Examples on 'Note on Differential Regulator Equation for Non-minimum Phase Linear Systems with Time-varying Exosystems'

H. Shim, Jung-Su Kim, Hongkeun Kim, and J. Back

1 Introduction

In this article we present two examples for [1], which has introduced a solution to the output regulation problem for non-minimum phase linear time-varying systems with time-varying exosystems.

2 Examples

Two illustrative examples are given; the first one is the case that the analytic solution to the DRE is achievable, while the second deals with the time-varying exosystem which becomes time-invariant after a finite time $T>t_{0}$. In the latter case, it will be observed that the convergence is achieved far before the time T.

Example 1. Consider the 2nd order plant and the exosystem given by

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{cc}
1 & \lambda_{t} \\
1 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, \quad \dot{w}=\rho_{t}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] w, \tag{1}\\
& e=x_{2}-w_{1}
\end{align*}
$$

where $\lambda_{t}=1+(2+0.1 \cos t)(2+0.05 \cos t-0.05 \sin t)$ and $\rho_{t}=2+0.1 \cos t$. Note that the system is of non-minimum phase.

To solve the problem, we need to find the solution of the DRE in $\{9\}^{1}$ and the gains K_{t} and J_{t} in $\{11\}$. Before solving the DRE, the system (1) is put into the form in $\left\{12 a^{\prime}\right\}$ and \{12c'\}:

$$
\left[\begin{array}{c}
\dot{z} \tag{2}\\
\dot{\zeta}
\end{array}\right]=\left[\begin{array}{cc}
1 & \lambda_{t} \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
z \\
\zeta
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u+\left[\begin{array}{cc}
\lambda_{t} & 0 \\
0 & -\rho_{t}
\end{array}\right] w,
$$

where $z=x_{1}$ and $\zeta=x_{2}-w_{1}$. Then, the solution $\{15\}$ is obtained as, by integrating by parts, $\Pi_{t}^{z}=\left[\begin{array}{ll}-1 & -2-0.05 \cos t+0.05 \sin t\end{array}\right]$, and this results in

$$
\begin{aligned}
\Pi_{t} & =\left[\begin{array}{cc}
-1 & -2-0.05 \cos t+0.05 \sin t \\
1 & 0
\end{array}\right] \\
R_{t} & =\left[\begin{array}{ll}
1 & 4+0.15 \cos t-0.05 \sin t
\end{array}\right]
\end{aligned}
$$

Figure 1: The time responses for w_{1} and x_{2}.

For the gain K_{t}, we used the backstepping design to obtain $K_{t}=\left[-3-\lambda_{t}-1-\lambda_{t}\right]$, which guarantees the condition $\{10 \mathrm{a}\}$. On the other hand, to find the output injection gain J_{t} in $\{11\}$ is more involved. Since the system (1) is uniformly observable, one may obtain the output injection gain J_{t} by employing the coordinate transformation that converts the system (1) into time-varying observer canonical form, in theory. However, this approach is time-consuming and accompanies tedious calculation due to the inherent time-varying nature of the system. Rather than doing that, the linear matrix inequality (LMI) based approach, proposed in [2], is used under slight modification. We consider the following augmented system that is obtained from (1) when $u \equiv 0$,

$$
\begin{align*}
& \dot{\eta}=\left(\left[\begin{array}{cccc}
1 & \lambda_{t} & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & \rho_{t} \\
0 & 0 & -\rho_{t} & 0
\end{array}\right]-J_{t}\left[\begin{array}{llll}
0 & 1 & - & 1
\end{array}\right]\right) \eta \tag{3}\\
& =:\left(A_{0}+\varepsilon_{1 t} A_{1}+\varepsilon_{2 t} A_{2}-J_{t} C_{0}\right) \eta,
\end{align*}
$$

where $\eta=\operatorname{col}(x, w), C_{0}=\left[\begin{array}{llll}0 & 1 & -1 & 0\end{array}\right], \varepsilon_{1 t}=\lambda_{t}-1, \varepsilon_{2 t}=\rho_{t}-2$, and other matrices are appropriately defined. Under these settings, the theorem in [2] can be modified as follows:

Lemma 1. If there exist a symmetric positive definite matrix P and a vector Y such that $U_{i}^{T} P+P U_{i}-C_{0}^{T} Y^{T}-Y C_{0}<0$ for $i=1, \cdots, 4$, where $U_{1}=A_{0}+\varepsilon_{1 m} A_{1}+\varepsilon_{2 m} A_{2}, U_{2}=$ $A_{0}+\varepsilon_{1 m} A_{1}+\varepsilon_{2 M} A_{2}, U_{3}=A_{0}+\varepsilon_{1 M} A_{1}+\varepsilon_{2 m} A_{2}, U_{4}=A_{0}+\varepsilon_{1 M} A_{1}+\varepsilon_{2 M} A_{2}, \varepsilon_{j m}$ and $\varepsilon_{j M}$ are lower and upper bound for $\varepsilon_{j t}$ respectively, then the system (3) is exponentially stable with the output injection gain $J_{t}=P^{-1} Y$.

[^0]

Figure 2: The time responses for w_{1} and x_{3}

The proof of this lemma is straightforward and is omitted. Using Lemma 1 and the LMI toolbox [3], we finally obtain a (constant) output injection gain $J_{t}=\left[\begin{array}{llll}54.7 & 16.7 & 6.7 & -5.9\end{array}\right]^{T}$ which guarantees the condition $\{10 \mathrm{~b}\}$. The simulation result with the designed dynamic output feedback controller of the form $\{11\}$ is given in Fig. 1. ${ }^{2}$

Example 2. Suppose the plant and the exosystem are given by

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & -1 & 1 \\
1 & 1 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u+\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right] w, \\
e & =x_{3}-w_{1}, \tag{4}\\
\dot{w} & =\rho_{t}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] w,
\end{align*}
$$

where

$$
\rho_{t}= \begin{cases}2.5+0.75 t, & 0 \leq t \leq 10, \\ 10, & t>10 .\end{cases}
$$

Since the system (4) eventually becomes time-invariant after $t=10$, the scheme at the end of the Section 3 in [1] can be used. In fact, the solution $\Pi_{t}^{z a}$ to $\{13\}$ is obtained by integrating backward for the time interval $[0,10]$ a priori, where the initial condition is set to the solution of the (static) Sylvester equation $\{19\}$. On the other hand, $\Pi_{t}^{z s}$ is obtained on-line by running $\{12\}$ and $\{17\}$.

Next, the gains K_{t} and J_{t} need to be found to solve the problem. The gain K_{t} is obtained as, by using pole placement, $K_{t}=\left[\begin{array}{lll}12 & -1 & -5\end{array}\right]$ since the plant is time-invariant. For the gain

[^1]J_{t}, the LMI approach in Example 1 is again used and results in $J_{t}=\left[\begin{array}{llll}58.8 & 7.4 & 24.1 & 3.0\end{array} \text {-4.0 }\right]^{T}$. The simulation result is depicted in Fig. 2. ${ }^{3}$ Note that the state trajectory for x_{3} reaches its steady-state about $t=6$, while the system becomes time-invariant at $t=10$.

References

[1] H. Shim, J.-S. Kim, H. Kim, and J. Back, "Note on differential regulator equation for nonminimum phase linear systems with time-varying exosystems," to appear in Automatica, 2010.
[2] L.A. Zheng, S.H. Chen, and J.H. Chou, "LMI robust stability condition for linear systems with time-varying elemental uncertainties, norm-bounded uncertainties and delay perturbations," JSME International Journal Series C, vol. 47, pp. 275-279, 2004.
[3] P. Gahinet, A. Nemirovski, A.J. Laub, and M. Chilali, LMI control toolbox, The Math Works Inc., Massachusetts, 1995.

[^2]
[^0]: ${ }^{1}$ The braces are used to explicitly designate that the equation numbers in the braces are those in [1], which causes no confusion with the equation numbers in this article.

[^1]: ${ }^{2}$ Here, $x(0)=[1-1]^{T}, w(0)=[0.5-1]^{T}$, and the initial condition for the controller is set to zero.

[^2]: ${ }^{3}$ The initial condition for x is set to $x(0)=\left[\begin{array}{ll}1 & -1\end{array}\right]^{T}$ and others are the same as in Example 1 .

