ψ ⊗ id

id⊗ψ

R

Ψ⊗ id

Proof. Since the crystal B(m−n) ⊗ B(µ) is connected (see [26, 27]), it suffices to
check the commutativity for a single element, say [j](m−n) ⊗ uµ ∈ B(m−n) ⊗ B(µ)
with 0 ≤ j ≤ m−n. Using (3.48), (3.42), and (3.54), we can show that [j](m−n)⊗ uµ

is mapped to uµ ⊗ [b](n) ⊗ [j + n− b](m) in both ways.
By applying the above lemma repeatedly, we obtain:
Corollary 3.11. For each positive integer N > 0, the following diagram of

crystal isomorphisms is commutative.

B(λ)⊗ (B(m−n))⊗N ⊗B(µ) B(σλ)⊗ (B(m−n))⊗(N+1)

⊗B(σµ)⊗B(n)

B(σλ)⊗B(m−n) ⊗B(σN+1µ)
⊗(B(m))⊗N ⊗B(n)

B(σλ)⊗B(m−n) ⊗B(σN+1µ)
⊗B(n) ⊗ (B(m))⊗N

B(λ)⊗B(σNµ)⊗ (B(m))⊗N

R ◦ · · · ◦R

ψλ ⊗ ψµ

Ψ ◦ · · · ◦Ψ

ψλ ⊗ ψσN µ

Ψ ◦ · · · ◦Ψ

Let v ⊗w ∈ B(λ)⊗B(µ). By Theorem 3.7, there exists a positive integer N > 0
such that ψ

(N)
λ (v) ∈ uσN λ ⊗ (B(m−n))⊗N and ψ

(N)
µ (v) ∈ uσN µ ⊗ (B(n))⊗N . Hence we

obtain the crystal isomorphism

(3.55)

B(λ)⊗B(µ)
ψ

(N)
λ ⊗ψ(N)

µ−−−−−−−→ B(σNλ)⊗ (B(m−n))⊗N ⊗B(σNµ)⊗ (B(n))⊗N

Ψ◦···◦Ψ−−−−−→ B(σNλ)⊗B(µ)⊗ (B(m))⊗N ⊗ (B(n))⊗N

R◦···◦R−−−−−→ B(σNλ)⊗B(µ)⊗ (B(m) ⊗B(n))⊗N

such that v ⊗ w is mapped to an element in uσN λ ⊗ uµ ⊗ (B(m) ⊗B(n))⊗N .
Therefore, in order to prove our claim (3.53), it suffices to prove that the following

diagram of crystal isomorphisms is commutative.
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B(λ)⊗B(µ) B(σNλ)⊗ (B(m−n))⊗N

⊗B(σNµ)⊗ (B(n))⊗N

B(σNλ)⊗B(µ)
⊗(B(m) ⊗B(n))⊗N

B(σNλ)⊗B(µ)
⊗(B(m))⊗N ⊗ (B(n))⊗N

R ◦ · · · ◦R

ψ
(N)
λ ⊗ ψ

(N)
µ

Φ(N) Ψ ◦ · · · ◦Ψ

We will prove our assertion by induction on N . If N = 1, there is nothing to
prove. Assume that our assertion is true for N−1. Then by the induction hypothesis,
the following diagram of crystal isomorphisms is commutative.

B(λ)⊗B(µ)

B(σN−1λ)⊗B(µ)
⊗(B(m) ⊗B(n))⊗(N−1)

B(σNλ)⊗B(m−n) ⊗B(σµ)
⊗B(n) ⊗ (B(m) ⊗B(n))⊗(N−1)

B(σNλ)⊗B(µ)
⊗(B(m) ⊗B(n))⊗N

B(σN−1λ)⊗ (B(m−n))⊗(N−1)

⊗B(σN−1µ)⊗(B(n))⊗(N−1)

B(σN−1λ)⊗B(µ)
⊗(B(m))⊗(N−1) ⊗ (B(n))⊗(N−1)

B(σNλ)⊗B(m−n) ⊗B(σµ)⊗B(n)

⊗(B(m))⊗(N−1) ⊗ (B(n))⊗(N−1)

B(σNλ)⊗B(µ)⊗B(m) ⊗B(n)

⊗(B(m))⊗(N−1) ⊗ (B(n))⊗(N−1)

ψ
(N−1)
λ ⊗ ψ

(N−1)
µ

R ◦ · · · ◦R

R ◦ · · · ◦R

R ◦ · · · ◦R

Φ(N−1)

ψσN−1λ ⊗ ψµ

Ψ

Ψ ◦ · · · ◦Ψ

ψσN−1λ ⊗ ψµ

Ψ

Note that the commutativity of the first square follows from the induction hypothesis
and the commutativity of the other squares is trivial.

Next, observe that Corollary 3.11 yields the following commutative diagram of
crystal isomorphisms.
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B(σN−1λ)⊗ (B(m−n))⊗(N−1)

⊗B(σN−1µ)⊗ (B(n))⊗(N−1)

B(σN−1λ)⊗B(µ)
⊗(B(m))⊗(N−1) ⊗ (B(n))⊗(N−1)

B(σNλ)⊗B(m−n)⊗B(σµ)⊗B(n)

⊗(B(m))⊗(N−1) ⊗ (B(n))⊗(N−1)

B(σNλ)⊗B(m−n) ⊗B(σµ)
⊗(B(m))⊗(N−1) ⊗ (B(n))⊗N

B(σNλ)⊗ (B(m−n))⊗N

⊗B(σNµ)⊗ (B(n))⊗N

Ψ ◦ · · · ◦Ψ

ψσN−1λ ⊗ ψµ

R ◦ · · · ◦R

Ψ ◦ · · · ◦Ψ

ψσN−1λ ⊗ ψσN−1µ

Moreover, the commutativity of the following diagram is trivial.

B(σNλ)⊗B(m−n)⊗B(σµ)⊗B(n)

⊗(B(m))⊗(N−1) ⊗ (B(n))⊗(N−1)

B(σNλ)⊗B(µ)⊗B(m) ⊗B(n)

⊗(B(m))⊗(N−1) ⊗ (B(n))⊗(N−1)

B(σNλ)⊗B(m−n) ⊗B(σµ)
⊗(B(m))⊗(N−1) ⊗ (B(n))⊗N

B(σNλ)⊗B(µ)
⊗(B(m))⊗N ⊗ (B(n))⊗N

R ◦ · · · ◦R

R ◦ · · · ◦R

Ψ Ψ

By combining all the commutative diagrams obtained above, we obtain the desired
commutative diagram.

To summarise the above discussion, we obtain:
Theorem 3.12. Suppose m > n and let λ = aΛ1 + (m − n − a)Λ0 and µ =

bΛ1 +(n− b)Λ0 be dominant integral weights of level m−n and n, respectively. Then
there exists a crystal isomorphism

(3.56) B(λ)⊗B(µ) ∼−→ Pa,b

such that

(3.57) uλ ⊗ uµ 7−→ · · · ⊗ [a + b]⊗ [n− b]⊗ [m− n− a + b]⊗ [n− b].

4. Level-1 Intertwiners. In this section, we define some Uq(ŝl2 ) intertwiners
and study them in the level-1 case. Commutation relations for these operators will be
given and some of their matrix elements will be calculated. These will be used in the
next section to reduce questions about general level intertwiners to those of level-1
intertwiners.

The reader should recall some notation from Section 2.1. Let σ denote the map
exchanging the two fundamental weights Λ0 ↔ Λ1. The set of dominant integral
weights of level k will be denoted by P+

k . For λ ∈ P+
k , V (λ) will be the irreducible

highest weight module of highest weight λ. Also set λ± = λ± (Λ1 − Λ0) for λ ∈ P+
k .

We only consider the cases when λ± ∈ P+
k . The following notation for various Uq(ŝl2 )
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intertwiners will be used.

Φ(`,`+k) : V
(`)
ζ ⊗ V (λ) → V (σ(λ))⊗ V

(`+k)
ζ ,(4.1)

Φ± : V (λ) → V (λ±)⊗ V
(1)
ζ ,(4.2)

Ψ∗± : V
(1)
ζ ⊗ V (λ) → V (λ±).(4.3)

As we said in 2.1, we consider the evaluation modules in these formulas as modules
of finite rank over the ring of coefficients containing ζ and ζ−1. This implies, in
particular, that the intertwiners commute with the multiplication of ζ and ζ−1. We
remark also that in each of (4.1)–(4.3) we need completion in the right hand side
(see [21] for a detailed discussion).

As to the existence of the intertwiners (4.1), we have the following proposition.
The case ` = 0 is given in [21], and the case k = 1 in [7]. See also [26] and [27] for the
crystal version.

Proposition 4.1. Let λ, ν ∈ P+
k . There exists a U ′

q(ŝl2) intertwiner from V
(`)
ζ ⊗

V (λ) to V (ν) ⊗ V
(`+k)
ζ if and only if ν = σ(λ). When ν = σ(λ), the intertwiner is

unique up to scalar multiple.
Proof. We first prove

HomU ′q (V
(`)
ζ ⊗ V (λ), V (ν)⊗ V

(`+k)
ζ )

∼= W ν
λ = {v ∈ V

(`+k)
ζ ⊗ V

(`)

ζq−(k+2)/2 ; e
ν(hi)+1
i v = 0,wt(v) = λ− ν}.

This is very similar to the proof in [7] which is an extended version of the case ` = 0
given in [21]. The steps are

HomU ′q (V
(`)
ζ ⊗ V (λ), V (ν)⊗ V

(`+k)
ζ )

∼= HomU ′q (V (λ), V (`)∗a−1

ζ ⊗ V (ν)⊗ V
(`+k)
ζ )

∼= HomU ′q(b+)(Q(q)uλ, V
(`)∗a−1

ζ ⊗ V (ν)⊗ V
(`+k)
ζ )

∼= HomU ′q(b+)(V (ν)∗a ⊗ V
(`)
ζ ⊗Q(q)uλ, V

(`+k)
ζ )

∼= HomU ′q(b+)(V (ν)∗a ⊗Q(q)uλ ⊗ V
(`)

ζq−k/2 , V
(`+k)
ζ )

∼= HomU ′q(b+)(V (ν)∗a ⊗Q(q)uλ, V
(`+k)
ζ ⊗ V

(`)∗a
ζq−k/2)

∼= HomU ′q(b+)(V (ν)∗a ⊗Q(q)uλ, V
(`+k)
ζ ⊗ V

(`)

ζq−(k+2)/2)
∼= W ν

λ .

Here we used the U ′
q(b

+) isomorphism V
(`)
ζ ⊗Q(q)uλ

∼= Q(q)uλ ⊗ V
(`)

ζq−k/2 :

u
(`)
j ⊗ uλ 7→ q−j(λ(h1)−k/2)uλ ⊗ u

(`)
j .

To complete the proof, we show dim(W ν
λ ) = δν,σ(λ). Suppose ν = jΛ1+(k−j)Λ0. We

solve for the vector v ∈ V
(`+k)
ζ ⊗ V

(`)

ζq−(k+2)/2 which satisfies ej+1
1 v = 0, ek−j+1

0 v = 0.
It is uniquely given up to constant multiple by

y
(k)
j =

∑̀

i=0

(−1)i

[
k + i− j

i

] 1
2

q

[
`− i + j

j

] 1
2

q

u
(`+k)
`−i+j ⊗ u

(`)
i .



VERTEX MODELS WITH ALTERNATING SPINS 731

These vectors span a space isomorphic to V
(k)

ζq`/2 . The weight of y
(k)
j is (k−2j)(Λ1−Λ0)

and this is equal to λ− ν if and only if λ = σ(ν).
Similar existence and uniqueness theorems for the other two intertwiners are also

known. We define |λ〉 to be the highest weight vector of V (λ) and take 〈λ| to be its
dual. With these, we normalise the intertwiners as follows:

〈Λ1|Φ(`,`+1)|Λ0〉(u(`)
` ) = u

(`+1)
`+1 ,(4.4)

〈Λ0|Φ(`,`+1)|Λ1〉(u(`)
0 ) = u

(`+1)
0 ,(4.5)

〈λ+|Φ+|λ〉 = u
(1)
1 ,〈λ+|Ψ∗+|λ〉(u(1)

0 ) = 1,(4.6)

〈λ−|Φ−|λ〉 = u
(1)
0 ,〈λ−|Ψ∗−|λ〉(u(1)

1 ) = 1.(4.7)

Normalisation for the arbitrary level operators Φ(`,`′) will be given later (page 736,
above Proposition 5.3).

The matrix elements of these intertwiners are Laurent polynomials. Therefore,
we can write the vertex operators in Laurent series expansions:

Φ(`,`+k)
i,j (ζ) =

∑
κ

ζ−κΦ(`,`+k)
i,j,κ , Φ(`,`+k)(ζ)(u(`)

i ⊗ v) =
∑

j

Φ(`,`+k)
i,j (ζ)v ⊗ u

(`+k)
j ,

(4.8)

Φ±i (ζ) =
∑

κ

ζ−κΦ±i,κ, Φ±(ζ)(v) =
∑

i=0,1

Φ±i (ζ)v ⊗ u
(1)
i ,(4.9)

Ψ∗±i (ζ) =
∑

κ

ζ−κΨ∗±i,κ , Ψ∗±(ζ)(u(1)
i ⊗ v) = Ψ∗±i (ζ)v.(4.10)

From the normalisations, we see that for Φε
i , the sum is taken over κ satisfying ε ·

(−1)i+1 = (−1)κ and that for Ψ∗εi , it is taken over κ satisfying ε · (−1)i = (−1)κ.
Let us state some properties of the level-1 intertwiners. Here, we suppress the ap-

pearance of the ± superscripts on Φ±(ζ) and Ψ±(ξ). Except where we state otherwise,
these relations are valid for ` ≥ 0, with the identification Φ(0,1)(ζ) = Φ(ζ).

Proposition 4.2.

ξ−D Φ(`,`+1)
s,t (ζ) ξD = Φ(`,`+1)

s,t (ζ/ξ),(4.11)

δi+j,` = g(`,`+1)∑
s+t=`+1Φ

(`,`+1)
i,s (−q−1ζ)Φ(`,`+1)

j,t (ζ),(4.12)

Φ(`,`+1)(ζ)Φ(ξ) = R(1,`+1)(ξ/ζ)Φ(ξ)Φ(`,`+1)(ζ),(4.13)
Φ(`,`+1)(ζ)Ψ∗(ξ) = Ψ∗(ξ)Φ(`,`+1)(ζ)R(`,1)(ζ/ξ) for ` > 0,(4.14)

Φ(ζ)Ψ∗(ξ) = Ψ∗(ξ)Φ(ζ)τ(ζ/ξ),(4.15)

Φ(`,`+1)(ζ1)Φ(`′,`′+1)(ζ2)R(`′,`)(ζ2/ζ1)
= R(`′+1,`+1)(ζ2/ζ1)Φ(`′,`′+1)(ζ2)Φ(`,`+1)(ζ1) for `, `′ > 0,

(4.16)

where

g(`,`′) =
(q2`+2 ; q4)∞
(q2`′+2 ; q4)∞

, τ(ζ) = ζ−1 (qζ2 ; q4)∞(q3ζ−2 ; q4)∞
(qζ−2 ; q4)∞(q3ζ2 ; q4)∞

.(4.17)

Proof. All but (4.16) appear in [8]. The last one may be proved by applying (4.13)
and (4.14) on the fusion construction of Φ(`,`+1)(ζ) appearing in [7, 8].
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We wish to calculate various level-1, highest weight to highest weight, matrix
elements.

Lemma 4.3.

〈Λ0|Φ(`,`+1)(ζ1)Φ(`′,`′+1)(ζ2)|Λ0〉(u(`)
k ⊗ u

(`′)
j )

= h(`′+`+5)(ζ2/ζ1)
( 1

[` + 1]q[`′ + 1]q

) 1
2

×
{

q−
1
2 (`′+k−j)[`− k + 1]

1
2
q [j + 1]

1
2
q u

(`+1)
k ⊗ u

(`′+1)
j+1

−q
1
2 (`−k+j)+1[`′ − j + 1]

1
2
q [k+ 1]

1
2
q (ζ2/ζ1)u

(`+1)
k+1 ⊗ u

(`′+1)
j

}
,

(4.18)

〈Λ1|Φ(`,`+1)(ζ1)Φ(`′,`′+1)(ζ2)|Λ1〉(u(`)
k ⊗ u

(`′)
j )

= h(`′+`+5)(ζ2/ζ1)
( 1

[` + 1]q[`′ + 1]q

) 1
2

×
{
− q

1
2 (`′+k−j)+1[`− k + 1]

1
2
q [j+ 1]

1
2
q (ζ2/ζ1)u

(`+1)
k ⊗ u

(`′+1)
j+1

+q−
1
2 (`−k+j)[`′ − j + 1]

1
2
q [k+ 1]

1
2
q u

(`+1)
k+1 ⊗ u

(`′+1)
j

}
,

(4.19)

where h(`)(ζ) = (q`+1ζ2 ; q4)∞
(q`−1ζ2 ; q4)∞

.
Proof. Let us just show the first one. The second one follows from the first by

applying the symmetry σ. We set F = 〈Λ0|Φ(`,`+1)(ζ1)Φ(`′,`′+1)(ζ2)|Λ0〉 to simplify
notations. This is a map from V

(`)
ζ1

⊗ V
(`′)
ζ2

to V
(`+1)
ζ1

⊗ V
(`′+1)
ζ2

. By using 〈Λ0|e1 = 0,
f2
0 |Λ0〉 = 0, and the fact that Φ(`,`+1)(ζ1)Φ(`′,`′+1)(ζ2) is an intertwiner, we can show

that

F (e1u)− e1F (u) = 0,(4.20)

f2
0 F (u)− [2]qf0F (f0u) + F (f2

0 u) = 0(4.21)

for any u ∈ V
(`)
ζ1

⊗ V
(`′)
ζ2

. From weight considerations, we know F (u(`)
0 ⊗ u

(`′)
0 ) is a

linear combination of u
(`+1)
0 ⊗ u

(`′+1)
1 and u

(`+1)
1 ⊗ u

(`′+1)
0 . The use of (4.20) with

u = u
(`)
0 ⊗ u

(`′)
0 allows us to write

F (u(`)
0 ⊗ u

(`′)
0 ) = f`,`′(ζ2/ζ1)

{
q−

1
2 `′ [` + 1]

1
2
q u

(`+1)
0 ⊗ u

(`′+1)
1

−q
1
2 `+1[`′ + 1]

1
2
q (ζ2/ζ1) u

(`+1)
1 ⊗ u

(`′+1)
0

}
.

Starting from this, and by using (4.20) and (4.21), we may inductively determine F
up to the constant multiple f`,`′(ζ2/ζ1). To obtain the constant, we use (4.16), which
shows

f`,`′(ζ2/ζ1)
f`′,`(ζ1/ζ2)

=
(q`+`′+6(ζ2/ζ1)2 ; q4)∞
(q`+`′+4(ζ2/ζ1)2 ; q4)∞

(q`+`′+4(ζ1/ζ2)2 ; q4)∞
(q`+`′+6(ζ1/ζ2)2 ; q4)∞

,

together with the normalisation (4.4) and (4.5).
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Lemma 4.4.

〈Λ0|Φ(`,`+1)(ζ)Φ+(ξ)|Λ0〉(u(`)
j )

= h(`+5)(ξ/ζ)
( 1

[` + 1]q

) 1
2
{

q−
1
2 j [`− j + 1]

1
2
q u

(`+1)
j ⊗ u

(1)
1

− q
1
2 (`−j)+1[j + 1]

1
2
q (ξ/ζ) u

(`+1)
j+1 ⊗ u

(1)
0

}
,

(4.22)

〈Λ1|Φ(`,`+1)(ζ)Φ−(ξ)|Λ1〉(u(`)
j )

= h(`+5)(ξ/ζ)
( 1

[` + 1]q

) 1
2
{
− q

1
2 j+1[`− j + 1]

1
2
q (ξ/ζ) u

(`+1)
j ⊗ u

(1)
1

+ q−
1
2 (`−j)[j + 1]

1
2
q u

(`+1)
j+1 ⊗ u

(1)
0

}
,

(4.23)

〈Λ0|Φ−(ξ)Φ(`,`+1)(ζ)|Λ0〉(u(`)
j )

= h(`+5)(ζ/ξ)
( 1

[` + 1]q

) 1
2
{

q−
1
2 (`−j)[j + 1]

1
2
q u

(1)
0 ⊗ u

(`+1)
j+1

− q
1
2 j+1[`− j + 1]

1
2
q (ζ/ξ) u

(1)
1 ⊗ u

(`+1)
j

}
,

(4.24)

〈Λ1|Φ+(ξ)Φ(`,`+1)(ζ)|Λ1〉(u(`)
j )

= h(`+5)(ζ/ξ)
( 1

[` + 1]q

) 1
2
{
− q

1
2 (`−j)+1[j + 1]

1
2
q (ζ/ξ) u

(`+1)
0 ⊗ u

(1)
j+1

+ q−
1
2 j [`− j + 1]

1
2
q u

(1)
1 ⊗ u

(`+1)
j

}
.

(4.25)

Proof. Just set ` or `′ to zero in the preceding Lemma.
Arguments similar to the proof of Lemma 4.3 show:
Lemma 4.5.

〈Λ0|Φ(`,`+1)(ζ)Ψ∗+(ξ)|Λ0〉(u(`)
j ⊗ u

(1)
0 )

= h(`+2)(ξ/ζ)
( [`+1−j]q

[`+1]q

) 1
2 q−

1
2 ju

(`+1)
j ,

(4.26)

〈Λ0|Φ(`,`+1)(ζ)Ψ∗+(ξ)|Λ0〉(u(`)
j ⊗ u

(1)
1 )

= h(`+2)(ξ/ζ)
( [j+1]q

[`+1]q

) 1
2 q

1
2 (`−j)(ξ/ζ)u(`+1)

j+1 ,
(4.27)

〈Λ1|Φ(`,`+1)(ζ)Ψ∗−(ξ)|Λ1〉(u(`)
j ⊗ u

(1)
0 )

= h(`+2)(ξ/ζ)
( [`+1−j]q

[`+1]q

) 1
2 q

1
2 j(ξ/ζ)u(`+1)

j ,
(4.28)

〈Λ1|Φ(`,`+1)(ζ)Ψ∗−(ξ)|Λ1〉(u(`)
j ⊗ u

(1)
1 )

= h(`+2)(ξ/ζ)
( [j+1]q

[`+1]q

) 1
2 q−

1
2 (`−j)u

(`+1)
j+1 ,

(4.29)

〈Λ0|Ψ∗−(ξ)Φ(`,`+1)(ζ)|Λ0〉(u(1)
0 ⊗ u

(`)
j )

= h(`+2)(ζ/ξ)
( [`+1−j]q

[`+1]q

) 1
2 q

1
2 j(ζ/ξ)u(`+1)

j ,
(4.30)

〈Λ0|Ψ∗−(ξ)Φ(`,`+1)(ζ)|Λ0〉(u(1)
1 ⊗ u

(`)
j )

= h(`+2)(ζ/ξ)
( [j+1]q

[`+1]q

) 1
2 q−

1
2 (`−j)u

(`+1)
j+1 ,

(4.31)
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〈Λ1|Ψ∗+(ξ)Φ(`,`+1)(ζ)|Λ1〉(u(1)
0 ⊗ u

(`)
j )

= h(`+2)(ζ/ξ)
( [`+1−j]q

[`+1]q

) 1
2 q−

1
2 ju

(`+1)
j ,

(4.32)

〈Λ1|Ψ∗+(ξ)Φ(`,`+1)(ζ)|Λ1〉(u(1)
1 ⊗ u

(`)
j )

= h(`+2)(ζ/ξ)
( [j+1]q

[`+1]q

) 1
2 q

1
2 (`−j)(ζ/ξ)u(`+1)

j+1 .
(4.33)

5. Commutativity with the DVA Action. In this section, we show that
Φ(`′,`′+1)(ζ)Φ(`,`′)(ζ) commutes with the DVA action on V (λ)⊗V (Λi). This will allow
us to reduce questions about general level intertwiners to those of level-1 intertwiners.
Results on general level intertwiners will be used in Section 6.3 to diagonalise the
transfer matrix.

Let λ ∈ P+
k and define ψ(λ,i,±)(ξ) to be the composition of operators given by:

V (λ)⊗ V (Λi)
Φ±(ξ)⊗id−−−−−−→ V (λ±)⊗ V

(1)
ξ ⊗ V (Λi)

id⊗Ψ∗(ξ)−−−−−−→ V (λ±)⊗ V (Λ1−i).(5.1)

This is equivalent to defining

(5.2) ψ(λ,i,±)(ξ) =
∑

κ

ψ(λ,i,±)
κ ξ−κ =

∑

j=0,1

Φ±j (ξ)⊗Ψ∗j (ξ).

Each component

(5.3) ψ(λ,i,±)
κ : V (λ)⊗ V (Λi) → V (λ±)⊗ V (Λ1−i)

is a U ′
q(ŝl2) homomorphism. In [15], Jimbo and Shiraishi considered the irreducible

decomposition

V (λ)⊗ V (Λi) =
⊕

ν

V (ν)⊗ Ωλ,Λi
ν ,(5.4)

and constructed an action of the deformed Virasoro algebra on Ωλ,Λi
ν by using the

operator ψ(λ,i,±)(ξ).
Now, define φ(`,λ,i)(ζ) to be the composition of operators given by:

V
(`)
ζ ⊗ V (λ)⊗ V (Λi)

Φ(`,`+k)(ζ)⊗id−−−−−−−−−→ V (σ(λ))⊗ V
(`+k)
ζ ⊗ V (Λi)

id⊗Φ(`+k,`+k+1)(ζ)−−−−−−−−−−−−−→ V (σ(λ))⊗ V (Λ1−i)⊗ V
(`+k+1)
ζ .

We shall show

φ(`,λ±,1−i)(ζ) ◦ (
id⊗ψ(λ,i,±)(ξ)

)
=

(
id⊗ψ(σ(λ),1−i,∓)(ξ)

) ◦ φ(`,λ,i)(ζ).(5.5)

This will imply the commutativity of φ(`,λ,i) with the DVA action mentioned above.
Let us state a small lemma before considering the level-1 case.
Lemma 5.1. Fix any U ′

q(ŝl2) modules V and W . Let Θ : V (λ)⊗V → W⊗V (µ) be
a U ′

q(ŝl2) intertwiner. Then any matrix element of Θ (as an operator in End(V, W ))
may be written in the form

∑ ( · · · ) ◦ 〈µ|Θ|λ〉 ◦ ( · · · )
,(5.6)
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where the parentheses signify appropriate U ′
q(ŝl2) actions on V and W , respectively.

Proof. The proof follows from the simple fact that Θ is an intertwiner.
Now we show (5.5) in the level-1 case.
Proposition 5.2. The equality,

φ(`,Λ1−j ,1−i)(ζ) ◦ (
id⊗ψ(Λj ,i,±)(ξ)

)
=

(
id⊗ψ(Λ1−j ,1−i,∓)(ξ)

) ◦ φ(`,Λj ,i)(ζ)(5.7)

holds for their matrix elements as Laurent series of ζ and ξ. They contain no poles.
Proof. With the help of equation (4.13) and (4.14) we can show:

(
Φ(`+1,`+2)(ζ)Φ(`,`+1)(ζ)

) ◦ (
Ψ∗(ξ)Φ(ξ)

)

= Φ(`+1,`+2)(ζ)Ψ∗(ξ)Φ(`,`+1)(ζ)Φ(ξ)
= Φ(`+1,`+2)(ζ)Ψ∗(ξ)R(1,`+1)(ξ/ζ)Φ(ξ)Φ(`,`+1)(ζ)
= Ψ∗(ξ)Φ(`+1,`+2)(ζ)Φ(ξ)Φ(`,`+1)(ζ)
=

(
Ψ∗(ξ)Φ(ξ)

) ◦ (
Φ(`+1,`+2)(ζ)Φ(`,`+1)(ζ)

)
.

So the two sides agree as meromorphic functions. Let us look at the structure of
poles. We have

〈Λj | ⊗ 〈Λi|
(
Φ(`+1,`+2)(ζ)Φ(`,`+1)(ζ)

) ◦ (
Ψ∗(ξ)Φ(ξ)

)|Λj〉 ⊗ |Λi〉
= 〈Λi|Φ(`+1,`+2)(ζ)Ψ∗(ξ)|Λi〉 ◦ 〈Λj |Φ(`,`+1)(ζ)Φ(ξ)|Λj〉.

Using the equations (4.22), (4.23) and also equations (4.26) to (4.29) with ` replaced
by `+1, we see that a pole can occur in the above only if 1− q`+2(ξ/ζ)2 = 0. If ζ and
ξ satisfy this relation, there exists a submodule isomorphic to some V

(`)
µ lying inside

V
(`+1)
ζ ⊗ V

(1)
ξ . When ξ = ζq−

1
2 (`+2), a submodule isomorphic to V

(`)

ζq
1
2

lying inside

V
(`+1)
ζ ⊗ V

(1)
ξ is spanned by

{
[` + 1− k]

1
2
q u

(`+1)
k ⊗ u

(1)
1 − [k + 1]

1
2
q u

(`+1)
k+1 ⊗ u

(1)
0

}`

k=0
.(5.8)

Again, from the same set of equations, we see that the image of 〈Λj |Φ(`,`+1)(ζ)Φ(ξ)|Λj〉
lies inside this submodule. We also see that 〈Λi|Φ(`+1,`+2)(ζ)Ψ∗(ξ)|Λi〉 sends this
submodule to zero. Therefore, the above matrix element contains no pole.

In view of Lemma 5.1, the general matrix element can be written in the form
∑ ( · · · ) ◦ 〈Λi|Φ(`+1,`+2)(ζ)Ψ∗(ξ)|Λi〉 ◦

( · · · )
◦〈Λj |Φ(`,`+1)(ζ)Φ(ξ)|Λj〉 ◦

( · · · )
,

(5.9)

where the parentheses are to be filled with U ′
q(ŝl2) actions. As the action of U ′

q(ŝl2)
cannot produce additional poles, the only possible poles will occur at 1−q`+2(ξ/ζ)2 =
0. Again, the image of the first map will lie inside some submodule V

(`)
µ . The

U ′
q(ŝl2)-action will still preserve this submodule. Then the second map will send this

submodule to zero. This shows that the general matrix element also contains no pole.

We now show that the commutativity with the DVA action allows us to construct
Φ(`,`+k) from lower level operators. Assume from now on that equation (5.5) is true
as Laurent series for λ ∈ P+

k−1. Now, Φ(`+k−1,`+k)(ζ)Φ(`,`+k−1)(ζ) is a map from

V
(`)
ζ ⊗ V (λ)⊗ V (Λi) =

⊕
ν

V
(`)
ζ ⊗ V (ν)⊗ Ωλ,Λi

ν ,(5.10)
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where the sum runs over all level-k weights, to the space

V (σ(λ))⊗ V (Λ1−i)⊗ V
(`+k)
ζ =

⊕
ν

V (σ(ν))⊗ V
(`+k)
ζ ⊗ Ωλ,Λi

ν .(5.11)

Here, we have used the Z2-symmetry to write Ωσ(λ),Λ1−i

σ(ν) = Ωλ,Λi
ν . Recalling Proposi-

tion 4.1, we may write

Φ(`+k−1,`+k)(ζ)Φ(`,`+k−1)(ζ) =
⊕

ν

Φ(`,`+k)
ν (ζ)⊗ Ξλ,Λi

ν .(5.12)

The subscript ν in Φ(`,`+k)
ν (ζ) has been added to show which space it acts on. Now,

each Ωλ,Λi
ν is irreducible. Hence the commutativity with the DVA action shows that

each Ξλ,Λi
ν is a constant map. We normalise the higher level intertwiner Φ(`,`+k)

ν (ζ) so
that this constant is equal to 1 for the highest component, i.e., for ν = λ + Λi. This
normalisation is independent of the way we break up the level-k weight into level-1
weights, as can be seen by the use of

〈Λ1|Φ(`,`+1)(ζ)|Λ0〉(u(`)
j ) =

(
qj−` [j + 1]

[` + 1]

) 1
2
u

(`+1)
j+1 ,(5.13)

〈Λ0|Φ(`,`+1)(ζ)|Λ1〉(u(`)
j ) =

(
q−j [`− j + 1]

[` + 1]

) 1
2
u

(`+1)
j .(5.14)

The next proposition is more of a definition.
Proposition 5.3. The map Φ(`+k−1,`+k)(ζ)Φ(`,`+k−1)(ζ) restricted to V

(`)
ζ ⊗

V (λ + Λi)⊗ Ωλ,Λi

λ+Λi
is equal to Φ(`,`+k)

λ+Λi
(ζ)⊗ id.

Later on, we will say something about the coefficients of other components. But
for now, let us continue with proving the commutativity with the DVA action. Since
we now know how to construct Φ(`,`+k)(ζ) from lower level operators, we can find its
commutation relations. Except where we state otherwise, the relations we give in the
following proposition are valid for ` ≥ 0.

Proposition 5.4.

ξ−D Φ(`,`′)
s,t (ζ) ξD = Φ(`,`′)

s,t (ζ/ξ),(5.15)

δi+j,` = g(`,`′)∑
s+t=`′Φ

(`,`′)
i,s (−q−1ζ)Φ(`,`′)

j,t (ζ),(5.16)

Φ(`,`′)(ζ)Φ±(ξ) = R(1,`′)(ξ/ζ)Φ∓(ξ)Φ(`,`′)(ζ),(5.17)

Φ(`,`′)(ζ)Ψ∗±(ξ) = Ψ∗∓(ξ)Φ(`,`′)(ζ)R(`,1)(ζ/ξ) for ` > 0,(5.18)
Φ(0,`)(ζ)Ψ∗±(ξ) = Ψ∗∓(ξ)Φ(0,`)(ζ)τ(ζ/ξ).(5.19)

Proof. Let us prove equation (5.17) as an example. We will consider just one set
of the signs involved. First consider the map

id⊗Φ+(ξ) : V (λ)⊗ V (Λ0) → V (λ)⊗ V (Λ1)⊗ V
(1)
ξ .(5.20)

As before, we may write this map as

id⊗Φ+(ξ) =
( ⊕

ν

Φ+
ν (ξ)⊗ Ξ+

ν

)
+

( ⊕
ν

Φ−ν (ξ)⊗ Ξ−ν
)
,(5.21)
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where the maps on the right hand side are from V (ν)⊗Ωλ,Λ0
ν to V (ν±)⊗V

(1)
ξ ⊗Ωλ,Λ1

ν± .
As in the proof of Proposition 5.3 we take highest weight matrix element and apply
both sides on u

(`)
0 to conclude Ξ+

λ+Λ0
is nonzero. By Z2-symmetry, the map

id⊗Φ−(ξ) : V (σ(λ))⊗ V (Λ1) → V (σ(λ))⊗ V (Λ0)⊗ V
(1)
ξ(5.22)

breaks up as

id⊗Φ−(ξ) =
( ⊕

ν

Φ−σ(ν)(ξ)⊗ Ξ+
ν

)
+

( ⊕
ν

Φ+
σ(ν)(ξ)⊗ Ξ−ν

)
.(5.23)

With this much in hand, we proceed by induction. By equation (4.13) we have,

Φ(`+k−1,`+k)(ζ)Φ(`,`+k−1)(ζ)(id⊗Φ+(ξ))
= Φ(`+k−1,`+k)(ζ)

(
id⊗Φ+(ξ)

)
Φ(`,`+k−1)(ζ)

= R(1,`+k)(ξ/ζ)
(
id⊗Φ−(ξ)

)
Φ(`+k−1,`+k)(ζ)Φ(`,`+k−1)(ζ).

If we substitute equations (5.12), (5.21), and (5.23) into both sides and pick up the
term initiating at V (λ + Λ0)⊗Ωλ,Λ0

λ+Λ0
and terminating at V (σ(λ + Λ1))⊗Ωλ,Λ1

λ+Λ1
, and

apply Proposition 5.3 to the outcome, we get:
(
Φ(`,`+k)(ζ)Φ+

λ+Λ0
(ξ)

)⊗ Ξ+
λ+Λ0

(5.24)

=
(
R(1,`+k)(ξ/ζ)Φ−σ(λ+Λ0)

(ξ)Φ(`,`+k)(ζ)
)⊗ Ξ+

λ+Λ0
.

We already know Ξ+
λ+Λ0

is nonzero, so dividing them out, we have the result.
In much the same way, we can also calculate the higher level matrix elements.

Here we only write down what is needed in proving the commutativity with the DVA
action.

Lemma 5.5. Let λ be of level k − 1. Then

〈σ(λ) + Λ0|Φ(`,`+k)(ζ)Φ+(ξ)|λ + Λ0〉
= 〈Λ0|Φ(`+k−1,`+k)(ζ)Φ+|Λ0〉 ◦ 〈σ(λ)|Φ(`,`+k−1)(ζ)|λ〉,

〈σ(λ) + Λ1|Φ(`,`+k)(ζ)Φ−(ξ)|λ + Λ1〉
= 〈Λ1|Φ(`+k−1,`+k)(ζ)Φ−|Λ1〉 ◦ 〈σ(λ)|Φ(`,`+k−1)(ζ)|λ〉.

We are now ready for the induction step in proving commutativity with the DVA
action.

Theorem 5.6. The equality,

φ(`,λ±,1−i)(ζ) ◦ (
id⊗ψ(λ,i,±)(ξ)

)
=

(
id⊗ψ(σ(λ),1−i,∓)(ξ)

) ◦ φ(`,λ,i)(ζ),(5.25)

holds for their matrix elements as Laurent series of ζ and ξ. They contain no poles.
Proof. We are assuming that the statement is true for levels less than k. Hence

Proposition 5.3, Proposition 5.4 and Lemma 5.5 hold true for level k. Applying (5.17)
and then (4.14), we show the equality of both sides as meromorphic functions.

LHS = Φ(`+k,`+k+1)(ζ)Ψ∗(ξ)Φ(`,`+k)(ζ)Φ(ξ)
= Φ(`+k,`+k+1)(ζ)Ψ∗(ξ)R(1,`+k)(ξ/ζ)Φ(ξ)Φ(`,`+k)(ζ)
= Ψ∗(ξ)Φ(`+k,`+k+1)(ζ)Φ(ξ)Φ(`,`+k)(ζ)
= RHS.
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For the rest of the proof, we will explain the case when the left hand side contains
the + sign. The other case can be taken care of similarly. For this case, we may write
λ = λ′ + Λ0 with λ′ of level k − 1. We use Lemma 5.5 to show:

〈σ(λ+)| ⊗ 〈Λi|
(
Φ(`+k,`+k+1)(ζ)Φ(`,`+k)(ζ)

) ◦ (
Ψ∗(ξ)Φ(ξ)

)|λ〉 ⊗ |Λi〉
= 〈Λi|Φ(`+k,`+k+1)(ζ)Ψ∗(ξ)|Λi〉 ◦ 〈σ(λ′) + Λ0|Φ(`,`+k)(ζ)Φ(ξ)|λ′ + Λ0〉
= 〈Λi|Φ(`+k,`+k+1)(ζ)Ψ∗(ξ)|Λi〉

◦ 〈Λ0|Φ(`+k,`+k+1)(ζ)Φ+(ξ)|Λ0〉 ◦ 〈σ(λ′)|Φ(`,`+k)(ζ)|λ′〉.

Now, we may argue as in the proof of Proposition 5.2 to show that the above identity
contains no pole.

We remark on the coefficients of the components of Φ(`+k−1,`+k)(ζ)Φ(`,`+k)(ζ)
before closing this section.

Proposition 5.7.

Φ(`+k−1,`+k)(ζ)Φ(`,`+k−1)(ζ) =
⊕

ν

cν · Φ(`,`+k)
ν (ζ)⊗ id,(5.26)

with each (cν)2 = 1.
Proof. We have only to show (cν)2 = 1. Using equation (5.16), we have

g(`,`+k)
⊕

ν

{ ∑
s+t=`+k(cν)2 · Φ(`,`+k)

ν, i,s (−q−1ζ)Φ(`,`+k)
ν, j,t (ζ)⊗ id

}
=

⊕
ν

{
(cν)2 · idV (ν)⊗ id

}
δi+j,`.

(5.27)

If we calculate the same thing with the left hand side expression of equation (5.26),
we get

⊕
ν

{
idV (ν)⊗ id

}
δi+j,`.(5.28)

This shows that each (cν)2 = 1.

6. Diagonalisation of the Transfer Matrix. In this section, we identify the
space of states, and the half and full transfer matrices of the alternating spin vertex
model in terms of the representation theory of Uq(ŝl2). We diagonalise the full transfer
matrix in terms of the spin-0 and spin-1

2 states mentioned in the introduction, and
compute two-particle S-matrix elements.

6.1. The Space of States. In Section 3, we have shown that there is a crystal
isomorphism Pa,b ' B(λ(m−n)

a ) ⊗ B(λ(n)
b ). This leads us to conjecture that we can

extend this isomorphism away from q = 0, and identify the space of eigenstates of
the corner transfer matrix ANW (ζ) with H ≡ ⊕

a,bHa,b, where Ha,b = V (λ(m−n)
a )⊗

V (λ(n)
b ), and 0 ≤ a ≤ m−n, 0 ≤ b ≤ n. The operator ANW (ζ) will act asHa,b → Ha,b.

Then F ≡ H ⊗ H∗ will be the space on which our full transfer matrix acts. Here,
H∗ is the dual space, defined using the U ′

q(ŝl2) anti-automorphism b given in [28].
The motivation for this definition, and the reason for the use of this particular anti-
automorphism are discussed in the similar context of the pure spin-1

2 vertex model
in [3].

We can identify an element 〈f | ∈ F∗ with an element |f〉 ∈ F via the pairing
〈f |g〉 = TrH(f ◦ g). Here, we have used the canonical isomorphism F ' End(H) to
identify f, g ∈ F as elements of End(H) in the trace formula.
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6.2. Half and full transfer matrices. A half transfer matrix represents the
insertion of a half-infinite column of lattice vertices. There are two types of half
transfer matrices for the alternating spin model - those associated with the insertions
of columns with spin-n

2 and spin-m
2 vertical lines. These are shown in Figures 3 (a)

and (b) respectively.

j j

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3 (a) (b)

As lattice insertions these will be the maps Ha,b→Ha,n−b and Ha,b→Hm−n−a,n−b

respectively (one can see this by an inspection of the ground state configuration shown
in Figure 2).

As discussed in the introduction, we identify these lattice insertions with compo-
nents φA

j (ζ) and φB
j (ζ) of the following intertwiners.

φA(ζ) : V (λ(m−n)
a )⊗ V (λ(n)

b )
id⊗Φ(0,n)(ζ)−−−−−−−−→ V (λ(m−n)

a )⊗ V (σ(λ(n)
b ))⊗ V

(n)
ζ ,

φB(ζ) : V (λ(m−n)
a )⊗ V (λ(n)

b )
Φ(0,m−n)(ζ)⊗id−−−−−−−−−−→ V (σ(λ(m−n)

a ))⊗ V
(m−n)
ζ ⊗ V (λ(n)

b )
id⊗Φ(m−n,m)(ζ)−−−−−−−−−−−→ V (σ(λ(m−n)

a ))⊗V (σ(λ(n)
b ))⊗V

(m)
ζ .

Here, Φ(k,l)(ζ) is the perfect intertwiner defined in Section 4. If v⊗ v′ ∈ V (λ(m−n)
a )⊗

V (λ(n)
b ), then the components φA

j (ζ) and φB
j (ζ) are defined by

φA(v ⊗ v′) =
n∑

j=0

φA
j (v ⊗ v′)⊗ u

(n)
j ,

φA
j (v ⊗ v′) = v ⊗ Φ(0,n)

j v′,

φB(v ⊗ v′) =
m∑

j=0

φB
j (v ⊗ v′)⊗ u

(m)
j ,

φB
j (v ⊗ v′) =

m−n∑
j′=0

Φ(0,m−n)
j′ v ⊗ Φ(m−n,m)

j′,j v′.

(6.1)

Here, for clarity, we have suppressed the ζ dependence of all our intertwiners.
Now consider the corresponding full transfer matrices, i.e., those associated with

the insertion of full, double-infinite, columns of lattice vertices. Again there will be
two such transfer matrices, TA(ζ) and TB(ζ), associated with spin-n

2 and spin-m
2

auxiliary spaces respectively. We identify these in terms of intertwiners that act on
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the tensor product space Ha,b ⊗H∗a′,b′ as follows

(6.2) Ha,b ⊗H∗a′,b′
φA(ζ)⊗id−−−−−−→ Ha,n−b ⊗ V

(n)
ζ ⊗H∗a′,b′

id⊗φA(ζ)t

−−−−−−−→ Ha,n−b ⊗H∗a′,n−b′

(6.3)
Ha,b ⊗H∗a′,b′

φB(ζ)⊗id−−−−−−→ Hm−n−a,n−b ⊗ V
(m)
ζ ⊗H∗a′,b′

id⊗φB(ζ)t

−−−−−−−→ Hm−n−a,n−b ⊗H∗m−n−a′,n−b′ .

Here t denotes the transpose. Specifically, we define

TA(ζ) =
n∑

j=0

TA
j (ζ), TA

j (ζ) = g(0,n) φA
j (ζ)⊗ φA

n−j(ζ)t,

TB(ζ) =
m∑

j=0

TB
j (ζ), TB

j (ζ) = g(0,m) φB
j (ζ)⊗ φB

m−j(ζ)t,
(6.4)

where the constants g(0,n) and g(0,m) are given by (4.17).

6.3. Diagonalisation of the full transfer matrices. A vacuum is, by defin-
ition, a largest eigenvalue eigenvector of the composition T (ζ) = TB(ζ) ◦ TA(ζ). In
our alternating spin model, there are (m− n + 1)(n + 1) degenerate vacua |vac〉a,b ∈
Ha,b ⊗ H∗a,b. The expressions for these vacua appear simple if we express them as
elements of End(H). We conjecture that the vacua |vac〉a,b, and a,b〈vac| are given by

(6.5) a,b〈vac| = |vac〉a,b = (χ(m−n)
a χ

(n)
b )−

1
2 (−q)Dπa,b,

Here, χ
(`)
r is the character

χ(`)
r = Tr

V (λ
(`)
r )

(q2D),(6.6)

whose appearance gives the normalisation a,b〈vac|vac〉a,b = 1, and πa,b ∈ End(H) is
the projector to Ha,b.

Let us consider the action of T (ζ) on |vac〉a,b. First, note that the action of a
map O1⊗O2 : H⊗H∗ → H⊗H∗ on an element f ∈ End(H) is given by O1 ◦ f ◦Ot

2.
Then, using (6.4), (6.1) and properties (5.15), and (5.16) we have

TA(ζ)|vac〉a,b = |vac〉a,n−b,(6.7)
TB(ζ)|vac〉a,b = |vac〉m−n−a,n−b,(6.8)

and hence T (ζ)|vac〉a,b = |vac〉m−n−a,b. To be precise about our use of the terminology
‘eigenvector’ or ‘eigenvalue’, the vacuum vector |vac〉a,b is not an eigenvector of T (ζ)
but of T (ζ)2 or T (1)−1T (ζ). However, in the following we abuse this terminology,
and call |vac〉a,b a vacuum eigenvector.

Let us show how to derive (6.7). From (6.4), and (6.1) we have,

TA(ζ)|vac〉a,b

= g(0,n)
n∑

j=0

(id⊗Φ(0,n)
j (ζ))((−q)D ⊗ (−q)D)πa,b(id⊗Φ(0,n)

n−j (ζ)),(6.9)

= g(0,n)
n∑

j=0

((−q)D ⊗ Φ(0,n)
j (ζ)(−q)DΦ(0,n)

n−j (ζ))πa,n−b,(6.10)

= g(0,n)
n∑

j=0

((−q)D ⊗ (−q)D)(id⊗Φ(0,n)
j (−q−1ζ)Φ(0,n)

n−j (ζ))πa,n−b,(6.11)

= ((−q)D ⊗ (−q)D)πa,n−b = |vac〉a,n−b.(6.12)
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In executing steps (6.11) and (6.12), we have used properties (5.15) and (5.16) respec-
tively. Equation (6.8) can be shown similarly.

We will construct excited states by making use of the following operators

(6.13)

ψ
( 1
2 )s

ε (ξ) =
∑

κ

ψ
( 1
2 )s

ε,κ ξ−κ = Ψ∗sε (ξ)⊗ id,

ψ(0)s,s′(ξ) =
∑

κ

ψ(0)s,s′
κ ξ−κ =

∑
ε=0,1

Φs
ε(ξ)⊗Ψ∗s

′
ε (ξ),

where Ψ∗sε and Φs
ε are defined by (4.9) and (4.10). Again s, s̃ = ± (or equivalently

±1).
These components act as follows.

ψ
( 1
2 )s

ε,κ : V (λ(m−n)
a )⊗ V (λ(n)

b ) → V (λ(m−n)
a+s )⊗ V (λ(n)

b ),

ψ(0)s,s′
κ : V (λ(m−n)

a )⊗ V (λ(n)
b ) → V (λ(m−n)

a+s )⊗ V (λ(n)
b+s′).

Using the commutation relations (5.15)–(5.19), and (2.2), we arrive at

TA(ζ)ψ( 1
2 ) s

ε (ξ)|vac〉a,b = ψ
( 1
2 ) s

ε (ξ)|vac〉a,n−b,

TB(ζ)ψ( 1
2 ) s

ε (ξ)|vac〉a,b = τ(ζ/ξ)ψ( 1
2 )−s

ε (ξ)|vac〉m−n−a,n−b,

TA(ζ)ψ(0) s,s̃(ξ)|vac〉a,b = τ(ζ/ξ)ψ(0) s,−s̃(ξ)|vac〉a,n−b,

TB(ζ)ψ(0) s,s̃(ξ)|vac〉a,b = ψ(0)−s,−s̃(ξ)|vac〉m−n−a,n−b,

and hence that

T (ζ)ψ( 1
2 ) s

ε (ξ)|vac〉a,b = τ(ζ/ξ)ψ( 1
2 )−s

ε (ξ)|vac〉m−n−a,b,

T (ζ)ψ(0) s,s̃(ξ)|vac〉a,b = τ(ζ/ξ)ψ(0)−s,s̃(ξ)|vac〉m−n−a,b.

The vectors ψ
( 1
2 ) s

ε (ξ)|vac〉a,b and ψ(0) s,s̃(ξ)|vac〉a,b are the spin- 1
2 and spin-0 eigen-

states mentioned in the introduction. Note that both states are degenerate with
respect to T (ζ), but that ψ

( 1
2 ) s

ε (ξ)|vac〉a,b has an eigenvalue of 1 for TA(ξ), and
ψ

(0) s,s̃
ε (ξ)|vac〉a,b an eigenvalue of 1 for TB(ξ). This is consistent with the Bethe

Ansatz calculations for the alternating spin-1
2/spin-1 model presented in [12].

Further eigenstates may be constructed by acting with any composition
of ψ( 1

2 ) si(ξi) and ψ(0) s′i,s̃
′
i(ξ′i) on |vac〉a,b. The eigenvalues of T (ζ) are the product of

all the τ(ζ/ξi) and τ(ζ/ξ′i) factors.

6.4. The S-matrix. The S-matrix for our model is specified by the exchange
relations of ψ( 1

2 ) si(ξi) and ψ(0),s′i,s̃
′
i(ξ′i) with themselves and with each other. These

intertwiners are defined in terms of the intertwiners Φs(ζ) and Ψ∗,s(ζ) of irreducible
modules in (6.13). If we act with both sides on the level ` highest-weight module
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V (λ(`)
r ), then the commutation relations of the Φs(ζ) and Ψ∗,s(ζ) are

∑
ε′1,ε′2

R̄(1,1)(ξ)ε′1,ε′2
ε1,ε2Φ

s1
ε′1

(ξ1)Φs2
ε′2

(ξ2)

=
∑

s′1,s′2

Φs′2
ε2(ξ2)Φ

s′1
ε1(ξ1)W I

`

(
r r + s2

r + s′1 r + s1 + s2

∣∣∣∣ ξ

)
,

(6.14)

Ψ∗ s1
ε1

(ξ1)Ψ∗ s2
ε2

(ξ2)

=
∑

s′1,s′2,ε′1,ε′2

Ψ∗ s′2
ε′2

(ξ2)Ψ
∗ s′1
ε′1

(ξ1)R̄(1,1)(ξ)ε′1,ε′2
ε1,ε2W

II
`

(
r r + s2

r + s′1 r + s1 + s2

∣∣∣∣ ξ

)
,(6.15)

Φs1
ε1

(ξ1)Ψ∗ s2
ε2

(ξ2)

=
∑

s′1,s′2

Ψ∗ s′2
ε2 (ξ2)Φ

s′1
ε1(ξ1)W ∗

`

(
r r + s2

r + s′1 r + s1 + s2

∣∣∣∣ ξ

)
.(6.16)

Here, the sum over s′1 and s′2 is restricted to the values for which s′1 + s′2 = s1 + s2.
W I

` , W II
` and W ∗

` are given in terms of the RSOS Boltzmann weight W
1

` (given for
example in equation (B.2) in [5]) as follows:

W I
`

(
r s
u t

∣∣∣∣ ξ

)
=

X(p2ξ−2)
X(p2ξ2)

W
1

`

(
λ

(`)
r λ

(`)
s

λ
(`)
u λ

(`)
t

∣∣∣∣∣ ξ2

)
ξδt,s+1− δr,u−1 ,

W II
`

(
r s
u t

∣∣∣∣ ξ

)
=

X(ξ−2)
X(ξ2)

W
1

`

(
λ

(`)
r λ

(`)
s

λ
(`)
u λ

(`)
t

∣∣∣∣∣ ξ2

)
ξδt,s+1− δr,u−1 ,

W ∗
`

(
r s
u t

∣∣∣∣ ξ

)
=

X(pξ−2)
X(pξ2)

W
1

`

(
λ

(`)
r λ

(`)
s

λ
(`)
u λ

(`)
t

∣∣∣∣∣ p−1ξ2

)
(−ξq−(1+r))δt,s+1−δr,u−1qδr,t ,

where ξ = ξ1/ξ2, X(z) = (z;p2,q4)∞(q4z;p2,q4)∞
(q2z;p2,q4)2∞

and p = q`+2 (note that the p of [4] is
equal to our p2). Relations (6.14) and (6.15) come from [4], where they were obtained
(for a homogeneous evaluation representation) by solving the q-KZ equation. We
obtained (6.16) by making use of the technique mentioned in Proposition A.4 (ii)
of [4] (and due originally to Okado).

Using these commutation relations, the definitions (6.13), and the unitarity prop-
erty (2.2), it is then simple to show that on V (λ(m−n)

a ) ⊗ V (λ(n)
b ) (and hence on

|vac〉a,b) we have
(6.17)

ψ
( 1
2 ) s1

ε1 (ξ1)ψ
( 1
2 ) s2

ε2 (ξ2)

=
∑

ε′1,ε′2,s′1,s′2

ψ
( 1
2 ) s′2

ε′2
(ξ2)ψ

( 1
2 ) s′1

ε′1
(ξ1)R̄(1,1)(ξ)ε′1,ε′2

ε1,ε2 W II
m−n

(
a a + s2

a + s′1 a + s1 + s2

∣∣∣∣ ξ

)
,

(6.18)

ψ(0) s1,s̃1(ξ1)ψ(0) s2,s̃2(ξ2) =
∑

s′1,s′2,s̃′1,s̃′2

ψ(0) s′2,s̃′2(ξ2)ψ(0) s′1,s̃′1(ξ1)

×W I
m−n

(
a a + s2

a + s′1 a + s1 + s2

∣∣∣∣ ξ

)
W II

n

(
b b + s̃2

b + s̃′1 b + s̃1 + s̃2

∣∣∣∣ ξ

)
,
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(6.19)
ψ(0) s1,s̃1(ξ1)ψ

( 1
2 ) s2

ε2 (ξ2)

=
∑

s′1,s′2

ψ
( 1
2 ) s′2

ε2 (ξ2)ψ(0) s′1,s̃1(ξ1)W ∗
m−n

(
a a + s2

a + s′1 a + s1 + s2

∣∣∣∣ ξ

)
.

Again, the sums are restricted so that s′1 + s′2 = s1 + s2, and s̃′1 + s̃′2 = s̃1 + s̃2.
When n = 1, m = 2, our model consists of alternating spin-1

2 and spin-1 lines. In
this case we have

ψ
( 1
2 )

ε1 (ξ1)ψ
( 1
2 )

ε2 (ξ2) = −
∑

ε′1,ε′2

ψ
( 1
2 )

ε′2
(ξ2)ψ

( 1
2 )

ε′1
(ξ1)R(1,1)(ξ)ε′1,ε′2

ε1,ε2 ,

ψ(0)(ξ1)ψ(0)(ξ2) = −ψ(0)(ξ2)ψ(0)(ξ1),

ψ(0)(ξ1)ψ
( 1
2 )

ε2 (ξ2) = τ(ξ)ψ( 1
2 )

ε2 (ξ2)ψ(0)(ξ1).

Here, the intertwiners act on the tensor product of level-1 irreducible highest weight
modules. So, the s and s̃ superscripts depend solely on the choice i and j, and we
suppress them. These relations are consistent with Bethe Ansatz calculations of the
S-matrix for this example [12].

7. The Domain Wall Description of the Path Space and the Particle
Picture.

7.1. Domain walls. Let us now use |p〉 to denote a double infinite path |p〉 =
· · · p(2) p(1) p(0) p(−1) p(−2) · · · , for which

p(k) ∈ {0, 1, · · · , n} if k is odd,(7.1)
p(k) ∈ {0, 1, · · · ,m} if k is even.(7.2)

Define

P = ⊕a,b;a′,b′Pa,b;a′,b′ ,(7.3)

where Pa,b;a′,b′ is the set

Pa,b;a′,b′ = {|p〉; p(k) = p̄(k; a, b), k À 0; p(k) = p̄(k; a′, b′), k ¿ 0}.(7.4)

The ground state path p̄(k; a, b) was defined by (2.22) (note, however, that k may now
be negative).

In this section, we construct a domain wall description of the space P and give
rules for the induced crystal action on this set of domain walls.

First, we label a domain of a path |p〉 ∈ P by a pair of integers (a, b), which
can take the values 0 ≤ a ≤ m − n and 0 ≤ b ≤ n. Suppose we start with a path
|p〉 ∈ P and try to associate a particular domain (a(k), b(k)) with each k, such that
p(k) = p̄(k; a(k), b(k)). There are clearly different choices of how to do this. For
example, suppose we choose k ≡ 0 (mod 4). Then because p̄(k; a, b) = a + b, we
could associate any of the domains (p(k)− b, b), such that 0 ≤ p(k)− b ≤ m− n and
0 ≤ b ≤ n, with k.

In order to fix uniquely which domain (a(k), b(k)) to associate with a particular
k such that p(k) = p̄(k; a(k), b(k)), we use the following rules.

(1) Choose k odd.
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(2) If n ≤ p(k + 1) + p(k) ≤ m, let

b(k + 1) = b(k) = n− p(k),(7.5)

a(k + 1) = a(k) =

{
m− p(k)− p(k + 1) if k ≡ 1 (mod 4);
p(k) + p(k + 1)− n if k ≡ 3 (mod 4).

(7.6)

(3) If p(k + 1) + p(k) > m, let

b(k + 1) = p(k + 1)−m + n, b(k) = n− p(k),(7.7)

a(k + 1) = a(k) =

{
0 if k ≡ 1 (mod 4);
m− n if k ≡ 3 (mod 4).

(7.8)

(4) If p(k + 1) + p(k) < n, let

b(k + 1) = p(k + 1), b(k) = n− p(k),(7.9)

a(k + 1) = a(k) =

{
m− n if k ≡ 1 (mod 4);
0 if k ≡ 3 (mod 4).

(7.10)

By following these rules for all odd k, we can associate a unique domain (a(k), b(k))
for all k ∈ Z. Then p(k) will be given by

p(k) = p̄(k; a(k), b(k)).(7.11)

We can write the resulting (a(k), b(k))k∈Z as a sequence of domains (aN+1, bN+1) · · ·
(a1, b1) and a sequence of integers kN > kN−1 > · · · > k1. The identification is that

(a(k), b(k)) = (ai, bi) for ki ≥ k > ki−1 (with kN+1 = ∞, k0 = −∞).(7.12)

Definition 7.1. Let D be the set of elements, each of which is specified by a
domain sequence (aN+1, bN+1) · · · (a1, b1) and integers kN > kN−1 > · · · > k1, where
N ∈ Z≥0, 0 ≤ ai ≤ m− n, 0 ≤ bi ≤ n, (ai+1, bi+1) 6= (ai, bi), and

ki ∈





2Z ∪ (1 + 4Z) if ai+1 = ai = 0, bi+1 > bi,
2Z ∪ (1 + 4Z) if ai+1 = ai = m− n, bi+1 < bi,
2Z ∪ (3 + 4Z) if ai+1 = ai = 0, bi+1 < bi,
2Z ∪ (3 + 4Z) if ai+1 = ai = m− n, bi+1 > bi,
2Z otherwise.

(7.13)

Then rules (1)-(4) and equation (7.12) specify an injection M1 : P → D, and (7.11)
specifies a map M2 : D → P which is the left inverse of M1, i.e., M2 ◦M1 = idP .

Proposition 7.2. M1 : P → D is a bijection.
Proof. We will prove that the left inverse M2 : D → P is an injection, from which

the proposition follows. Consider two elements, (a(k), b(k))k∈Z and (a′(k), b′(k))k∈Z

of D (we can specify them in this way by making use of (7.12)). Let k0 ≡ 1 (mod 4).
Then from the definition of D, one of the following must be true

I. a(k0 + 1) = a(k0), b(k0 + 1) = b(k0),(7.14)
II. a(k0 + 1) = a(k0) = 0, b(k0 + 1) > b(k0),(7.15)

III. a(k0 + 1) = a(k0) = m− n, b(k0 + 1) < b(k0).(7.16)
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One of three similar conditions must hold for a′(k0 +1), a′(k0), b′(k0 +1), and b′(k0).
Under the map M2 we have (a(k), b(k))k∈Z →

(
p̄(k; a(k), b(k))

)
k∈Z

. The requirements
that

p̄(k0; a(k0), b(k0)) = p̄(k0; a′(k0), b′(k0)),(7.17)
p̄(k0 + 1; a′(k0 + 1), b′(k0 + 1)) = p̄(k0 + 1; a′(k0 + 1), b′(k0 + 1))(7.18)

are equivalent to

b(k0) = b′(k0),(7.19)
a(k0 + 1)− b(k0 + 1) = b′(k0 + 1)− a′(k0 + 1)(7.20)

respectively. Combining (7.19), (7.20), one of I, II, III for a(k0 + 1), a(k0), b(k0 + 1),
b(k0) and one of the similar conditions I, II, III for a′(k0 +1), a′(k0), b′(k0 +1), b′(k0),
we get nine possible sets of equations in eight unknowns. It is only possible to get
a solution to three of these sets of equations, namely those we get when a(k0 + 1),
a(k0), b(k0 + 1), b(k0) and a′(k0 + 1), a′(k0), b′(k0 + 1), b′(k0) both satisfy I, or both
satisfy II, or both satisfy III. The single solution for all three sets is

a(k0 + 1) = a′(k0 + 1), a(k0) = a′(k0), b(k0 + 1) = b′(k0 + 1), b(k0) = b′(k0).(7.21)

A similar argument leads to the same solution (7.21) in the case when k0 ≡ 3 (mod 4).
This completes the proof.

The next step is to understand the induced crystal action on D. If we refer to the
position at which two domains meet as a domain wall, then the general picture is that
the crystal action moves domain walls around. In order to describe this action we
first identify certain types of domain wall as elementary. The following is a complete
list of elementary walls.

(ai+1, bi+1)(ai, bi) ki symbol
(a− 1, b)(a, b) 0 mod 4 |−1
(a + 1, b)(a, b) 0 mod 4 |+0
(0, b + 1)(0, b) 0 mod 4 b+0
(m− n, b− 1)(m− n, b) 0 mod 4 d−1
(a± 1, b∓ 1)(a, b) 0 mod 4 •±∓
(0, b + 1)(0, b) 1 mod 4 b+1
(m− n, b− 1)(m− n, b) 1 mod 4 d−0
(a− 1, b)(a, b) 2 mod 4 |−0
(a + 1, b)(a, b) 2 mod 4 |+1
(0, b− 1)(0, b) 2 mod 4 b−1
(m− n, b + 1)(m− n, b) 2 mod 4 d+0
(a± 1, b± 1)(a, b) 2 mod 4 •±±
(0, b− 1)(0, b) 3 mod 4 b−0
(m− n, b + 1)(m− n, b) 3 mod 4 d+1

We write [ to mean either of b or d . We shall refer to |sε , [tε as spin- 1
2 elementary

walls, and to •s,t as spin-0 elementary walls.
We wish to decompose each domain wall of an element in D into ordered el-

ementary domain walls. We use the fact that when ki is even, (ai+1, bi+1)(ai, bi)
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may be written in terms of a unique sequence of intermediate domains such that the
corresponding intermediate domain walls are elementary, and ordered as

|1 · · · |1[1· · · [1• · · · • or |0 · · · |0[0· · · [0• · · · •,(7.22)

where the • are taken to be of one kind only. When ki is odd, (ai+1, bi+1)(ai, bi) may
also be written uniquely in terms of an ordered sequence of elementary domain walls
of the form

[1· · · [1 or [0· · · [0.(7.23)

The whole sequence of ordered elementary walls will then said to have been normally
ordered. It is simple to prove the uniqueness of these ordered decompositions, but
perhaps more illuminating to consider some examples.

1) m = 6, n = 2, ki ≡ 0 (mod 4):
(0, 0)(3, 1) = (0, 0)(1, 0)(2, 0)(3, 0)(4, 0)(3, 1) ∼ |−1 |−1 |−1 |−1 •+−,
(1, 2)(1, 0) = (1, 2)(0, 2)(0, 1)(1, 0) ∼ |+0 b+0 •−+,
(4, 0)(4, 2) = (4, 0)(4, 1)(4, 2) ∼ d−1 d−1 .

2) m = 6, n = 2, ki ≡ 2 (mod 4):
(0, 0)(3, 1) = (0, 0)(1, 0)(2, 0)(3, 1) ∼ |−0 |−0 •−−,
(1, 2)(1, 0) = (1, 2)(2, 2)(3, 2)(2, 1)(1, 0) ∼ |−0 |−0 •++ •++,
(4, 0)(4, 2) = (4, 0)(3, 0)(2, 0)(3, 1)(4, 2) ∼ |+1 |+1 •−− •−−.

3) m = 6, n = 2, ki ≡ 1 (mod 4):
(0, 2)(0, 0) = (0, 2)(0, 1)(0, 0) ∼ b+1 b+1 ,
(4, 0)(4, 2) = (4, 0)(4, 1)(4, 2) ∼ d−0 d−0 .

4) m = 6, n = 2, ki ≡ 3 (mod 4):
(0, 0)(0, 2) = (0, 0)(0, 1)(0, 2) ∼ b−0 b−0 ,
(4, 2)(4, 0) = (4, 2)(4, 1)(4, 0) ∼ d+1 d+1 .

Explicitly, the ordered walls turn out as follows.
(a2, b2)(a1, b1) at k ≡ 0 (mod 4).

(|+0 )a2(b+0 )b2−b1−a1(•−+)a1 if b2 − b1 > a1;(7.24)

(|+0 )a2+b2−a1−b1

{
(•−+)b2−b1 (b2 ≥ b1);
(•+−)b1−b2 (b2 ≤ b1)

if a2 + b2 ≥ a1 + b1 ≥ b2;(7.25)

(|−1 )a1+b1−a2−b2

{
(•−+)b2−b1 (b2 ≥ b1);
(•+−)b1−b2 (b2 ≤ b1)

if m−n+b2≥a1+b1≥a2+b2;(7.26)

(|−1 )m−n−a2(d−1 )a1+b1−b2−m+n(•+−)m−n−a1 if b1 − b2 > m− n− a1.(7.27)

(0, b2)(0, b1) at k ≡ 1 (mod 4).

(7.28) (b+1 )b2−b1

(m− n, b2)(m− n, b1) at k ≡ 1 (mod 4).

(7.29) (d−0 )b1−b2
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(a2, b2)(a1, b1) at k ≡ 2 (mod 4).

(|+1 )a2(b−1 )b1−b2−a1(•−−)a1 if b1 − b2 > a1;(7.30)

(|+1 )b1−a1−b2+a2

{
(•−−)b1−b2 (b2 ≤ b1);
(•++)b2−b1 (b2 ≥ b1)

if b2 ≥ b1 − a1 ≥ b2 − a2;(7.31)

(|−0 )b2−a2−b1+a1

{
(•−−)b1−b2 (b2 ≤ b1);
(•++)b2−b1 (b2 ≥ b1)

if b2 − a2 ≥ b1 − a1 ≥ b2 −m + n;(7.32)

(|−0 )m−n−a2(d+0 )b2−b1+a1−m+n(•++)m−n−a1 if b2 − b1 > m− n− a1.(7.33)

(0, b2)(0, b1) at k ≡ 3 (mod 4).

(7.34) (b−0 )b1−b2

(m− n, b2)(m− n, b1) at k ≡ 3 (mod 4).

(7.35) (d+1 )b2−b1

After normally ordering all the walls in an element |d〉 ∈ D, the rules for the
crystal action are relatively simple (we give the rule for the action of f̃i, the action of
ẽi can be reconstructed in terms of the inverse of this). Suppose we have a total of N
elementary spin- 1

2 walls with subscript εN , εN−1, · · · , ε1 (and any number of spin-0
walls). Now consider the vector [εN ](1) ⊗ [εN−1](1) ⊗ · · · ⊗ [ε1](1) ∈ (B(1))⊗N . The
operator f̃i acts on [εN ](1) ⊗ [εN−1](1) ⊗ · · · ⊗ [ε1](1) by changing a single εj → 1− εj

(or by sending the vector to zero). Which εj is changed depends on whether i = 0 or
1. The action of f̃i on the element |d〉 is to change only the single elementary spin-1

2
wall with the corresponding εj index (or it sends the path to zero). The change that
occurs for this elementary domain wall depends on its type and position k in the
following way:

k + 2 k + 1 k k + 2 k + 1 k

(· · · ) • · · · •︸ ︷︷ ︸
c

|ε(· · · ) → (· · · )|1−ε • · · · •︸ ︷︷ ︸
c

(· · · )(7.36)

(· · · ) • · · · •︸ ︷︷ ︸
c

|ε(· · · ) → (· · · )[1−ε• · · · •︸ ︷︷ ︸
c−1

(· · · )(7.37)

(· · · ) [ε(· · · ) → (· · · )[1−ε (· · · )(7.38)

(· · · ) • · · · •︸ ︷︷ ︸
c

[ε(· · · ) → (· · · )|1−ε • · · · •︸ ︷︷ ︸
c+1

(· · · )(7.39)

(· · · ) • · · · •︸ ︷︷ ︸
c

[ε(· · · ) → (· · · )[1−ε• · · · •︸ ︷︷ ︸
c

(· · · )(7.40)

Here, we have taken k to be even. Also, for (7.37) and (7.40), we are assuming that
the domain appearing on the left of • · · · • is at the appropriate boundary, i.e., (0, ∗)
if [1−ε that may appear at the position k + 2 is a b and (m− n, ∗) if it is a d .

Before showing how these rules for the crystal action were obtained, let us give
some simple examples of how this general rule works. The following two examples
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capture the two possible ways in which a spin-1
2 wall can pass a spin-0 wall under the

crystal action.
First, suppose m = 6, n = 2 and that we have an element of D described by 3

domains (4, 2)(3, 1)(4, 1) and positions k2 = 2, k1 = 0. The (4, 2)(3, 1) wall at k2 = 2
is a •++ elementary wall. The (3, 1)(4, 1) wall at k1 = 0 is a |−1 elementary wall.
Using M2 (as specified by (7.11)), we can write out the section of path in which these
walls lie. The path is

(7.41) · · · 6 0 2 0 6 0 •++ 2 1 |−1 5 1 · · ·
Using the above rules for the crystal action on elementary domain walls we find that
f̃1 sends this path to 0, and f̃0 sends it to

(7.42) · · · 6 0 2 0 6 0 d+0 1 1 5 1 · · ·
Here, we have used (7.37). This is a path associated with a single domain wall
(4, 2)(4, 1) at k1 = 2. Working out the subsequent action of f̃1, f̃0, and so on, one
finds,

(7.43)

· · · 6 0 2 0 6 0 •++ 2 1 |−1 5 1 · · ·
f̃0−→ · · · 6 0 2 0 6 0 d+0 1 1 5 1 · · ·
f̃1−→ · · · 6 0 2 0 6 d+1 1 1 1 5 1 · · ·
f̃0−→ · · · 6 0 2 0|+0 •−+5 1 1 1 5 1 · · ·
f̃1−→ · · · 6 0 |+1 3 0 •−+ 5 1 1 1 5 1 · · ·

etc. Here we have just shown the elementary wall decomposition at each stage. The
final sequence of domains is (4, 2)(3, 2)(4, 1). Notice, the action of f̃0 on the fourth line
used (7.39) and not (7.40). This is because the domain on the left of the (non-existent)
• · · · • is at the boundary, but not the relevant one.

Now consider the rather similar example when m = 6, n = 2 and we have an
element |d〉 ∈ D described by 3 domains (3, 2)(2, 1)(3, 1) and positions k2 = 2, k1 = 0.
Again, the (3, 2)(2, 1) wall at k2 = 2 is a •++ elementary wall and the (2, 1)(3, 1) wall
at k1 = 0 is a |−1 elementary wall. Using the rules for the arrows, we get the following
sequence.

(7.44)

· · · 5 0 3 0 5 0 •++ 3 1 |−1 4 1 · · ·
f̃0−→ · · · 5 0 3 0 5 0|−0 •++2 1 4 1 · · ·
f̃1−→ · · · 5 0 3 0 |−1 6 0 •++ 2 1 4 1 · · ·
f̃0−→ · · · 5 0 |−0 3 0 6 0 •++ 2 1 4 1 · · ·

The final sequence of domains is (3, 2)(4, 2)(3, 1). We see that the spin-0 wall remains
fixed in this case, whereas in (7.43) it was moved 2 spaces to the left by the passage
of the spin- 1

2 wall.
Let us now show how the rules (7.36)–(7.40) were obtained. We shall consider f̃1

only. Let |p〉 be any path. Following the rule (3.3), we associate a sequence of 1’s and
0’s to each p(k). Then, using the usual rule, we simplify it in such a way that each
domain wall carries (1)c or (0)c. This is determined locally at each wall and called the
localisation. It is convenient to think that there always exists a domain wall between
k + 1:odd and k:even. If it is not a real one, the localisation is trivial, i.e., c = 0. Let
us explain this more carefully, starting with two examples.
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k ≡ 1 (mod 4) and n ≤ p(k + 1) + p(k) ≤ m.

Recalling the process for fixing the domains, given at the beginning of this
section, we see that, in this case, there is no wall between p(k + 1) and p(k).
The domain is (a, b), where p(k+1) = m−n−a+b and p(k) = n−b (see (7.5)
and (7.6)). We have

(7.45) (1)m−n−a+b(0)n+a−b(1)n−b(0)b ∼ (1)m−n−a+b(0)a+b.

Distribute (1)m−n−a+b to the left wall, and (0)a+b to the right.

k ≡ 1 (mod 4) and p(k + 1) + p(k) < n.

The domain changes at the centre. The domains are given by (m−n, b2)(m−
n, b1) with p(k + 1) = b2 and p(k) = n− b1. We have b2 < b1.

(7.46) (1)b2(0)m−b2(1)n−b1(0)b1 ∼ (1)b2(0)m−n+2b1−b2 .

Distribute (1)b2 to the left, (0)b1−b2 to the centre, and (0)m−n+b1 to the right.
We carry out a similar procedure for all other cases. Now, consider a wall between
k + 1:odd and k:even. Suppose (0)c1 is distributed from the left and (1)c2 from the
right. If c1 > c2, the localisation is (0)c1−c2 . If c1 = c2, there is no (real) wall. If
c1 < c2, the localisation is (1)c2−c1 . For a wall between k + 1:even and k:odd, the
localisation is already given in the form (0)c or (1)c. In fact, we have the following
simple rule (for the f̃1 case).

(7.47)

domain position localisation
(a2, b2)(a1, b1) k ≡ 0 (0)a2+b2(1)a1+b1

(0, b2)(0, b1) k ≡ 1 (1)b2−b1

(m− n, b2)(m− n, b1) k ≡ 1 (0)b1−b2

(a2, b2)(a1, b1) k ≡ 2 (0)m−n−a2+b2(1)m−n−a1+b1

(0, b2)(0, b1) k ≡ 3 (0)b1−b2

(m− n, b2)(m− n, b1) k ≡ 3 (1)b2−b1

We now consider the action of f̃1. Suppose it acts on the part of a path x = p(k + 1)
and y = p(k) with k ≡ 3 (mod 4). Suppose that by the action of f̃1 we have the
change:

(7.48) x → x + 1.

In the 1 and 0 notation, this part is equivalent to starting from

(7.49) (1)x(0)m−x(1)y(0)n−y

and changing the leftmost 0 in (0)m−x to 1. It implies m−x > y. We have two cases.

n ≤ x + y < m.

Both x and y belong to the same domain, say, (a2, b2). We have x = a2 + b2

and y = n− b2. Therefore, we have

a2 + n = x + y < m.(7.50)

Let (a1, b1) be the domain on the right of y, (a3, b3) on the left of x.
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It is necessary that the localisation at the wall between (a2, b2) and (a1, b1) is
(0)c1 with c1 > 0. Therefore, we have a1− b1− a2 + b2 > 0 and this wall is of
the form (7.32) or (7.33). Because of (7.50), we see that the number of |0 is at
least one. It is also necessary that the localisation at the wall between (a3, b3)
and (a2, b2) is (1)c2 with c2 ≥ 0. Therefore, we have a3 + b3 − a2 − b2 ≥ 0
and this wall is of the form (7.26) or (7.27).
The change (7.48) is equivalent to the change a2 → a2 +1. Using the explicit
wall descriptions (7.32), (7.33), (7.26), and (7.27), we see that it corresponds
to (7.36) or (7.37).

x + y < n.

There is a wall between x and y. We have the domains (a3, b3)(0, b2)(0, b1),
where x and y belong to (0, b2) and (0, b1), respectively. We have x = b2 and
y = n− b1, and therefore b1 − b2 = n− x− y > 0.
The wall between (0, b2) and (0, b1) is of the form (7.34). It is also necessary
that the localisation at the wall between (a3, b3) and (0, b2) is of the form
(1)b2−a3−b3 . Therefore, we have b2−a3−b3 ≥ 0, and, in particular, b2−b3 ≥ 0.
This wall is of the form (7.26) (the lower line) or (7.27).
The change (7.48) is equivalent to the change b2 → b2 + 1. It corresponds
to (7.39) (for (7.26)) or (7.40) (for (7.27)).

We may also consider the f̃1 action as sending y → y + 1. This will bring about the
remaining case x + y ≥ m and corresponds to (7.38). The case k ≡ 1 (mod 4) may
be similarly analysed to confirm the results (7.36)–(7.40).

Before ending this section, let us consider one consequence of the rules for the
crystal action on D. Let |d〉 ∈ D have normally ordered elementary domain walls at
positions kK , · · · , k1. Define

(7.51) n(ki, |ε) = n(ki, •) = −ki/2, n(ki, [ε) = −ki.

It is simple to check from the rules for the crystal action that
K∑

i=1

n(ki, ti) decreases

by 1 under the action of f̃i, and increases by 1 under the action of ẽi. So, the action
of the principal grading operator ρ is given by

(7.52) ρ(|d〉) =
K∑

i=1

n(ki, ti)|d〉,

where ti refers to the ‘type’ |ε , [ε , or • of the elementary wall.

7.2. The particle picture. In describing a path |p〉 ∈ P in terms of either local
spin variables p(k) or a sequence of domains and domain walls, we have been using the
local picture. We shall now go on to explain the particle picture of the space P ' D.
Let Da,b;a′,b′ denote the range of the restricted map M1|Pa,b;a′,b′ : Pa,b;a′,b′ → D.
As a crystal, Da,b;a′,b′ will decompose into a (usually infinite) number of connected
components. We wish to understand these connected components as the crystals
created by the creation operators ψ

( 1
2 )s

ε,κ and ψ
(0)s,t
κ of spin- 1

2 and spin-0 particles. We

call this the particle picture. The operators ψ
( 1
2 )s

ε,κ and ψ
(0)s,t
κ will be given as the

q → 0 limit of the corresponding operators defined in Section 6 (we conjecture that

this limit is well-defined). In the particle picture, any sequence of the operators ψ
( 1
2 )s

κ

and ψ
(0)s,t
κ is allowed, but with the condition that the corresponding sequence of the
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highest weights (represented by (ai, bi)) satisfies 0 ≤ ai ≤ m − n and 0 ≤ bi ≤ n.
This condition will always be assumed when we talk of a sequence of these operators.
However, they are not linearly independent because of the commutation relations
(6.17)–(6.19) of the particle creation operators. The particle pictures for the pure spin-
1
2 model, pure spin-n

2 models and RSOS fusion models were constructed in references
[1], [29] and [30] respectively.

Before looking at the space spanned by the particles, we prepare some details
about affine crystals. Suppose we have a Uq(ŝl2 ) crystal B which takes weights in
Pcl = ZΛ0 ⊕ ZΛ1. Then the affinization of this crystal, denoted by Aff(B), takes
weights in P = ZΛ1 ⊕ ZΛ0 ⊕ Zδ (See [14] for a definition). Here, we use Aff(B)
defined in the principal gradation. For example, Aff(B(1)) is given by either of the
following diagrams.

•

•
•

•

··
·

··
·

[0]⊗ [2κ + 1]

[0]⊗ [2κ− 1]

[1]⊗ [2κ]

[1]⊗ [2κ− 2]

f̃0

f̃1

f̃1

•

•
•

•
··
·

··
·

[1]⊗ [2κ + 1]

[1]⊗ [2κ− 1]

[0]⊗ [2κ]

[0]⊗ [2κ− 2]

f̃1

f̃0

f̃0

Let us now consider the states spanned by just one particle. From the defini-
tion (6.13) and the remarks following (4.10), we see that ψ

( 1
2 )s

ε,κ is meaningful only if
s · (−1)ε = (−1)κ and that ψ

(0)s,t
κ is meaningful only if −s · t = (−1)κ. Considering

the degree given by (7.52) also, we identify

(7.53)
|sε at k ←→ ψ

( 1
2 )s

ε,− k
2
,

•s,t at k ←→ ψ
(0)s,t

− k
2

.

Recalling the rules for the crystal action on the elementary walls, we see that each
set of ψ

( 1
2 )s

ε,κ with s fixed and other indices satisfying s · (−1)ε = (−1)κ brings about a
crystal isomorphic to Aff(B(1)). Each set of ψ

(0)s,t
κ with both s and t fixed is a crystal

isomorphic to Aff(B(0)).
To consider spaces spanned by more than one particle, we have to study the linear

dependence relations in the particle picture more carefully. We take the q → 0 limit
of the relations (6.17)–(6.19) and write out the results componentwise. When acting
on (a, b), we have

ψ
( 1
2 )s

ε,κ ψ
( 1
2 )s′

ε′,κ′ = −ψ
( 1
2 )s

ε,κ′+νψ
( 1
2 )s′

ε′,κ−ν with ν = δs,s′ + δε,ε′ ,(7.54)

ψ(0)s,t
κ ψ

(0)s′,t′

κ′ = −ψ
(0)s,t
κ′+ν ψ

(0)s′,t′

κ−ν with ν = δs,s′ + δt,t′ ,(7.55)

ψ(0)s,t
κ ψ

( 1
2 )s

ε,κ′ = ψ
( 1
2 )s

ε,κ′ ψ(0)s,t
κ ,(7.56)

ψ(0)+,t
κ ψ

( 1
2 )−

ε,κ′ =

{
ψ

( 1
2 )−

ε,κ′ ψ
(0)+,t
κ if a 6= m− n,

ψ
( 1
2 )+

ε,κ′+1ψ
(0)−,t
κ−1 if a = m− n,

(7.57)

ψ(0)−,t
κ ψ

( 1
2 )+

ε,κ′ =

{
ψ

( 1
2 )+

ε,κ′ ψ
(0)−,t
κ if a 6= 0,

ψ
( 1
2 )−

ε,κ′+1ψ
(0)+,t
κ−1 if a = 0.

(7.58)
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Relations (7.56)–(7.58) tell us that we may always order the particles so that all the

ψ(0) are to the right of all the ψ( 1
2 ). Relation (7.54) shows that ψ

( 1
2 )s

ε,κ ψ
( 1
2 )s′

ε′,κ−ν = 0. A

little more scrutiny at (7.54) shows that we may always order any nonzero ψ
( 1
2 )s

ε,κ ψ
( 1
2 )s′

ε′,κ′

so that κ < κ′, or in the case (s, ε) = (s′, ε′), κ ≤ κ′. A similar statement is true for
ψ

(0)s,t
κ ψ

(0)s′,t′

κ′ . We have shown:

Proposition 7.3. Any sequence of M spin- 1
2 particles ψ

( 1
2 )s

ε,κ and N spin-0 par-
ticles ψ

(0)s,t
κ initiating and terminating at two given domains may be written in the

form

(7.59) ψ
( 1
2 )s′1

ε1,κ′1
· · ·ψ( 1

2 )s′M
εM ,κ′M

ψ(0)s1,t1
κ1

· · ·ψ(0)sN ,tN
κN

,

modulo sign, if it is not equal to zero. Here, we require the indices to satisfy

κ′i < κ′i+1 or (κ′i, s
′
i, εi) = (κ′i+1, s

′
i+1, εi+1),(7.60)

κi < κi+1 or (κi, si, ti) = (κi+1, si+1, ti+1).(7.61)

A sequence of particles of the form given by this proposition will be called sepa-
rately ordered. The name comes from the way the spin- 1

2 particles and spin-0 particles
have been grouped separately. This is to be contrasted with the normally ordered se-
quence to be defined in Section 7.3.

Let us now consider the vector space which is spanned by the sequence of particles.
We fix M , the number of spin-1

2 operators ψ
( 1
2 )s

ε,κ , N , the number of spin-0 operators
ψ

(0)s,t
κ , and the initial and final domains. We will denote the space by A. We do not

impose the commutation relations (7.54)–(7.58) in A. As before, we identify ψ
( 1
2 )s

ε,κ

and ψ
(0)s,t
κ with the elements of Aff(B(1)) and Aff(B(0)). Hence the monomial basis

of A is a crystal isomorphic to a union of mixed tensor products of M -many Aff(B(1))
and N -many Aff(B(0)). We call it the crystal part of A.

The subspace spanned by the relations will be denoted by R. It is easy to prove,
using the tensor product rule for crystals bases, that the set of relations (7.54)–(7.58)
is preserved under the crystal action. Hence, the monomial basis of A/R is given a
crystal structure. We call it the crystal part of A/R. We are interested in this crystal
structure.

Denote by S, the set of separately ordered sequence of particles. It is easy to
show that S is also preserved under the crystal action. Hence, S is a subcrystal of the
crystal part of A. We aim to show that S forms a basis of A/R so that the crystal S
is, in fact, the crystal part of A/R.

We first give a partial ordering to the set of particles. Two particles are said to
satisfy ψA < ψB if and only if ψA 6= ψB and ψAψB is separately ordered. Then the
monomial basis elements of A are given the lexicographical order using the order on
the particles. We define an action of SM+N , the symmetric group of order M + N ,
on A. Since all the relations (7.54)–(7.58) are of the form ψAψB = ±ψCψD, we may
define the action of the transposition σi = (i, i + 1) on a sequence of particles by
substituting ψAψB at the i-th and (i + 1)-th position with the appropriate ±ψCψD.
It is easy to show that this defines an action of SM+N on A. We prove two lemmas
concerning these definitions.

Lemma 7.4. Suppose M +N ≥ 2. Let A=ψA1 · · ·ψAM+N and B=ψB1 · · ·ψBM+N .
If A is separately ordered, and σ1σ2 · · ·σr−1A = ±B (r ≤ M +N), then ψA1 < ψB1 .
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Proof. It suffices to show this for the case r = M + N . We use induction on r.
For r = 2, this may be done by checking each case. So suppose r > 2. Let σr−1A =
±ψA1 · · ·ψAr−2ψCψBr . We know from the r = 2 case that ψAr−1 < ψC . Hence,
ψA1 · · ·ψAr−2ψC is separately ordered. We may now apply induction hypothesis to
conclude ψA1 < ψB1 .

Lemma 7.5. Suppose M +N≥2. Let A = ψA1 · · ·ψAM+N and B=ψB1 · · ·ψBM+N .
If A is separately ordered, π ∈ SM+N is different from the identity element, and
πA = ±B, then A < B.

Proof. We use induction on M + N . This is easy to check when M + N = 2.
If M + N > 2 and π(1) = 1, then we may apply the induction hypothesis to A′ =
ψA2 · · ·ψAM+N and B′ = ψB2 · · ·ψBM+N . So suppose π(r) = 1 with r > 1. Then,
we may write π = π′σ1σ2 · · ·σr−1 for some π′ ∈ SM+N with π′(1) = 1. But, then
Lemma 7.4 shows, ψA1 < ψB1 and hence A < B.

The next easy corollary to this lemma shows that the expression (7.59) is unique
for each product of particles different from zero.

Corollary 7.6. Let x be separately ordered and choose any π ∈ SM+N . Then,
π(x) is separately ordered if and only if π = id.

We can now finally prove:
Proposition 7.7. The set of separately ordered elements, S, forms a basis for

A/R.
Proof. By Proposition 7.3, it suffices to show the linear independence of S. Let

( | ) denote the natural orthonormal bilinear form on A. Define x̄ =
∑

π∈SM+N
π(x)

for any x ∈ A. Noting

R = Span{π(x)− x;π ∈ SM+N , x ∈ A},

we have (x̄|R) = 0 for any x ∈ S. Hence, (x̄| · ) defines a linear functional on A/R.
Using Corollary 7.6, we may easily check that (x̄|y)x,y∈S = δx,y. This proves that the
set S is linearly independent.

So the space described by the particles initiating and terminating at given domains
is the crystal S of separately ordered sequence of particles. We have obtained a
clear view of the particle picture given in terms of the affine crystals Aff(B(1)) and
Aff(B(0)).

7.3. Connection between the local and particle pictures. Let us first
describe a map from the domain wall description to the particle picture. We have
already identified the walls |sε and •s,t with the particles in (7.53). Writing out the
domain wall description in the path form, at k ≡ 0 (mod 4), we can check

(0, b + 1)b+0 (0, b) = (0, b + 1) •−+ |+0 (0, b).

We may similarly write other [ at even k as a combination of •s,t and |tε . With this
and the identification (7.53), we map

(7.62)
btε at even k 7−→ ψ

(0)−,t

− k
2

ψ
( 1
2 )+

ε,− k
2
,

dtε at even k 7−→ ψ
(0)+,t

− k
2

ψ
( 1
2 )−

ε,− k
2
.
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To map the remaining four elementary walls, we return to example (7.43).

(7.63)

· · · 0 2 0 6 0 •++ 2 1 |−1 5 · · · ψ
(0)+,+
−1 ψ

( 1
2 )−

1,0
f̃0−→ · · · 0 2 0 6 0 d+0 1 1 5 · · · ψ

(0)+,+
−1 ψ

( 1
2 )−

0,−1
f̃1−→ · · · 0 2 0 6 d+1 1 1 1 5 · · · ?
f̃0−→ · · · 0 2 0|+0 •−+5 1 1 1 5 · · · ψ

( 1
2 )+

0,−2 ψ
(0)−,+
−2

f̃1−→ · · · 0 |+1 3 0 •−+ 5 1 1 1 5 · · · ψ
( 1
2 )+

1,−3 ψ
(0)−,+
−2

This time, we have written the particles to the right using (7.53) and (7.62). What

should go in the box? Coming down from the top, we can guess it to be ψ
(0)+,+
−1 ψ

( 1
2 )−

1,−2 .

Going up from the bottom, it should be ψ
( 1
2 )+

1,−1 ψ
(0)−,+
−2 . We are dealing with the

a = m−n case, and as (7.57) with t = + shows, they are actually equal. Generalising
this, we map

(7.64)
btε at odd k 7−→ ψ

( 1
2 )+

ε,− 1
2 (k−1)

ψ
(0)−,t

− 1
2 (k+1)

,

dtε at odd k 7−→ ψ
( 1
2 )+

ε,− 1
2 (k−1)

ψ
(0)−,t

− 1
2 (k+1)

.

We have defined a map from the domain wall description to the particle picture.
We now define the inverse map. To do this, we construct a new basis of A/R.

We say a sequence of particles is normally ordered if each successive pair is one of the
following:

(1) ψ
(0)s1,t1
κ1 ψ

(0)s2,t2
κ2 where κ1 < κ2 or (κ1, s1, t1) = (κ2, s2, t2).

(2) ψ
(1/2)s1
ε1,κ1 ψ

(1/2)s2
ε2,κ2 where κ1 < κ2 or (κ1, ε1, s1) = (κ2, ε2, s2).

(3) ψ
(1/2)s′

ε,κ′ ψ
(0)s,t
κ where κ′ ≤ κ.

(4) ψ
(1/2)−s
ε,κ ψ

(0)s,t
κ−1 where these are placed at the boundary, i.e., for s = +, it acts

on the domain (0, ∗), for s = −, it acts on the domain (m− n, ∗).
(5) ψ

(0)s,t
κ ψ

(1/2)s′

ε,κ′ where κ < κ′.

(6) ψ
(0)−s,t
κ ψ

(1/2)s
ε,κ where these are placed at the boundary, i.e., for s = +, it acts

on the domain (0, ∗), for s = −, it acts on the domain (m− n, ∗).
The set of normally ordered sequence of particles will be denoted by N . The relations
(7.54)–(7.58) show that we may always bring any sequence of particles to a normally
ordered sequence. The linear independence of the normally ordered sequence may be
proved as in the proof for Proposition 7.3. So the normally ordered sequences form
a basis for A/R. The set of normally ordered sequences of particles, N , is certainly
a crystal, the crystal action being “first, act as an element of A, then, normally
order.” The map from the particle picture to the local picture may now be taken by
first applying the inverse of (7.62) and (7.64) to (6) and (4), respectively, and then
applying (7.53) to the remaining particles. It is easy to check that the image is an
ordered sequence of elementary domain walls. The defined map is certainly inverse
to the map from the local picture to the particle picture defined earlier.

Theorem 7.8. The local picture and the particle picture are isomorphic as crys-
tals.

Proof. It suffices to show that the two maps defined in this section respect the
crystal structures. So, let us study the rules for the crystal action on N . We shall
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consider f̃1 only. The action of f̃1 will change some ψ
( 1
2 )s

0,κ′ to ψ
( 1
2 )s

1,κ′−1. After this change
the product may not be normally ordered. In that case, we must normally order it
by using the commutation relations. The rules come out as follows:

If the product contains ψ
(0)−s,+
κ ψ

( 1
2 )s

0,κ at the boundary, i.e., it acts on the domain
(0, ∗) for the s = + case and (m− n, ∗) for the s = − case, the change is

(7.65) ψ(0)−s,+
κ ψ

( 1
2 )s

0,κ → ψ
( 1
2 )−s

1,κ ψ
(0)s,+
κ−1 .

Otherwise and if the product contains (ψ(0)−s,−
κ−1 )cψ

( 1
2 )s

0,κ for some c ≥ 1 and the domain
on the left of this part of the product is at the boundary, the change is

(7.66) (ψ(0)−s,−
κ−1 )cψ

( 1
2 )s

0,κ → ψ
(0)−s,−
κ−1 ψ

( 1
2 )s

1,κ−1(ψ
(0)−s,−
κ−1 )c−1.

Otherwise, let c ≥ 0 be the maximal integer such that (ψ(0)s′,s′s
κ−1 )cψ

( 1
2 )s

0,κ is contained
in the product. Then, the change is

(7.67) (ψ(0)s′,s′s
κ−1 )cψ

( 1
2 )s

0,κ → ψ
( 1
2 )s

1,κ−1(ψ
(0),s′,s′s
κ−1 )c.

In the domain wall language, the case (7.65) corresponds to (7.38). The case (7.66)
corresponds to (7.37) and (7.40). The last case (7.67) corresponds to (7.36) and (7.39).

We have thus related the path space P with a crystal given explicitly in terms
of Aff(B(0)) and Aff(B(1)). Namely, we have established the crystal isomorphisms
between P and D, D and N , N and S. And the crystal S is given as a union of
subcrystals of Aff(B(1))⊗M ⊗Aff(B(0))⊗N .

8. Summary. Let us summarise very briefly the main results of our analysis of
infinite-volume alternating-spin vertex models. We identify the space on which the
transfer matrices of the alternating spin-m

2 / spin-n
2 model act as the direct sum of

HomC

(
V (λ(m−n)

a )⊗ V (λ(n)
b ), V (λ(m−n)

a′ )⊗ V (λ(n)
b′ )

)

' V (λ(m−n)
a′ )⊗ V (λ(n)

b′ )⊗
(
V (λ(m−n)

a )⊗ V (λ(n)
b )

)∗
.(8.1)

The transfer matrices themselves are constructed in terms of certain U ′
q(ŝl2) inter-

twiners defined on this space (see (6.4)). These transfer matrices are diagonalised by
making use of another set of intertwiners given by (6.13). The vacua are given by
(−q)D; the excited states are multi-particle states consisting of a number of spin-0
particles and a number of spin-1

2 particles. The two-particle S-matrices are given
by (6.17) to (6.19).

In [13], we show how to construct correlation functions of these models. We derive
there the relation between simple correlation functions of the alternating model and
those of the pure spin-n

2 and pure spin-m
2 models. In this, and in the diagonalisation

of the transfer matrix, we make use of the commutativity of one of our intertwiners
(see Section 5 of the current paper) with the action of the deformed Virasoro algebra
considered in [15].

In Sections 3 and 7 we consider the crystal limit (i.e., q → 0 limit) of our model
in detail. In this limit, the corner transfer matrix acts diagonally on the (half-infinite)
path space Pa,b associated with a particular boundary condition (a, b). We prove that
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there is a crystal isomorphism Pa,b ' B(λ(m−n)
a ) ⊗ B(λ(n)

b ). We go on to consider
the double infinite path space P. We construct a crystal isomorphism between this
space and the space D defined in terms of domain walls. P and D are both considered
as local picture descriptions of the space. We then construct two particle picture
descriptions, N and S, by making use of the q → 0 limit of the intertwiners which
diagonalise our transfer matrix. We finally establish an equivalence between P in the
local picture and S in the particle picture. The latter, in turn, has a description in
terms of tensor products of the crystals Aff(B(0)) and Aff(B(1)).

The observations in this paper and in [13] might be applied and extended in
various directions. Two of them are:

(1) It is possible to derive difference equations for correlation functions and form
factors of the alternating spin model using techniques analogous to those
described in [3]. It should also be possible to evaluate these quantities by
making use of the free field realisation of Uq(ŝl2 ).

(2) The approach should generalise in a straightforward manner to alternating
spin models with three or more different alternating spins.
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