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DeCART is a three-dimensional whole-core transport code capable of 

performing direct core calculations at power generating conditions without 

involving a priori homogenized few-group constant generation. In this paper, 

the methods of DeCART, which are characterized by the planar method of 

characteristics (MOC) solutions, the cell based coarse mesh finite difference 

(CMFD) formulation, the subgroup method for resonance treatment and 

subpin level thermal feedback, are presented as a whole. The performance of 

the code from the aspect of solution accuracy and computing speed is then 

examined using the applications to the C5G7MOX benchmark and its 

modified rodded variation problems and also to a three-dimensional core 

case involving thermal feedback. The examination indicates that accurate 

direct whole core calculations with subpin level thermal feedback for 

practical PWR problems are quite possible on affordable LINUX clusters 

within a time span of a few hours. 
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1. Introduction 

 

DeCART (Deterministic Core Analysis based on Ray Tracing) is a three-dimensional 

whole-core transport code capable of a direct core calculation at power generating conditions. 

It does not involve a priori homogenized few-group constant generation. In order to deal with 

the heterogeneity at the pin cell level, the method of characteristic (MOC)[1] is used and the 

multigroup cross section data is obtained directly from a cross section library that is normally 

used in lattice transport codes. Various unique methods for the three-dimensional (3-D) 

transport solution, resonance treatment, incorporation of pin-wise thermal feedback, and 

parallelization are employed in DeCART to cope with the huge computational problems. 

Regarding the 3-D whole core transport solution, an effective approximate 3-D transport 

solution method involving two-dimensional (2-D)/one-dimensional (1-D) coupling through 

transverse leakages is employed. This approximate 3-D transport solution scheme was 

established because the straightforward application of the MOC to large 3-D core problems is 

prohibitive. The 2-D/1-D coupling scheme is realized within the framework of the 3-D coarse 

mesh finite difference (CMFD) formulation which serves the dual functions of accelerating 

the 2-D radial MOC solutions [2,3] and incorporating the nodal expansion method (NEM)[4] 

based 1-D axial solution kernel. The diffusion approximation is applied to the axial solution 

by the NEM. The overall 3-D transport solution method is presented in the next section.  

In DeCART, the neutron cross sections to be used in the multigroup transport calculation 

have to be provided for each isotope in each region to which different thermal conditions 

apply. The local temperature is thus reflected in the temperature dependence of the cross 

sections which includes the resonance broadening as well as the isotopic number density 



 

changes, particularly in the moderator region. Other than the resonance cross sections, the 

incorporation of the temperature dependence of the cross section is achieved in a 

straightforward manner utilizing the temperature dependence data given in the cross section 

library. In order to determine the resonance cross section into which the spatial self shielding 

effect as well as the Doppler broadening should be properly incorporated, the subgroup 

method[5] is employed. The specific implementation of the subgroup method to deal with the 

nonuniform temperature distribution is presented in Section 3. The simultaneous solution of 

the neutron flux and temperature fields requires not only two independent solution modules, 

the neutronic and thermal-hydraulic (T-H) solution modules, but also an iterative solution 

logic controlling the alternate execution of the two modules and the subsequent cross section 

update. The T-H solution module, which involves a pinwise heat conduction calculation, and 

the overall feedback calculation logic are given in Section 4. 

Although DeCART can eliminate the source of an error associated with the assembly 

homogenization and group condensation, it still has various other sources of error. The 

approximations involved in the 2-D/1-D coupled transport solution scheme and also in the 

temperature dependent subgroup method implementation are the primary sources of solution 

method errors. Another source of error lies in the various multigroup cross section data. In 

order to evaluate the solution accuracy of DeCART, three-way verifications were performed. 

The first approach was to analyze known numerical and experimental benchmark problems. 

The 3-D C5G7MOX benchmark problem[6], its modified rodded variations and the 

VENUS-2 MOX critical core benchmark[7] were solved in this regard. In Section 5, details of 

the C5G7MOX analysis are given whereas as the VENUS-2 analysis result is given in a 

separate paper[8]. The second approach was to compare the DeCART solutions with those of 

a Monte Carlo code, MCCARD[9], which is capable of the T-H feedback calculation. The 

consistent comparison with the MCCARD results is presented in a companion paper[10]. 

Only the DeCART execution performance for a 3-D minicore hot-full-power case is given in 

Section 5. The third approach was to compare with the results with those of the conventional 

two-step solution approach which has been proved successful in predicting the behavior of the 

operating commercial reactors. This comparison was given in a former paper[11] using the 

results of the HELIOS[5]/MASTER[12] lattice transport/nodal diffusion code system.  

Even though efficient solution methods were employed in DeCART, the direct 3-D whole 

core calculations with thermal feedback for the real power reactors pose yet a tremendous 

computational problem. The computational burden was resolved by employing parallel 

computing on affordable LINUX PC clusters. The parallelization and parallel performance 

are given in another former paper[13]. This paper provides only typical runtime performances 

of DeCART in Section 5 for the sake of demonstration. Section 6 concludes the paper. 

 

2. 3-D Whole-Core Calculation Employing Planar MOC Solutions 

 

Noting that most heterogeneity in a reactor problem appears in the radial direction rather 

than the axial direction, it is plausible to apply the MOC to resolve only the radial dependency 

and to use a lower order method for the axial dependency. In this regard, DeCART employs a 

planar MOC solution based 3-D CMFD formulation. Meshes of a pin cell size, i.e. ~1 cm, are 

used radially whereas meshes of 10 to 20 cm are used axially to reduce the number of planes. 

The MOC solution is used to generate dynamically homogenized cell cross sections and also 

the radial coupling coefficients at each plane. The axial dependency is resolved by the NEM 

during the solution of the 3-D CMFD problem. In the following the planar MOC solution 

based CMFD method is outlined with only essential details. 

 



 

2.1 Decoupled Planar Transport Problem  

Suppose a 3-D neutron transport problem involving several radial planes. As is normally 

done in the transverse-integrated method, the transport equation for a discretized angle m can 

be integrated over the axial direction on a plane (designated by plane index k) to yield: 
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where ),( yxk
m  is the axially averaged angular flux distribution and  yxQ k

m ,  is the axially 

averaged neutron source consisting of fission and scattering sources.  yxLm
kz ,,  is the axial 

leakage representing the gradient of the axial angular flux distribution. This is defined as the 

difference between the angular fluxes at the top (T) and bottom (B) surfaces as follows: 
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As long as the axial leakage is obtained from the three-dimensional transport solution, the 

2-D solution of Eq. (1) would reproduce the 3-D solution in the average manner. However, 

since this term cannot be determined in advance, approximations have to be introduced to this 

term to solve Eq. (1). In DeCART, the angular and spatial dependence of the axial transverse 

leakage is approximated using the axial diffusion solution which is determined from the 

CMFD problem. Specifically, the surface average net current and flux at the axial interface 

are used to represent the angular flux in the P1 form as follows: 
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Note that the radial dependency of the axial leakage within a cell is neglected here by using 

the cell average flux and current. Since Eq. (3) involves a polar angle dependency of the axial 

leakage, anisotropy should be introduced in the source term of the MOC equation.  

 

2.2 Planar MOC Solution  

Once the axial leakage sources are defined, the 2-D MOC problem can be established for 

each plane. The MOC solution in DeCART is obtained by employing a pin cell-based 

modular ray tracing scheme which is detailed in a former paper [14]. The ray tracing is 

performed for each group given the scattering, fission, and the axial leakage sources defined 

at each flat source region (FSR) by employing the following equation: 
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where l and n are the polar and azimuthal angle indices, s is the length of the segment passing 

through a FSR by the ray designated by l and n, and qg,l is the source. The sources are 

assumed isotropic other than the axial leakage source which has a polar angle dependence. 

The magnitude of the source term is determined by modulating the average magnitude 

determined for each cell by the CMFD calculation with the intra cell shape determined from 

the previous MOC solution step. For this, the scalar fluxes are stored at every FSR whereas 

the angular fluxes are stored only at the domain boundaries. Once the ray tracing is completed 

for each group, the scalar flux of each FSR and the current at each pin cell interface are 

updated. The scalar flux shape is used to determine the flux-volume averaged cross sections 

for the cell. The cell interface current is used to determine the current versus node average 

flux correlation which is needed in the CMFD formulation. At the reflective domain boundary, 

the outgoing angular fluxes are saved for use in the next ray tracing.  

Since a tremendous amount of ray tracing calculations have to be performed with fine rays 

spacing and a large number of angular discretization in order to ensure solution accuracy, 



 

efficient ray tracing calculation techniques including the usage of tabularized exponential 

functions and polar angle quadratures are employed in DeCART. For example, by using the 

four-polar angle quadrature set obtained by minimizing the error of the quadrature based 

value of the second Bickley function in the least square manner[15], DeCART achieves the 

similar solution accuracy to the eight equally spaced polar angle cases. 

 

2.3 3-D CMFD Formulation  

The radial MOC solutions provide the cell average cross sections and radial coupling 

relations which express the interface current as a function of the two adjacent node average 

fluxes. Since the details of the 2-D CMFD formulation is straight-forward as given in the 

former paper [2], only the axial coupling relation needed in the 3-D CMFD formulation is 

presented here. Using the NEM, the outgoing axial partial currents can be written in terms of 

the incoming partial currents, averaged flux, and moments as: 
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Here kT
zJ , , kT

zJ , and kB
zJ ,  are partial currents, and k , 1~

k  and 2~
k  are the average 

flux, the first and second flux moments. The  superscripts designate the outgoing and 

incoming currents while the superscipt T and B indicate the top and bottom surfaces of Plane 

k. By replacing the outgoing partial current appearing in the 3-D CMFD equation with that 

given in Eq. (5), the nodal balance equation at Node (n,k) can be expressed in terms of the 

node average fluxes, incoming partial currents and the axial flux moments as: 
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where neign
radN ,  is the number of radial neighboring nodes of Node n and knS ,  is the source 

including fission and scattering. The incoming currents and the second moments appearing on 

the right hand side are assumed to be available from the previous iteration step. Eq. (6) is 

formed for each plane and each group. The one-group planar problem is solved by a Krylov 

subspace method employing the blockwise incomplete LU factorization preconditioner[16] 

which has good convergence characteristics even with a small radial mesh size amounting to 

a pin cell. For each plane, the groupwise calculation is performed with the scattering source 

updated. After a few group sweeps, the axial boundary condition involving incoming currents 

and the moments is updated. After the completion of the planar sweep, one outer iteration step 

is completed and the eigenvalue and the fission sources are updated accordingly. Since Eq. 

(6) is a planar problem in which the axial coupling term is specified as the boundary condition, 

the planar CMFD problems can be solved in parallel in the block Jacobi manner. 

 

3. Resonance Treatment by Subgroup Method for Nonuniform Temperature Conditions 

 

In order to determine the self-shielded resonance cross sections for the given configuration 



 

and temperature condition, the subgroup method realized in the HELIOS code [5] is 

employed in DeCART with a correction to incorporate the nonuniform temperature 

distribution. The basic idea of the subgroup method is to approximate the continuous 

variation of the resonance cross section with a set of stair-like variations within a coarse 

energy group containing the resonance. In the following the implementation of the subgroup 

method is presented briefly for the basic uniform temperature case and then for the 

nonuniform temperature case. 

 

3.1 Basic Subgroup Method Implementation  

With the subgroup method, the effective cross section for a resonance energy group at a 

small flat source region (FSR) in which the local temperature T is given is represented by: 
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where i  is the i-th subgroup level (or the height of the i-th stair), ),( Ti r  and )(Twi  are 

the subgroup flux and the subgroup weight, respectively, which depend on the local 

temperature. In the HELIOS subgroup method, the subgroup flux is determined as a function 

of the equivalence cross section which forces the equivalence between the heterogeneous flux 

obtained for the actual geometry and the homogenous flux determined with a virtual 

background cross section. In order to determine the heterogeneous flux in each region for a 

uniform temperature condition, the following subgroup fixed source problem (SGFSP), which 

is a one-group neutron transport problem, is to be solved: 
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where m is a prespecified m-th subgroup level, NR is the number density of the resonance 

isotope of interest,  and p are the intermediate resonance parameter and the macroscopic 

potential cross section, respectively. This equation is formed based on the observation that the 

neutrons belonging to a subgroup would experience the same absorption cross section 

regardless of the position and also based on the assumption that the flux above the resonance 

energy group is independent of the position and the magnitude is unity. Thus no flux 

dependent expression appears on the right hand side. Once the transport solution of Eq. (8) is 

obtained, the scalar flux, which is called the heterogeneous flux, is used to determine the 

equivalence cross section at each FSR using the following enforced equivalence relation: 
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The equivalence cross section is functionalized on the prespecified subgroup level after 

solving multiple SGFSPs with a different prescribed subgroup level each time. The 

equivalence cross section determined from this function is later used to determine the flux for 

each subgroup level for use in Eq. (7).  

 

3.2 Consideration of Temperature Dependence 

The above scheme can be applied to uniform temperature cases without any significant 

problem other than the problem associated with the flat flux assumption for the energy groups 

above the resonance. In case of the nonuniform temperature condition, however, a major 

modification has to be introduced in the formulation of the SGFSP problem. Suppose that the 

resonance group is divided into sufficiently many subgroups so that there are fine-width stairs 

formed. A neutron belonging to a subgroup close to the resonance peak at an FSR of 



 

temperature TL is now transported to an adjacent region of temperature TH. If TH>TL, the 

neutron would experience a lower cross section due to Doppler broadening. In this regard, Eq. 

(8) can not be formed with the constant subgroup level for the nonuniform temperature case.  

Under the concept of the subgroup method in which the temperature dependence is 

represented by the subgroup width (or weight) rather than by the subgroup level, it is not 

straightforward to incorporate the temperature dependence of the resonance cross section. As 

an approximate solution to this problem, a forced subgroup level adjustment scheme is 

employed in DeCART. This scheme is to use the relative value of the temperature dependent 

widths to determine the proper subgroup level.  

Consider two regions having different temperatures and also the widths of the two 

subgroups levels. One is a high level subgroup whose height is close to the resonance peak 

and the other is a low level subgroup whose height is much lower than the average level. The 

width of the high level subgroup at the higher temperature region would be narrower than the 

corresponding subgroup width at the other region because of the broadening. Conversely, the 

width of the low level subgroup would be wider at the high temperature region. Based on this 

observation, it is plausible to adjust the cross section to be used in the SGFSP such that it is 

proportional to the subgroup width. The proportional constant can be taken from a reference 

temperature condition. The core average fuel temperature can be used as the reference 

temperature. The ratio of the m-th subgroup level to the subgroup width for the average 

temperature can be taken as the proportional constant. Namely, m in Eq. (8) is replaced by 

the following:    
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Note that Eq. (8) is retrieved for the uniform temperature condition even when the cross 

section adjustment scheme of Eq. (10) is used. 

Once the solution to the SGFSP formulated with temperature dependent subgroup levels is 

obtained, the equivalence cross section can be determined in the same way as the basic case 

of Eq. (9), but again m replaced by Eq. (10). The resulting equivalence cross section is in 

turn functionalized by taking the adjusted prescribed cross section level of Eq. (10) as the 

independent variable. When the effective cross section is calculated by Eq. (7), the flux for 

the i-th subgroup level is determined by the following equation incorporating the temperature 

dependent adjustment of the subgroup level:  

 
)(

)(
)(  ;   )()(  ;   

)()(

)(
)(

avgi

i
iii

i
ei

epiiR

i
ep

i
Tw

Tw
TTfT

TTN

T
T 




 




 .   (11) 

The modified subgroup method implementation described above requires the temperature 

distribution to be known before the SGFSP calculation. Since the temperature distribution is 

one of the solutions to be determined along with the flux distribution which depends on the 

resonance cross sections, the SGFSP in principle has to be performed several times with the 

updated temperature distribution each time. This would be too costly though because the 

SGFSP is itself an expensive transport problem. Thus the SGFSPs are solved only once in 

DeCART after a partially converged solution is obtained to generate a good approximation 

for the temperature distribution. 

 

4. Incorporation of Subpin Level Thermal Feedback 

 

In order to incorporate the thermal feedback effect into the flux calculation, both the 

Doppler and coolant number density effects should be properly taken into account in the 

calculation of the regional multigroup macroscopic cross sections. In DeCART, uniform cross 



 

section regions (UXR) are defined within each pin cell. Specifically, a group of concentric 

regions are defined as the UXRs within the pellet and cladding while only one UXR is 

defined for the entire coolant region of the pin channel. Thus the fuel temperature distribution 

and the coolant temperature and density must be obtained to determine the temperature 

dependent cross sections. In order to obtain the temperature field, a simplified 

one-dimensional heat transfer solver applicable to closed pin-wise channels is used. The 

radial heat conduction solution is obtained by the finite difference method that involves 

several meshes in the pin. The resulting fuel temperature distribution is used to update the 

resonance cross sections as described above. The bulk coolant density is used to update the 

hydrogen and oxygen number densities. Since the heat conduction rings do not have to 

coincide with the flat source rings used for the MOC calculation, a mapping scheme is 

employed to obtain the volume average temperature for each flat source region. Typically, six 

equispaced conduction rings are used inside the pellet whereas three equivolume rings which 

are further divided azimuthally to eight slices are used as flat source regions.  

In order to obtain converged flux and temperature fields which are coupled with each other, 

an iterative solution scheme involving alternate neutronics and T-H calculations need to be 

implemented. In the DeCART’s CMFD framework, the T-H calculation is performed right 

after the CMFD calculation. The new T-H condition is used to determine the temperature 

dependent regional cross sections for use in the subsequent MOC calculation. The 

temperature dependence of the regional cross section is reflected in the CMFD calculation via 

the cell homogenization process performed after the MOC calculation. The radial cell 

coupling coefficients are updated as well for the subsequent CMFD calculation. The overall 

calculation flow is depicted in Fig. 1. 

 
Fig. 1 DeCART Calculation Flow 

 

5.  Performance Examination 

 

The performance of a reactor code analysis code can be characterized by both the solution 

accuracy and the computing speed. Regarding the solution accuracy of DeCART, three-way 

verifications had been performed as stated in the introduction. The analysis of the C5G7MOX 

and its modified rodded variations are detailed in the following subsection. This is to verify 
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the 3-D transport solution method of DeCART given the multigroup cross sections. The 

analysis results for the VENUS2 critical core benchmark are not repeated here by stating only 

that the k-effective for the 3-D problem is 0.99724 and the maximum C/E value is about 1.08. 

This result proves that the cross section library and the transport solution module of DeCART 

are sound. The most extensive verification was carried out by a consistent comparison with 

the results of the MCCARD Monte Carlo code for cases without and with T-H feedback for 

various geometries. Since the companion paper details the comparison, only the computing 

performance from the aspect of convergence characteristics and the computing time are given 

in the second subsection for a realistic 3-D core problem involving T-H feedback.  

 

5.1 C5G7 MOX Benchmark and Its Rodded Variation Problems 

In order to examine the accuracy of the DeCART 3-D transport solution method, the 

C5G7MOX benchmark problem set was solved first. This problem set consists of a 2-D and a 

3-D problem. The core is loaded with sixteen UOX and MOX fuel assemblies arranged as 

shown in Fig. 2 for the upper right quadrant. Seven-group cross sections are provided and the 

reference solutions are available from the MCNP calculations involving 300 million histories. 

The DeCART calculation for this problem set was performed with fine ray tracing parameters, 

namely, 0.2 mm ray spacing, 16 azimuthal angles per 180 degrees and 4 polar angles for 90 

degrees. For the 3-D problem, the active core was divided into 10 planes (9x20 cm + 1x12.78 

cm) and 2 additional planes were added to the top reflector (10 cm and 11.42 cm thick, 

respectively). Table 1 shows the eigenvalue as well as the maximum and RMS power 

distribution errors while Fig. 3 shows the pin power errors for the 3-D problem. As shown in 

the table, the eigenvalue error is 6 pcm and the maximum pin power error is less than 2%. 

This demonstrates the excellent accuracy of the DeCART transport solver. On the other hand, 

the computing time for the 2-D case was 13 minutes on a 2.4 GHz Pentium IV Linux machine. 

For the 3-D case, the computing time of a parallel execution with twelve 2.4 GHz CPUs on a 

LINUX cluster was 30 minutes.  

 

 

 

 

 
 

Fig. 2 Configurations of Modified Rodded Variations of C5G7MOX Benchmark Problem 
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Table 1 Result Summary for C5G7MOX Benchmark Problems 

Cases 
Eigenvalue 

Eigenvalue 

Error, pcm 

Pin Power Error, % 

Reference DeCART Max. RMS 

2-D 1.18655 1.18663 6 1.80 0.46 

3-D  1.18381 1.18389 6 1.89 0.50 

 

 
Fig. 3 DeCART Relative Pin Power Error (%) for the 3-D C5G7MOX Problem 

 

This benchmark problem is, however, not adequate for the examination of the 3-D solution 

method because it does not involve any severe axial variation of materials. Although there are 

original rodded variation problems newly issued, different rodded variation problems are 

examined here in order to introduce more severely distorted axial power shapes. In the 

modified rodded problems, the axial configuration of the problem is changed such that both 

axial boundaries are a vacuum instead of the reflective symmetry at the bottom in the original 

problem. The bottom reflector which has the same composition and dimension as the top 

reflector is added as shown in Fig 2. There are nine fuel planes defined in the core whose 

thickness is 21.42 cm. In the first problem, the central UOX assembly is rodded upto 4 planes 

(Case R4) with the same rod cross sections as the original rodded variation problems and the 

other is rodded upto 6 planes (Case R6). Note that the top reflector is rodded as well. 

For the rodded problems, eleven equal thickness (21.42 cm, nine in the active core and two 

in the axial reflectors) planes were used in the base DeCART model. Other models with 

thinner plane thicknesses (or thinner axial node sizes) were also performed to examine the 

solution sensitivity on the axial node size. Three models involving 22, 44, and 88 plane 

models, which consisted of 10.71, 5.335, and 2.6775 cm axial nodes, respectively, were used. 

The reference solutions for these two problems were obtained from the MCNP calculations 

involving 200 million histories. In Fig. 4, the axial power shapes are compared for the two 

rodded cases and the planar radial power shapes are shown in Fig. 5 for the two planes in the 

six plane rodded case. As shown here, the six plane rodded case involves a more highly 

bottom skewed power shape and thus is a more difficult problem. As a result, larger errors are 



 

noted for the six plane rodded case as indicated by the error information given in Fig. 4 and 

Table 2. 
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Fig. 4 Axial Power Shapes of the Modified Rodded Variation Problems 

 

Although the DeCART axial power shapes for eleven plane cases look similar to those of 

the MCNP cases, the detailed 3-D power distribution exhibits nontrivial errors as indicated in 

Table 2. The maximum local power error is greater than 12% for the six plane rodded case 

and the RMS error is about 5%. This error can be reduced significantly if the plane thickness 

is halved. The twenty-two plane case has a 1.9% RMS error and a 3.4% maximum local 

power error. Further reduction of the plane thickness can improve the solution, but only 

marginally as shown in Table 2 as well as in Fig. 6 which shows the planar RMS errors. It is 

shown in the table and figure that the DeCART solution indeed converges as the plane 

thickness decreases. However, there are finite errors in the eigenvalue and power distribution 

which would result from the diffusion approximation used in the axial solution. Yet, the 

eigenvalue error for the severely rodded case is less than 90 pcm and the maximum local 

power error is less than 4%. This analysis indicates that a plane size of about 10cm is enough 

for the DeCART calculations even for rodded cases and the DeCART 3-D transport solution 

scheme characterized by the 2-D MOC/1-D NEM coupling works fine. 
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Plane 3 (Unrodded) 

 
Fig. 5. Planar Radial Power Shape for 6 Plane Rodded Case (Planes 4 through 9 Rodded) 



 

 

 

 

Table 2 Result Summary for Rodded Cases 

 

R4 R6 R4 R6 R4 R6 R4 R6

11 21.42 -1.5 -25.7 2.95 4.68 0.140 0.229 6.67 12.12

22 10.71 -20.8 -76.4 0.97 1.87 0.061 0.118 3.71 3.39

44 5.355 -23.7 -82.7 0.84 1.68 0.049 0.100 3.84 3.74

88 2.6775 -23.7 -81.9 0.84 1.67 0.048 0.099 3.80 3.79

Maximum
Absolute 3-D Pin

Power Error

Maximum
Relative 3-D Pin
Power Error, %

Number
of

Planes

Plane
Thickness

cm

3-D Pin Power
RMS Error, %

Eigenvalue
Error, pcm

 
* R4, R6 are for the four and six plane rodded cases, respectively; Reference Eigenvalues: 

1.16139 and 1.13277 for R4 and R6, respectively. 

 

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

P
la

n
a
r 

R
M

S
 E

rr
o
r,

 %

Plane Number

 11 Planes for R6
 22 Planes for R6
 33 Planes for R6
 44 Planes for R6

 11 Planes for R4
 22 Planes for R4
 33 Planes for R4
 44 Planes for R4

 
Fig. 6 Planar Absolute RMS Error for Rodded Cases 

 

5.2 Computational Performance for a 3-D Core with T-H Feedback 

The last problem defined in the test problem set given in the companion paper[10] is a 3-D 

minicore problem at hot-full-power condition (HFP). This minicore consists of five rows of 

reduced height (2 meters) typical 17x17 fuel assemblies and is reflected with water. To solve 

this problem, all the calculation modules of DeCART, namely, the cross section manipulation 

module, the subgroup fixed source calculation module, the 3-D transport solution module, and 

the T-H calculation modules are used. Fig. 7 shows the radial pin power and fuel temperature 

distribution obtained for this problem. As presented in the other paper, the k-effective error of 

the DeCART solution is about 260 pcm and the maximum pin power error is about 3.7%. 

This proves a good agreement with the Monte Carlo solutions obtained with thermal 

feedback.  

The convergence of the relative residual which is an indicator of the imbalance of the 

neutron production and loss obtained for the DeCART calculation for this case is shown in 

Fig. 8 along with the convergence of the core k-effective and the maximum centerline fuel 

temperature. The abrupt jumps noted in the residual convergence behavior are due to the 

MOC updates which modify the cell homogenized cross sections and the coupling 



 

coefficients. In-between the jumps, only the multigroup CMFD calculations are performed. It 

is noted that the k-effective converges after only three MOC calculations.  

 

 
 

Fig. 7 Pinwise Radial Power and Fuel Temp. (C) Distributions for HFP Minicore Problem 

 

The first centerline fuel temperature point shown in Fig. 8 was obtained from the power 

distribution determined by the first CMFD calculation. Thus no MOC calculation is 

performed at this time. However, the centerline fuel temperature of 1360C at this point is not 

quite far from the converged value of 1410C. The temperature and density distribution 

corresponding to this first point is used in the subgroup fixed source calculation. Therefore it 

can be surmised that the temperature dependent subgroup calculation performed before the 

first MOC calculation would be reasonably accurate. 

 

0 50 100 150 200 250 300

10
-6

1x10
-5

1x10
-4

10
-3

10
-2

10
-1

10
0

 

 

R
e
la

tiv
e
 R

e
si

d
u
a
l

Outer Iteration Index

 CMFD
 MOC

0 50 100 150 200 250 300

1.00

1.05

1.10

1.15

1.20

1.25

1.30

 

k-
e
ff
e
vt

iv
e

Outer Iteration Index

 k-effective

1340

1360

1380

1400

1420

1440

1460

1480

1500

 Peak Fuel Temperature

 M
a
x.

 C
e
n
te

rl
in

e
 F

u
e
l 
T

e
m

p
.,
 C

 

 
 

Fig. 8 Convergence Behavior for the HFP Minicore Problem 

 

The computing times spent by the primary modules of DeCART for the minicore problem 

are shown in Table 3. This case was performed on a LINUX cluster with twenty-four 1.8 GHz 

Pentium-IV CPUs. The total run time of about 90 minutes for this forty-five group pin-by-pin 

transport calculation is not considered prohibitive. It is expected that routine direct whole core 

calculations for design analyses are quite possible in the near future. From the aspect of 



 

parallel computing, the communication time fraction of 46% seems to overkill the parallel 

efficiency. But the large communication time which is spread over the various solution 

modules is unavoidable on a distributed memory machine and in a situation involving a 

fine-grain parallelism, particularly needed for the CMFD solution. The advantage of using 

distributed machines though is that they are affordable and large problems requiring excessive 

memories can be solved on those machines. 

 

Table 3 Computing Time Breakup for the HFP Minicore Problem (24 CPUs) 

 

Module Time, sec Fraction, %

Sub Group Calculation 794 14.7

CMFD 1229 22.8

Ray Tracing (MOC) 2794 51.9

Cross Section, T/H etc. 572 10.6

Communication 2489 46.2

Total 5389  
 

 

6. Conclusion 

 

The capability of the direct 3-D whole core transport calculation with subpin level thermal 

feedback was realized in the DeCART code employing the planar MOC solution based 

CMFD formulation and the subgroup method. Although the direct core calculation is 

computationally very demanding, the solution can be obtained in a practical time span (less 

than a few hours) on affordable LINUX platforms through the use of efficient solution 

methods and parallel processing. The 2-D MOC/1-D NEM coupled 3-D CMFD solution 

scheme which is one of the key components delivering the solution efficiency was proven to 

be sufficiently accurate through the examinations of the modified rodded variation problems 

of the C5G7MOX benchmark. Although it was shown that quite accurate solutions are 

obtainable for the 3-D cases with thermal feedback through the comparison with the 

corresponding Monte Carlo solutions, the eigenvalue error of about 260 pcms and the 

maximum pin power error of about 3% suggest further improvements. In this regard, the 

investigation of the temperature dependent implementation of the subgroup method and the 

isotropic scattering treatment is underway.  
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