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1 Introduction

In this article we present two examples for [1], which has introduced a solution to the output
regulation problem for non-minimum phase linear time-varying systems with time-varying
exosystems.

2 Examples

Two illustrative examples are given; the first one is the case that the analytic solution to the
DRE is achievable, while the second deals with the time-varying exosystem which becomes
time-invariant after a finite time T > t0. In the latter case, it will be observed that the
convergence is achieved far before the time T .

Example 1. Consider the 2nd order plant and the exosystem given by

ẋ =
[
1 λt

1 0

]
x +

[
0
1

]
u, ẇ = ρt

[
0 1
−1 0

]
w,

e = x2 − w1,

(1)

where λt = 1 + (2 + 0.1 cos t)(2 + 0.05 cos t− 0.05 sin t) and ρt = 2 + 0.1 cos t. Note that the
system is of non-minimum phase.

To solve the problem, we need to find the solution of the DRE in {9}1 and the gains Kt

and Jt in {11}. Before solving the DRE, the system (1) is put into the form in {12a’} and
{12c’}:

[
ż

ζ̇

]
=

[
1 λt

1 0

] [
z
ζ

]
+

[
0
1

]
u +

[
λt 0
0 −ρt

]
w, (2)

where z = x1 and ζ = x2 − w1. Then, the solution {15} is obtained as, by integrating by
parts, Πz

t = [−1 − 2− 0.05 cos t + 0.05 sin t], and this results in

Πt =
[−1 −2− 0.05 cos t + 0.05 sin t

1 0

]
,

Rt =
[
1 4 + 0.15 cos t− 0.05 sin t

]
.
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Figure 1: The time responses for w1 and x2.

For the gain Kt, we used the backstepping design to obtain Kt = [−3 − λt − 1 − λt],
which guarantees the condition {10a}. On the other hand, to find the output injection gain
Jt in {11} is more involved. Since the system (1) is uniformly observable, one may obtain
the output injection gain Jt by employing the coordinate transformation that converts the
system (1) into time-varying observer canonical form, in theory. However, this approach is
time-consuming and accompanies tedious calculation due to the inherent time-varying nature
of the system. Rather than doing that, the linear matrix inequality (LMI) based approach,
proposed in [2], is used under slight modification. We consider the following augmented
system that is obtained from (1) when u ≡ 0,

η̇ =







1 λt 0 0
1 0 0 0
0 0 0 ρt

0 0 −ρt 0


− Jt[0 1 − 1 0]


 η

=: (A0 + ε1tA1 + ε2tA2 − JtC0)η,

(3)

where η = col(x,w), C0 = [0 1 − 1 0], ε1t = λt − 1, ε2t = ρt − 2, and other matrices are
appropriately defined. Under these settings, the theorem in [2] can be modified as follows:

Lemma 1. If there exist a symmetric positive definite matrix P and a vector Y such that
UT

i P + PUi − CT
0 Y T − Y C0 < 0 for i = 1, · · · , 4, where U1 = A0 + ε1mA1 + ε2mA2, U2 =

A0 + ε1mA1 + ε2MA2, U3 = A0 + ε1MA1 + ε2mA2, U4 = A0 + ε1MA1 + ε2MA2, εjm and εjM

are lower and upper bound for εjt respectively, then the system (3) is exponentially stable with
the output injection gain Jt = P−1Y .

1The braces are used to explicitly designate that the equation numbers in the braces are those in [1], which
causes no confusion with the equation numbers in this article.
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Figure 2: The time responses for w1 and x3

The proof of this lemma is straightforward and is omitted. Using Lemma 1 and the LMI
toolbox [3], we finally obtain a (constant) output injection gain Jt = [54.7 16.7 6.7 − 5.9]T

which guarantees the condition {10b}. The simulation result with the designed dynamic
output feedback controller of the form {11} is given in Fig. 1.2

Example 2. Suppose the plant and the exosystem are given by

ẋ =




1 0 −1
0 −1 1
1 1 0


x +




0
0
1


u +




1 1
0 1
1 0


w,

e = x3 − w1,

ẇ = ρt

[
0 1
−1 0

]
w,

(4)

where

ρt =
{

2.5 + 0.75t, 0 ≤ t ≤ 10,
10, t > 10.

Since the system (4) eventually becomes time-invariant after t = 10, the scheme at the end of
the Section 3 in [1] can be used. In fact, the solution Πza

t to {13} is obtained by integrating
backward for the time interval [0, 10] a priori, where the initial condition is set to the solution
of the (static) Sylvester equation {19}. On the other hand, Πzs

t is obtained on-line by running
{12} and {17}.

Next, the gains Kt and Jt need to be found to solve the problem. The gain Kt is obtained
as, by using pole placement, Kt = [12 −1 −5] since the plant is time-invariant. For the gain

2Here, x(0) = [1 − 1]T , w(0) = [0.5− 1]T , and the initial condition for the controller is set to zero.
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Jt, the LMI approach in Example 1 is again used and results in Jt = [58.8 7.4 24.1 3.0 −4.0]T .
The simulation result is depicted in Fig. 2.3 Note that the state trajectory for x3 reaches its
steady-state about t = 6, while the system becomes time-invariant at t = 10.
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