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Abstract 

 

The Sanchez-Pomraning method to resolve the double heterogeneity problem in the MOC 

transport calculation is described in detail. This method is founded on the collision probability 

method concepts which involves the collision and escape probabilities, and formally derived by 

using the statistical treatment of the neutron balance equation along a path. The statistical 

approach bring the concept of the chord and segment length distributions in the formulation of 

the integral equation for the grain surface and matrix fluxes, which later turns into collision and 

escape probabilities. For the analytic solution, a boundary layer of a grain thickness, in which 

no grain is present, is assumed within each flat source region. The analytic solution of the 

coupled integral equation which involves the convolution integral is derived first by Laplace 

transform, but finally by substitution. This solution introduces an effective cross section which 

represents the homogenized mixture of the matrix and grain. With observation that the resulting 

analytic solution for the matrix is the same as the MOC solution for the homogenized medium, 

the equivalent source is constructed so that the MOC calculation can be performed for the 

homogenized mixture. The assumption of the boundary layer causes, however, a problem in the 

neutron conservation which should be corrected by renormalization. This method requires very 

little modifications to the existing MOC code to implement the double heterogeneity treatment. 

Starting from the very basic collision probability relation, the exhaustive derivation and 

explanation of the all the solution and terms needed to establish the MOC calculation sequence 

with the double heterogeneity treatment are provided for complete understanding of the reader 

who might not have sufficient background on this subject.
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1. Introduction 

 

This monograph is to give a detailed description of the Sanchez-Pomraning method1 to resolve 

the double heterogeneity problem in the method of characteristics (MOC) calculation. The 

MOC calculation with a double heterogeneity treatment need to be performed in the DeCART 

whole core transport code for applications to the conditions involving grains of fuel or burnable 

absorber admixed with a matrix. First of all, the double heterogeneity here means the additional 

level of heterogeneity introduced by the presence of tiny grains which need to be homogenized 

for practical calculation. Once the region containing the grains is homogenized, there will only a 

single level of heterogeneity which includes all the other heterogeneous constituents. The most 

typical example of the double heterogeneity is the VHTR core consisting of fuel blocks into 

which triso fuel bearing compacts are placed. In the compact, the base material is graphite and 

triply coated fuel particles or grains of ~0.5 mm in diameter are admixed. Since it is exhaustive 

to trace each tiny fuel particles, there is a strong need for homogenizing the compact in a 

practical transport calculation. The homogenization requires, however, special considerations 

because the triso fuel particles are not tiny optically for the neutrons of certain energies and the 

neutron flux essentially varies largely across the triso-grain to cause a large difference in the  

reaction rate between the explicit and smeared triso representation. Therefore, a much more 

delicate treatment than the trivial volume-weighted homogenization is needed for the micro-

heterogeneity treatment.  

 

The double heterogeneity problem was addressed by several researchers, most noticeably by 

Sanchez. He first used only the collision probability method (CPM) to perform the transport 

calculation as well as to generate the solution kernel and homogenized parameters for the 

stochastic mixture of the matrix and grains2. Later he replaced the CPM for transport calculation 

with the method of characteristics3 which would relieve the assumption of the isotropic angular 

flux needed in the CPM transport solution. His most recent work1 was to improve the solution 

for the non-conservation problem resulting from the neglect of the first layer of grains right 

inside the boundary during the analytic solution process. The three papers of Sanchez will be 

followed here with sufficient details including proofs and explanations of the physical meanings 

of each term or treatment. This detailed explanation is needed because his papers are quite 

abstract in many aspects. He omitted explanations for seemingly obvious things although such 

things are not clear to most readers who first encounter those. 
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The problem to be solved here is a within-group transport problem in which the source is known 

at each region and also within each grain. The method for solving the transport problem 

involving double heterogeneity which is to be explained here consists of two parts: a priori 

generation of the solution kernel and the homogenization parameter, and then the subsequent 

MOC calculation to determine the average flux in the homogenized region and eventually the 

grain specific reaction rate. The solution kernel derived in terms of the CP concepts will be of 

prime importance in the determination of the homogenized cross sections and decomposing the 

grain specific reaction rate. Thus the most part of this monograph will be devoted to the 

derivation of the CP bearing solution which results from the analytic solution of so called the 

renewal equations (cf. Section 2.1) for a stochastic medium.  

 

In the next section, the characteristics of the stochastic problem are presented first to provide a 

proper view of the problem that we are dealing with. The renewal equation which is the integral 

balance equation is then derived in this section. The second section is to explain the 

fundamentals of the CPM with essential relations and proofs which are needed in the 

subsequent derivation. The third section is to derive the CPM based solution method which 

results in a coupled linear system consisting of grain and matrix fluxes and collision 

probabilities. The fourth section is to derive the analytic solutions to the renewal equation for 

the cases with a homogeneous grain internal structure. The fitth section is to apply the CP 

bearing analytic solution kernel to the MOC calculation and then to resolve so called the 

boundary layer problem which results from the neglect of a thin layer of one grain thick during 

the derivation of the analytic solution. The last section is to incorporate the heterogeneous 

grains in the solution kernel. 
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2. Statistical Formulation of Neutron Balance Equation in Stochastic Medium 

 

Suppose a neutron ray passing though a region in which grains of different types are dispersed 

in the base matrix. The configuration under consideration is depicted in Figure 1. The ray shown 

here can be a ray used in the MOC calculation and the base region is a flat source region(FSR). 

Here we denote the grain type by a positive integer, 1 through N (the number of grain types) and 

the matrix by material 0. For now, we don't consider the internal structure of the grain. It will be 

discussed in Sections 3.2 and 6.1. It is obvious from this figure that the neutron would encounter 

various arrangements of the grains during its travel because the occurrence of a certain 

configuration is stochastic. Under this circumstance, it is impractical to solve the neutron 

conservation equation deterministically and a statistical approach is needed. The statistical 

approach brings so called renewal equations which are detailed below. The term renewal comes 

from “renewal process” which is a special sequence of processes occurring repeatedly with a 

prescribed probability distribution function (PDF). A renewal process is distinguished from a 

Poisson process which is a time-continuous “Markov process” in that the PDF is a general one 

instead of an exponential PDF. Note that a Markov process is a process or event that occurs 

totally independently from the previous processes and it is governed by an exponential PDF. 

 

2.1 Renewal Equations 

 

In the statistical approach, it should be first noted that a position x, measured from the region 

entrance point for a particular ray, can be occupied by any one of the (N+1) materials. The 

probability of occupying a position with the i-th material would be it’s volume fraction ip . If 

we define the i-th material angular flux, ( )i xϕ , the expected value of the flux would be simply: 

  
0

( ) ( )
N

i i
i

x p xϕ ϕ
=

=∑ . (1) 

In order to determine ( )i xϕ , we should consider various cases that the position x can be by the 

volume of material i. Suppose placing a ray segment within a grain type i as shown in Figure 2. 

The end point of the ray segment can be located either interior or at the boundary. In both cases, 

there could be various grain configurations which can have the end point either in the interior or 

on the boundary as shown by the example spheres in the figure. Similarly, the starting point of 

the ray segment can be placed either any point in the interior or on the boundary.  
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Now consider what contributions are there to affect ( )i xϕ . There are only two contributions if 

( )i xϕ  is for grain flux. The first one is due to the surface source which originates from the 

incoming neutrons at the surface of the grain. The other one is due to the interior source which 

originates from fission and scattering within the grain. Let’s denote the position of the source by 

y as the distance from x as shown in Figure 2. After traveling the distance y from the source, the 

neutrons would experience an exponential attenuation determined by the optical distance, i ye−Σ . 

This attenuation assumes that the entire path of length y is occupied by material i. But in the 

stochastic circumstance, there is a certain probability that the entire path is occupied by the 

material. Since there are two kinds of source, we need to consider two probabilities regarding 

the ray segment which are defined as follows:  

 

( )iR l  =  probability that the distance from an interior point to a surface point is greater 
than l, 

( )ig l dl = probability that the distance from an interior point to a surface point is greater 
than l but less than l+dl. 

 

From the definition, the following relations are obvious: 

  0
( ) ( ) 1 ( )iL l

i i il
R l g l dl g l dl′ ′ ′ ′= = −∫ ∫  or 

( )( ) i
i

dR lg l
dl

= −  (2) 

Matrix (Material 0) 

Grain Type 1

Grain Type 2

inϕ

outϕ

Figure 1. Ray passing through a stochastic medium 

x

Flat Source Region 
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with Li being the maximum chord length of grain type i.  

 

For a given interior source density, 
1

4i s extS Sφ
π

= Σ +  with extS  specifying the external 

source consisting of the fission source and the in-scattering source, the intensity of the source 

located between y and y+dy would be iS dy  (in fact we need to consider the cross sectional 

area Aδ  of the ray since the source density is given per volume, but we do not use it explicitly 

because Aδ would appear in every term and can be cancelled out). On the other hand, the 

probability that the path between the source and the destination point (x) is occupied by material 

i is ( )iR y  since the surface point should be located beyond y from the source in order to have 

the path entirely occupied by material i. Thus the contribution from the infinitesimal source to 

( )i xϕ  is ( ) i y
i iS dyR y e−Σ .  

 

For the treatment of the surface source, we need to define first the incoming angular flux 

( )in
i xϕ  which is the expected incoming angular flux to material i at location x. For the 

incoming angular flux located away by y from x, ( )in
i x yϕ − , the probability that the path from 

the infinitesimal surface source to an interior point x is occupied by material i is ( )ig y dy which 

would yield the contribution from the surface source as ( ) ( ) i yin
i ix y g y dyeϕ −Σ− . In addition 

there can be an incoming source at the region boundary which specifies the boundary condition 

i
inϕ

i
outϕ

Figure 2. Various ray segment configurations for interior endpoint case (left) and 

surface endpoint case (right)

xy
y
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at 0x = . This source at the origin is attenuated by i xe−Σ  and contributes to the flux with the 

material existence probability ( )iR x  for the travel distance of x . By combining the two 

sources which can occupy the position y and one from the source at the origin, we obtain the 

following integral equation for the material flux for an interior point: 

  ( )
0

( ) (0) ( ) ( ) ( ) ( )i i
xx yin

i i i i i i ix R x e S R y x y g y e dyϕ ϕ ϕ−Σ −Σ= + + −∫ . (3) 

The incoming flux for the grain is related with the outgoing flux for the matrix and vice versa. If 

there is a transition a grain to the matrix, it can occur with any type of grains. Therefore, there is 

a certain probability for a grain to matrix transition for each grain type. Let it  be the transition 

probability from grain type i to the matrix. Since once the transition to the matrix has to occur at 

a point, the transition must be with at least one of the grain types, the summation of the 

transition probabilities should sum up to 1.0, namely: 

  
1

1
N

i
i

t
=

=∑ . (4) 

In terms of the transition probability and the grain outgoing angular flux, the incoming flux to 

matrix can be obtained as the following: 

  0
1

( ) ( )
N

in out
j j

i

x t xϕ ϕ
=

=∑ . (5) 

The opposite, however, is very simple since the transition to a grain is possible only from the 

matrix. Namely, direct transition from a grain to another grain is not possible under the 

assumption that no grains contact each other. In this case, the incoming flux to any type of grain 

at location x is the same as the outgoing flux of the matrix, namely, 0( ) ( )in out
i x xϕ ϕ= . 

 

By replacing the incoming flux in Eq. (3) with the one of Eq. (5) which contains the outgoing 

fluxes, we have coupled equations in which the outgoing flux of the other materials are related 

with the internal flux of the material of interest. Since the outgoing flux which is the flux at the 

surface is also unknown, we need a separate balance equation for that. 

 

For the flux at the surface, consider the following probabilities: 
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( )iQ l  =  probability that the chord length is greater than l. 
( )if l dl = probability that the chord length is greater than l but less than l+dl. 

 

Similarly to Eq. (2), we have:   

  0
( ) ( ) 1 ( )iL l

i i il
Q l f l dl f l dl′ ′ ′ ′= = −∫ ∫  or 

( )( ) i
i

dQ lf l
dl

= −  (6) 

With these probabilities, the balance equation for the outgoing flux reads 

  ( )
0

( ) (0) ( ) ( ) ( ) ( )i i
xx yout in

i i i i i i ix Q x e S Q y x y f y e dyϕ ϕ ϕ−Σ −Σ= + + −∫ . (7) 

The reason for using ( )iQ y  instead of ( )iR y  in the first term of the integrand is that the 

chord length should be at least y in order to have the distance from an interior point to the 

surface greater than y (cf. the right figure in Figure 2. All the cases other than the green one have 

the chord length greater than y). The use of the chord length distribution for the incoming source 

term is obvious because it is for surface to surface connection. Eqs. (3) and (7) constitute the 

renewal equations which are coupled through Eq. (5). Before deriving the analytic solutions to 

the renewal equations, considerations on several segment length distributions are made in the 

following. 

 

2.2 Chord Length Distribution 

 

Within a convex body, a segment can be defined by connecting any two points. The segment can 

be a chord if the connection is made between two surface points. As shown later, the distribution 

of the interior segment lengths which specifies ( )g l is related with the chord length 

distribution ( )f l . First of all, let’s first find an analytic expression for the chord length 

distribution for a sphere. 

 

2.2.1 Case of Sphere 

 

From Figure 3, it is obvious that the probability that the chord length is in between l and l+dl 

would be the area ratio of the circular strip formed by dθ  around θ  to the entire area of the 

sphere. We can note first the following relation between the angle and the chord length: 
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  2 sin
2

l R θ
= . (8) 

and the radius of the strip is 
sinR θ

 while the width is 
Rdθ

. The probability that the end 

point of the segment be located within the strip would then be: 

  2

2 sin sin( )
4 2

R Rdp d d
R

π θ θ θθ θ θ
π

= =
i

. (9) 

This probability should be the same as the probability that the chord length is between l 

and l+dl, namely: 

  
sin( ) ( )

2
f l dl p d dθθ θ θ= = . (10) 

From this and Eq. (8), we have 

  
2

sinsin sin 1 22( )
2 2 2cos

2

d l lf l
dl R R D DR

θ
θ θ θ

θ
⎛ ⎞= = = = = ⎜ ⎟
⎝ ⎠

. (11) 

Figure 3. Chord length in a sphere 
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with the diameter D which is the maximum chord length. The probability that the chord length 

is greater than l, Q(l), is obtained by the integration of the above the probability distribution 

function (PDF): 

  
2

( ) ( ) 2 1
D D

l l

l l lQ l f l dl d
D D D
′ ′ ⎛ ⎞′ ′= = = − ⎜ ⎟

⎝ ⎠∫ ∫ . (12) 

The PDF for the chord length can also be used to determine the mean chord length: 

  
2

0 0

2 4 4( ) 2
3 3

D D l l Vl l f l dl D d D R
D D S
′ ′⎛ ⎞′ ′ ′= = = = =⎜ ⎟

⎝ ⎠∫ ∫ . (13) 

The probability that the distance from an interior point to the surface for a certain direction 

which is R(l) can be obtained based on Figure 4. The left sphere in the figure is the same one in 

the right. It is just shifted to the left by l. In this figure, we see that the probability that the 

distance to the surface be greater than l is merely the ratio of the volume of the common part of 

the two spheres to the total volume of the sphere. The volume of the common part is two time 

the volume of the shaded part which represents a cut of a sphere. The height of the cut is 
2
lR − . 

 

The volume of the cut is obtained by the integrating the volume of the disk located at z from the 

Figure 4. Distance from an interior point to surface 
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top of the cut to the bottom. Noting that the radius of the disk is 2 2( )R R z− − , we have the 

volume of the cut as: 

  2 2 22 2
0 0

2 2

( ( ) (2 )
1 2     

2 3 2 2 3 6

l lR R

cutV R R z dz Rz z dz
l l l R lR R R R

π π

π π

− −
= − − = −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫ . (14) 

The probability is now obtained as: 

  
2

2

3

22
2 2 3 6( ) 1 14 2 4

3

cut

sphere

l R lR
V l lR l

V R RR

π

π

⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠= = = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (15) 

The corresponding probability distribution function is now obtained by differentiation: 

  
2

2 2

2

( ) 1 1( ) 1 1 1 1 1
2 4 2 4 4 2

1 1
3 ( )2 2       = 1 44 2

3

dR l d l l l l lg l
dl dl R R R R R R

l l
l Q lR R

R R l lR

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − − + = − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎛ ⎞⎛ ⎞ ⎝ ⎠ ⎝ ⎠− = = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.(16) 

As shown in the last of the above equation, the PDF for the internal segment distribution 

function can be obtained as the cumulative distribution function (CDF) divided by the mean 

chord length. This relation is further investigated below. 

 

2.2.2 Relation between Segment PDF and Chord Length CDF 

 

As can be seen in Figure 4, g(l)dl would be the ratio of the volume of the disk located at the 

bottom of the cut (marked in green, the thickness of the disk is dl). The area of the disk is 

merely proportional to the surface area of the shell which spans from points B, C, and D 

(marked with the light green arc in Figure 4). Since the surface area of the shell is proportional 

to the CDF of the chord length as indicated by the green lines in Figure 4, the following relation 

holds: 
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( ) ( )g l dl Q l dlα=

. (17) 

By imposing the normalization condition for the probability, we have  

  

0

1

( )
L
Q l dl

α =
∫

. (18) 

Performing the integration of the denominator by parts, we have 

  00 0 0

( )( ) ( ) ( )
D D DD dQ lQ l dl l Q l l dl l f l dl l

dl
′

′ ′ ′ ′ ′ ′ ′ ′ ′= − = =
′∫ ∫ ∫ . (19) 

Note that the first term in the second expression above vanishes because Q(L)=0. Therefore, we 

have now the general relation between the PDF of the segment length and CDF of the chord 

length: 

  
( )( ) Q lg l
l

= . (20) 

Note that this is a generic relation holding for all the convex bodies. 
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3. Collision Probability Solution 

 

The renewal equation can be solved analytically in terms of the various the collision probability 

concepts and terms. Before solving the renewal equations, we first derive various the collision 

probability relations and terms and then investigate the collision probability method (CPM) 

based solution of the double heterogeneity problem which involves construction of an 

equivalent homogenized problem with an approximation. 

 

3.1 Basic Collision Probability Relations 

 

Collision probability ijP  is defined as the probability for a neutron born isotropically and 

uniformly in volume j to have its first collision in volume i. Since we suppose only one neutron 

in jV , the source density is 
1

jV
. For a unit isotropic source density at position jr , the flux at 

position ir  would be given as follows which reflects the geometrical spread and attenuation 

during the travel: 

  
( )

2( )
4

i jr r

j i
en r r

R

ρ

π

− −

→ = . (21) 

where ( )j ir rρ −  is the optical distance between jr  and ir  that is determined by the 

macroscopic cross sections and the travel length at each interval of the line segment connecting 

jr  and ir . R is the distance between the two points. For collisions in iV , the flux given by Eq. 

(21) should be multiplied by the total cross section iΣ . With the source density of 
1

jV
, the 

first collision probability for jV  to iV  collision is then obtained as:  

  
1 ( )

i j
ij i j i j iV V

j

P n r r dV dV
V

= Σ →∫ ∫ . (22) 

This brings the following reciprocity relation: 
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  ( )    or   
i j

ij j ji i
j i j i j j ij i i jiV Vi j

P V P V
n r r dV dV V P V P= → = Σ = Σ

Σ Σ∫ ∫ . (23) 

Now consider the escape probability iE and the first-flight blackness iγ . iE  is the probability 

for a neutron born in volume i to escape the volume without any collision while iγ  is the 

probability for a neutron entering an external surface uniformly with the isotropic angular 

distribution to have the first collision in volume i.  

 

Suppose the volume configuration shown in Figure 5. The entire volume (V) is surrounded by a 

surface whose area is S and there is an internal volume iV . Outside the volume there is a 

uniform and isotropic source density Q which occupies the infinitesimal strip having thickness 

tδ . With these definitions, let’s first obtain the escape probability. For one source neutron in iV  

which would give the source density of 1

iV
, iE  is obtained as: 

  
1 ( )

i
i j i j iV S i

E n r r dA dV
V

= →∫ ∫ . (24) 

This is the survival probability of a neutron born in iV  passing through S.  

 

The isotropic neutron source residing outside the external surface yields a cosine current 

distribution which means that the number of neutrons coming through any unit surface area has 

a cosine angular dependence because the entrance area to be seen by the neutron has the cosine 

dependence. For the cosine current, only 1
4

 of the source neutrons can pass through the 

surface due to the cosine dependence of the projected area. This can be easily seen by the 

following: 

  
1

2
2 0 0

cos sin
4 2 4in
Q Q QQ d d d

π

π
θ θ θ α μ μ

π
= = =∫ ∫ ∫ . (25) 

Since the volume of the thin shell is S tδ , the total number of neutrons passing through surface 

S whose area is A  is 
4
Q A tδ . Among these neutrons the following number of neutrons will 

have the first collision in iV : 
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  ( )
i j

col i j i j iV S
R Q n r r dA tdVδ= Σ →∫ ∫ . (26) 

 

 

By definition the first flight blackness is obtained as: 

  ( ) 4 ( )

4

i j

i

i j i j iV Scol i
i j i j iV Sin

Q n r r dA tdVR n r r dA dVQQ AA t

δ
γ

δ

Σ →
Σ

= = = →
∫ ∫

∫ ∫
. (27) 

From this and Eq. (24), we have 

  
4 i

i i iV E
A

γ
Σ

=  or 
4 i

i i i i i i
VV E lp E

A V
γ = Σ = Σ . (28) 

where 4Vl
A

= is the mean chord length and ip  is the volume fraction of the interior volume. 

 

Between the escape probability and the collision probabilities, we have the following obvious 

normalization conditions: 

iV

tδ

S

V

jr

ir

dA Q

Figure 5. Escape probability vs. first-flight blackness calculation configuration  
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1

1
N

i ji
j

E P
=

+ =∑ , (29) 

  
1

1
N

i i i
i

T l p E
=

+ Σ =∑  (30) 

where N is the number of interior volumes within the external surface and T is the transmission 

probability for a neutron entering through the external surface with a cosine current distribution. 

 

3.2 Collision Probability Balance Equations 

 

In general there is an internal structure in a grain consisting of layers. By denoting the grain 

type by i and the layer by k, we can define various collision probabilities: 

 

,ik jl

gP  =  probability for a source neutron originating from the l-th layer of the j-th grain 

type to have its first collision at the k-th layer of the i-th grain type, 

,0ik

gP  =  probability for a source neutron originating from the matrix (material 0) to have 

its first collision at the k-th layer of the i-th grain type, 

ik

gE  =  probability for a source neutron originating from the k-th layer of the i-th grain 
type to escape through the grain boundary, 

 

The superscript g in the above symbols means grain which signifies that the quantity is defined 

for a single grain rather than the group of all the grains of the same type. Representing the 

number of grains by in , parameters without the superscript is defined for the group of grains. 

For instance, g
i i iV n V=  is the total volume of the grain type i which would determine the 

corresponding volume fraction by i
i

Vp
V

= . Similarly, ,0 ,0
g

ik i ikP n P=  is the probability for the 

transfer from the matrix to any grain of type i.  

 

Suppose that we are now interested in the average reaction rate in each type of grain as well as 

in the matrix within a region which contains the mixture of the matrix and grains as shown in 

Figure 1. The first approach we can take to determine those reactions rates is to use the balance 

equation to be formed in terms of the collision probabilities (CP) as in the following subsection. 

 

Before deriving the balance equation, suppose that isotropic neutron source densities are given 
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in each layer and matrix as , ,
1

4ik s ik ik ext ikS Sφ
π

= Σ +  and 0 ,0 0 ,0
1

4 s extS Sφ
π

= Σ + . The first term 

is for the within group scattering while the second is for all the other sources. Out of the grain 

internal sources, there will be neutrons leaking out to the matrix which can be represented as: 

  
,

g g g
i ik ik ik ik ik ik

i k i k

J n E V S E V S+ = =∑ ∑ ∑ . (31) 

This can be regarded as the surface source to the matrix. Using this surface and volume source 

of the matrix, the balance equations for the matrix and each grain layer can be written as follows 

in terms of the total collision rates: 

  0 0 0 00 0 0( )V P V S Jφ +Σ = +
, (32) 

  ,0 0 0 ,( )g g g g
ik ik ik ik ik il il il

l

V P V S J P V Sφ +Σ = + +∑ . (33) 

where 00P  is the matrix-to-matrix collision probability. The first term of Eq. (33) signifies 

that all the neutrons coming outside of a grain enters it only through the matrix while the second 

term indicates the grain internal source coming from other layers. This is possible under the 

assumption that there is no direct contact between grains, which is quite reasonable. 

 

By using Eq. (31) and multiplying in  to Eq. (33), we have 

  0 0 0 00 0 0 0,
,

ik ik ik
i k

V P V S P V SφΣ = +∑ , (34) 

  ,0 0 0 ,
,

,0 0 0 ,0 , ,
, ,

,0 0 0 ,
,

( )

               =

               =

g g
ik ik ik ik jl jl jl ik il il il

j l l

g g
ik ik jl jl jl i j ik jl jl jl

j l j l

g
ik ik jl jl jl jl

j l

V P V S E V S P V S

P V S P E V S P V S

P V S P E V S

φ

δ

Σ = + +

+ +

+

∑ ∑

∑ ∑

∑

. (35) 

where the layer-to-matrix collision probability is defined as 
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  0, 00
g

ik ikP P E=
 (36) 

and the layer to layer collision probability is defined as 

  , ,0 , ,
g g

ik jl ik jl i j ik jlP P E Pδ= +
 (37) 

with the Kronecker delta ,i jδ . Note that from the reciprocity relation, Eq. (23), layer-to-matrix 

collision probability can be obtained from matrix-to-layer collision probability: 

  ,0 0,
0 0

ik ik
ik ik

VP P
V
Σ

=
Σ

 (38) 

Eqs. (34) and (35) constitutes a linear system which is coupled through the source containing 

the flux. The linear system can be solved once the coefficients consisting of ,,g g
ik ik ilE P  and 00P  

are known. The escape probability and the layer to layer collision probability can be determined 

by a suitable collision probability calculation routine. The matrix-to-matrix collision probability 

or matrix self collision probability, 00P , however, can not be obtained as such. It requires a 

special consideration which is to be described in the next subsection. 

 

3.3 Determination of Matrix Self Collision Probability 

 

The matrix self collision probability can be obtained through suitable homogenization of the 

region containing the matrix and grains. Let’s denote the boundary of the region by Γ  and 

define the transmission probability for the region by T  and the escape probabilities for the 

matrix and grains associated with the region boundary Γ  as 0E  and ikE , respectively. Then 

the escape probability through Γ  is related with the grain escape probability as: 

  0
g

ik ikE E E=
. (39) 

It is related with the region transmission probability through the following condition: 
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  0

0
0 0

0
0 0 0

0 0 0 0

1

4 4 

4 4  =

  =

i ik
i k

g
ik

i ik ik
i k

gi ik
ik ik

ii k

gik
i ik ik

ii k

T n

V VT E n E
A A

V V VV VT E E E
A V A V V

VT lp E l p E E
V

γ γ= + +

= + Σ + Σ

+ Σ + Σ

+ Σ + Σ

∑ ∑

∑ ∑

∑∑

∑ ∑

. (40) 

The first equality of the above equation states that the probability for a neutron either to react  

within anywhere in the region (matrix of grain) or transmit should be 1.0 and the second 

equality comes from Eq. (28). The last term is further simplified as: 

  
0 0

0

0

4

4

4                                     

                                     

                              

g
ik
g

g gik i
i ik ik i ik ikg

ii k i k i
g
i

g
gi ik

ik ikg
ii k i

gi
ik

ii k

V
V Al p E E l p E E
V V

A
p Vl E E
l A

plE
l

γ

Σ = Σ

= Σ

=

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

( )0       1

  

gi
i

ii

plE T
l

= −∑

 (41) 

Note that grain mean chord length, 4 g
gik

i ikg
i

Vl
A

γ= , and the reciprocity relation, Eq. (28), are 

applied at the grain level for the grain first-flight blackness, g
ikγ , which is the probability for a 

neutron entering the grain surface of a Type i grain to have its first collision within Layer k. The 

summation of the grain first-flight blackness over all the layers is of course unity minus the 

grain transmission probability. By dividing both sides of the above equation by 0lE , we have 

the following relation between the grain escape probability and the grain transmission 

probability: 

  ( )
,

1 1

  

g g gik i
i ik ik ik ik ik i

i ii k i k i

V pp E V E T
V V l

Σ = Σ = −∑ ∑ ∑ ∑ . (42) 

By inserting Eq. (41) into Eq. (40), the transmission probability is obtained as: 
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  0 01T p E l= − Σ
. (43) 

where 

  ( )0
0

0
0 ,

1 1

1   .

gi
i

ii

g
ik ik ik

i k

p T
p l

V E
V

Σ = Σ + −

= Σ + Σ

∑

∑

 (44) 

On the other hand, the conservation relation for outward neutrons originating from the region 

reads: 

  00 ,0 0
,

1 ik
i k

P P E= + +∑ . (45) 

By using Eqs. (38) and (44), Eq. (45) can be converted into: 

  0 00 0,
0 0,

00 00
0 0,

00
0

0 0 ,

00

0

1

          

1          

          

ik ik
ik

i k

gik ik
ik

i k

g
ik ik ik

i k

VE P P
V
VP E P
V

P V E
V

P

Σ
− = +

Σ
Σ

= +
Σ

⎛ ⎞
= Σ + Σ⎜ ⎟⎜ ⎟Σ ⎝ ⎠
= Σ
Σ

∑

∑

∑

 (46) 

which in turn together with Eq. (43) gives: 

  0
00 0

0

0

(1 )

1     1 (1 )  .

P E

T
p l

Σ
= −
Σ
⎛ ⎞Σ

= − −⎜ ⎟Σ Σ⎝ ⎠

 (47) 

Thus the problem of fining the matrix-self-collision probability turns into finding the region 

transmission probability. Determination of the region transmission probability requires an 

homogenization of the matrix and grains because it can’t be calculated for the stochastic 

medium. 
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The transmission probability can be determined in an alternative way by counting the number of 

collisions (C) within the region for the unity, uniform and isotropic source entering the region 

boundary surface, namely, 1T C= − . Let the region be homogeneous with the cross section 

hΣ  and homφ  be the average scalar flux within the region induced by the unit surface source. 

Then the number of total collisions within the region would be: 

  hom hom ( )h hC V φ= Σ Σ
 (48) 

Here hom ( )hφ Σ  indicates that the average flux is dependent on the homogeneous cross section. 

Note that there should be a flux gradient within the region despite the medium is homogeneous. 

On the contrary, for the heterogeneous region, denote the average scalar flux of the matrix 

induced by the unit surface neutron source be hetφ  and assume that the angular flux distribution 

around a grain be isotropic such that the net current passing through the unit surface area is one-

fourth of the scalar flux at the surface of grain type i , s
iφ . The number of total collisions for the 

heterogeneous case is then 

  0 0
1 (1 )
4

g s g
het het i i i i

i

C V n A Tφ φ= Σ + −∑ . (49) 

By denoting the grain surface to the matrix flux ratio by 
s
i

i
het

K φ
φ

=  which can also be regarded 

the self shielding ratio, the above equation is converted as: 

  0 0 0 0(1 ) (1 )
4

g g
g gi i i i

het i i het i i hetg
ii ii

n V A pC V p K T V p K T
V lV

φ φ
⎛ ⎞ ⎛ ⎞

= Σ + − = Σ + −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ . (50) 

The homogenized cross section can be obtained by finding the suitable cross section which 

would give the same number of collisions of the homogeneous case, Eq. (48) as the 

heterogeneous collision number of Eq. (50). But this requires finding the heterogeneous flux 

and the self shielding ratio as well as the homogeneous flux which is not trivial.  

 

It is possible, however, to find a first order accurate homogenized cross section considering the 

limiting case of the grains consisting of the matrix material. This case is in fact the 

homogeneous case. Anyhow, under this condition the grain interior collision due to the surface 
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source is balanced as: 

  0 0 0 0
1( ) ( ) ( )
4

g s g g
i hom i i iV Aφ φ γΣ Σ = Σ Σ . (51) 

Note that 0Σ  within the parenthesis indicates that the corresponding quantities are calculated 

using the matrix cross section. By using the reciprocity relation, Eq. (28), Eq. (51) can be 

converted as the following which will give an approximated the self-shielding factor  

  0
0 0 0 0 0 0 0 0

( )( ) ( ) ( ) ( ) ( ) ( )
4

g g
g s s g si i

hom i i i i ig
ii

A E
lV

γ
φ γ φ φ φ

Σ
Σ Σ = Σ Σ = Σ = Σ Σ Σ , (52) 

  0

0 0

( ) 1( )
( ) ( )

s
i

i g
hom i

K
E

φ
φ

Σ
Σ =

Σ Σ
∼ . (53) 

By inserting Eq. (53) into Eq. (50) and then by equating Eqs. (48) and (50), we have the 

homogenized cross section as: 

  0 0
0

(1 )
( )

g
i i

h g
i i i

p Tp
l E

−
Σ = Σ +

Σ∑ . (54) 

Once this homogenized cross section is determined, the region transmission probability can be 

calculated for the homogeneous configuration and then the matrix self collision probability can 

be determined by Eq. (47). Alternatively, the region self collision probability for the 

homogenized medium, ( )hP Σ , can be calculated to determine 00P  by using the reciprocity 

relations and conservation relations of Eqs. (28) through (30) as the following: 

  0 0 0
00

0 00

( ) ( )1 1 1 (1 ( ))h h h h
h

EP P
p pp l

γ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Σ Σ Σ Σ Σ Σ Σ
= − = − = − − Σ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Σ Σ Σ Σ ΣΣ ⎝ ⎠ ⎝ ⎠⎝ ⎠

. (55) 
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4. Analytic Solution of Renewal Equations 

 

Among the input parameters needed to specify completely the coupled renewal equations given 

by Eqs. (3), (7), and (5), the segment or chord length distributions for the grains is obtained 

easily by Eq. (11) and other relations described in Section 2.2.2. But other parameters such as 

the transition probability and the matrix chord length distribution need further consideration 

which is to be given in the next subsection. After the parameters are specified, the solution of 

the renewal equation is derived in the second section. 

 

4.1 Transition Probability and Matrix Chord Length Distribution 

 

In order to determine the incoming current to the matrix at a point, 0 ( )in xϕ , it should be 

assumed that a transition from any one of the grain type to the matrix occurs at the point. Since 

there are several possibilities for such transition, the incoming current to the matrix should 

consist of the weighted average of outgoing currents out of all the grain types. The weighting 

factor is the transition probability it  used in Eq. (5). The transition probability would depend 

on the volume fraction of the grain type and the mean chord length. We can imagine that as the 

mean chord length increases, the transition probability would decrease because there is more 

chance to stay within the grain, rather than transition to the matrix. On the contrary, if one grain 

type is more than the other grain types, the transition probability for the grain type would be 

larger. From this observation, let i
i

i

pt c
l

=  with a proportional constant c. If there ought to be a 

transition from any grain to the matrix, the summation of all the grain to matrix transition 

probability should be unity, namely: 

  

1 1

1

11    
N N

i
i N

ii i i

ii

pt c c
l p

l
= =

=

= = → =∑ ∑
∑

. (56) 

If there is only one grain type, the mean chord length of the matrix can be easily obtained by 

supposing that the matrix portion of the track length is proportional to its volume fraction. 

Namely, 0 0 0 1( )l p l l= +  or 0
0

0 1

lp
l l

=
+

which will give 0 1 1
0 0

0 11
p l ll p

p p
= =

−
. In case of 

multiple grain types, we can think that the average grain chord length is an weighted average of 
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each grain's mean chord length. We can use the transition probability as the weighting factor 

since it is proportional to the volume fraction and sums up to unity. Then the following relation 

holds (cf. Figure 6): 

  0
0

0
1

N

i i
i

l
p

l t l
=

=
+∑

. (57) 

 

Since i i it l cp=  and 0
1

1
N

i
i

p p
=

= −∑ , the above equation can be converted to  

  0
0 0 0

0 0

  
(1 )
lp l p c

l c p
= → =

+ −
  or   0

0
0

1pt c
l

= = . (58) 

From Eq. (56), we now have the following relation which determines 0l  

  0

0 1

  
N

i

ii

p p
l l=

=∑  (59) 

and 

  0

0

  i
i

i

l pt
p l

= . (60) 

For the matrix chord length distribution, we can think of a binomial distribution with a large 

number of trials. Each event is to pickup a molecule of either matrix or grain material then to 

place it randomly on a line. If there is k successive occurrences of the grain material after n (>k) 

trial, the matrix chord length proportional to k is obtained. The sequence of the k matrix 

molecules does not matter so that it forms a binomial distribution. Since the probability of 

0l

Figure 6. Constituents of an average ray 

1 1t l
2 2t l
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placing a molecule in a specific position is very small, the binary distribution becomes a 

Poisson distribution which is represented by an exponential function axce− . By imposing the 

normalization condition and the requirement of the mean chord length, the exponential 

distribution for the matrix chord length distribution is determined as: 

  0
0

0

1  ( )
l
lf l e

l

−
= . (61) 

The cumulative distribution function 0 ( )Q l is obtained then by the integration  

  0 0
0 0

0

1  Q ( )
l l
l ll e dl e

l

′
− −∞

′= =∫ . (62) 

Consequently, the PDF for the internal segment length, 0
0

0

( )( ) Q lg l
l

=  is the same as 0 ( )f l  

and 0 0R ( ) Q ( )l l= . 

 

4.2 Solution of Renewal Equation with Boundary Layer Approximation 

 

The first term of the renewal equation of Eq. (7) is the region incoming source contribution 

term which involves the cumulative chord length distribution function 0 ( )Q l . As shown above 

for the matrix, 0 ( )Q l is an exponential function which can be combined with the exponential 

attenuation factor. But for spherical grains, it is a quadratic polynomial. It can be expected that 

the term containing the quadratic polynomial multiplied to the exponential function may not 

exist. The removal of the first term in the renewal equation is not a serious approximation. Since 

the size of the grain is very small (L) and ( ) ( ) 0i iQ x R x= = for ix L> , the following renewal 

equation for the grain which does not have the region incoming source term is valid except for 

very thin boundary layer of thickness iL . 

  ( )
0

( ) ( ) ( ) ( )    ( )i
i

L yout in
i i i i i ix S Q y x y f y e dy x Lϕ ϕ −Σ= + − >∫ . (63) 

Note that the upper limit of the integral is set to the maximum chord length since beyond it the 

probabilities are 0. For the matrix the renewal equation with the exponential chord length 

distribution becomes:  
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  0 0
0 0 0 00

0

1( ) (0) ( )
xx yout inx e S x y e dy

l
ϕ ϕ ϕ−Σ −Σ⎛ ⎞

= + + −⎜ ⎟
⎝ ⎠

∫ . (64) 

where 0 0
0

1
l

Σ = Σ + . These two equations are coupled through  

  0 ( ) ( )in out
i i

i

x t xϕ ϕ=∑ . (65) 

Before solving the system of the renewal equations, Eqs. (63) and (64), we first need to note 

that a convolution integral is involved. This suggests to use the Laplace transform technique 

which can treat conveniently the convolution integral. 

4.2.1 Laplace Transform Solution 

The Laplace transform of Eq. (64) gives 

  0 0
0

0 0 00

(0) 1 1 1( ) ( )out out
i i

i

Ss t s
ss s sl

ϕ
Φ = + + Φ

+ Σ + Σ + Σ ∑ . (66) 

where  

  0
( ) ( ( )) ( )out out out sx

i i is L x x e dxϕ ϕ
∞ −Φ = = ∫ . (67) 

Note that the convolution theorem of Laplace transform was used to represent the Laplace 

equation of the convolution integral with the product of the two Laplace transforms. Before 

performing Laplace transform of Eq. (63), rewrite the following factor appearing in the first 

term using the relation (20):  

  0 0
( ) ( )i i

i i
L Ly y g

i i i i iQ y e dy l g y e dy l E−Σ −Σ= =∫ ∫ . (68) 

Note that the integral of the second term is the definition of the escape probability because it is 
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the expected value of the non-attenuation probability. With this constant, the Laplace transform 

of the first term of Eq. (63) becomes: 

  
0

( )i
i

gL y i i i
i i

S l E
L S Q y e dy

s
−Σ⎛ ⎞ =⎜ ⎟

⎝ ⎠∫ . (69) 

For the Laplace transform of the second term, let’s first change the upper limit of the integral to 

x  from iL  which do not have any impact since ( ) 0 for 
i if y y L= >  and also ix L>  for 

grains. Also consider the matrix outgoing current instead of the grain incoming current noting 

that 0( ) ( )in out
i x xϕ ϕ=  because transition to a grain is possible only from matrix (no grain-to-

grain transition). Then the Laplace transform is performed as follows with the change of the 

order of integration and also the integration variable: 

  0 00 0 0

00

0

( ) ( ) ( ) ( )

                                               ( ) ( )

                                               

i i

i

x xy yout out sx
i i

yout sx
iy

o

L x y f y e dy x y f y e dye dx

x y e dxf y e dy

ϕ ϕ

ϕ

ϕ

∞−Σ −Σ −

∞ ∞ −Σ−

⎛ ⎞− = −⎜ ⎟
⎝ ⎠

= −

=

∫ ∫ ∫
∫ ∫

( )( )

0
( )

00 0
( )

0 0

( ) ( )

                                               ( ) ( )

                                               ( ) ( )

i

i

i

s yut s x y
iy

s yout s
i

s yout
i

x y e dxf y e dy

e d f y e dy

s f y e dy

τϕ τ τ

∞ ∞ − Σ +− −

∞ ∞ − Σ +−

∞ − Σ +

−

=

= Φ

∫ ∫
∫ ∫

∫

. (70) 

The last integral of the above equation can be replaced by a quantity which has a physical 

meaning. Suppose first 0s = . The integral becomes then the transmission probability, namely:  

  0
( ) i y g

i if y e dy T
∞ −Σ =∫ . (71) 

because the integral is the expected value of the surface-to-surface non-attenuation probability 

for the given cross section of iΣ . Noting from this physical significance, define 

  
( )

0
( ) ( )i s y g

i if y e dy T s
∞ − Σ + =∫ . (72) 

By using Eqs. (69), (70), and (72), the Laplace transform of Eq. (63) becomes now: 

  0( ) ( ) ( )
g

out g outi i i
i i

S l Es T s s
s

Φ = + Φ . (73) 
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By inserting Eq. (73) into Eq. (66) and then multiplying 0s + Σ  to both sides, we have 

  0
0 0 0 0

0

1( ) ( ) (0) ( ) ( )
g

out g outi i i
i i

i

S S l Es s t T s s
s l s

ϕ
⎛ ⎞

+ Σ Φ = + + + Φ⎜ ⎟
⎝ ⎠

∑ . (74) 

which can be rearranged as follows with 
00

  i i it l p
pl

=  coming from Eq. (60): 

  
0 0 0 0

0 0

0 0
0

1 1 1( ) ( ) (0)

1 1                                              (0)

g out g
i i i i i i

i i

g
i i i

i

s t T s s S t l E S
l s l

S p E S
s p

ϕ

ϕ

⎛ ⎞ ⎛ ⎞
+ Σ − Φ = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

∑ ∑

∑

. (75) 

Before solving the above equation for 0 ( )out sΦ , introduce an approximation to remove the s-

dependence of the transmission probability which causes nonlinearity: 

  0
0

1 ( )g
i i

i

t T s
l

Σ = Σ − ∑ . (76) 

Then we have 

  0 0 0
0

1 1 1 1( ) (0)out g
i i i

i
s S p E S

s s s p
ϕ

⎛ ⎞
Φ = + +⎜ ⎟+ Σ + Σ ⎝ ⎠

∑ . (77) 

The inverse Laplace transform gives: 

  

( )
( )

0 0 00
0

0 0
0

0

1( ) (0)

1 1           (0) 1

           (0) 1

xout x x g
i i i

i

x g x
i i i

i
x x

as

x e e dx S p E S
p

e S p E S e
p

e e

ϕ ϕ

ϕ

ϕ ϕ

′−Σ −Σ

−Σ −Σ

−Σ −Σ

⎛ ⎞
′= + +⎜ ⎟
⎝ ⎠

⎛ ⎞
= + + −⎜ ⎟ Σ⎝ ⎠
= + −

∑∫

∑

 (78) 

where 
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  0
0

1 1 g
as i i i

i
S p E S

p
ϕ

⎛ ⎞
= +⎜ ⎟Σ ⎝ ⎠

∑  (79) 

4.2.2 Solution by Substitution for Outgoing Flux 

 

The above solution involves the approximation of Eq. (76) which is not valid in general. But is 

does suggest the solution form of Eq. (78). We take the solution form of Eq. (78) as is, but 

now regard the cross section unknown. This is one way of resolving the nonlinearity as shown 

below. 

 

Let the solution for matrix be 

  ( )0 0( ) (0) 1out x x
asx e eϕ ϕ ϕ−Σ −Σ= + −  (80) 

which contains the attenuation of the region incoming source and asymptopic buildup term. By 

plugging Eq. (80) into Eq. (63) for ( )in
i xϕ  yields 

  ( )( ) ( )
00

( )
0 0 0

( ) (0) (1 ) ( )  

            = ( (0) ) ( ) ( )

i
i

i i
i i

L yout g x y x y
i i i i as i

L Ly yg x
i i i as i as i

x S l E e e f y e dy

S l E e e f y dy e f y dy

ϕ ϕ ϕ

ϕ ϕ ϕ

−Σ−Σ − −Σ −

− Σ −Σ −Σ−Σ

= + + −

+ − +
∫

∫ ∫
. (81) 

By defining the normal grain transmission probability and the reduced grain transmission 

probability which corresponds to reduced cross section iΣ −Σ  as: 

  0
( )

0

( )
ˆ ( )

i
i

i
i

L yg
i i

L yg
i i
out g
i i i i

T e f y dy

T e f y dy
S l Eϕ

−Σ

− Σ −Σ

=

=
=

∫
∫

 (82) 

Eq. (81) is represented in a simplified form: 

  ( )0
ˆ ˆ( ) (0)out g x g g x out

i i as i i ix T e T T eϕ ϕ ϕ ϕ−Σ −Σ= + − + . (83) 

By inserting Eqs. (83) into Eq. (64), we have 
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( )( )
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0

0

0

0 0

( ) ( )
0 00

0

0

00
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1 ˆ ˆ              (0)

           (0)
1              ( )

              

xout

x yg x y g g x y out
i i as i i i

i
x

x yout g
i i as i

i

x e

S t T e T T e e dy
l

e

S t T e dy
l

ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ ϕ

−Σ

−Σ−Σ − −Σ −

−Σ

−Σ

=
⎛ ⎞

+ + + − +⎜ ⎟
⎝ ⎠

=
⎛ ⎞

+ + +⎜ ⎟
⎝ ⎠

∑∫

∑∫
( )

( )
( ) ( )

0

0

0

0

( )
00

0

0

0
00

0
00

0
0 0

1 ˆ( (0) )

           (0)
1 1              ( ) 1

1 1ˆ              ( (0) )

1 1           

x yx g
i as i

i
x

xout g
i i as i

i

xg x
i as i

i

e t T e dy
l

e

S t T e
l

t T e e
l

S t
l

ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ

− Σ −Σ−Σ

−Σ

−Σ

−Σ−Σ

+ −

=
⎛ ⎞

+ + + −⎜ ⎟
Σ⎝ ⎠

+ − −
Σ −Σ

= +
Σ

∑∫

∑

∑

( )

( ) 0

0
0 0

0 0
0 0

0
0 0

( )

1 1 ˆ              (0)

1 1              + (0) ( )

1 1 ˆ                  (0) .

out g
i i as i

i

g x
i i as

i

out g
i i as i

i

xg
i i as

i

T

t T e
l

S t T
l

t T e
l

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

−Σ

−Σ

⎛ ⎞
+⎜ ⎟

⎝ ⎠

+ −
Σ −Σ
⎛ ⎛ ⎞

− + +⎜ ⎜ ⎟⎜ Σ ⎝ ⎠⎝
⎞

− − ⎟
Σ − Σ ⎠

∑

∑

∑

∑

  (84) 

By imposing term by term equality between Eq. (84) with Eq. (80), we have the following 

identities: 

  0
0 0

1 1 ( )  =out g
i i as i as

i
S t T

l
ϕ ϕ ϕ

⎛ ⎞
+ +⎜ ⎟Σ ⎝ ⎠

∑ ,  (85) 

  
0 0

1 1 ˆ 1g
i i

i
t T

l
=

Σ −Σ ∑   (86) 

With these two equations, the coefficient of 
0xe−Σ

of Eq. (84) becomes 0 automatically so that 

the third term disappears.  

Together with Eqs. (60) and (44), Eq. (85) gives  
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  0 0
0 0

0 0
0 0 0

0
0

0
0

0
0

1 1

 =
1 1 1

1
1 1      =

1 (1 )

out g
i i i i i i

i i
as

g g
i i i i

i i

g
i i i

i g
i i i

g ii
i

i i

S t S t l E S
l l

t T t T
l l l

S p E S
p S p E S

p pT
p l

ϕ
ϕ

+ +
=
Σ − Σ + −

+
⎛ ⎞

= +⎜ ⎟Σ ⎝ ⎠Σ + −

∑ ∑

∑ ∑

∑
∑

∑

 (87) 

Note that Eq. (79) from the approximate solution would be the same as the above one if Σ = Σ . 

Eq. (86), however, determines the exact value of Σ  as the following: 

  0 0
0 0

1 1ˆ ˆ1g g
i i i i

i i
t T t T

l l
⎛ ⎞

Σ = Σ − = Σ + −⎜ ⎟
⎝ ⎠

∑ ∑   (88) 

This is the new homogenized cross section which can only be determined iteratively because 

ˆ g
iT itself is dependent on .Σ  

 

4.2.3 Interior and Final Solutions 

 

So far the solution for the outgoing angular flux was obtained. In order to solve for the interior 

angular flux which is needed to determine the reaction rates, first of all we note that there is no 

distinction between the internal and outgoing flux for the matrix which is the dispersed medium, 

namely, 0 0( ) ( )outx xϕ ϕ= . Therefore we need to solve only the renewal equation for the grain 

interior flux which reads as follows with 0( ) ( )in out
i x xϕ ϕ= : 

  ( )00
( ) ( ) ( ) ( )    ( )i

i
L yout

i i i i ix S R y x y g y e dy x Lϕ ϕ −Σ= + − >∫ . (89) 

Note that the segment distribution probabilities are used above instead of the chord length 

distribution functions. The first term in the integral can be represented by the self collision 

probability by using Eqs. (2) and (68) as follows: 
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00 0

( ) ( ) ( )

                           (1 )

                           

i ii
i i i

L LLy y yi
i i i i

i
gi
i

i
gi

ii
i

SS R y e dy R y e g y e dy

S E

S P

−Σ −Σ −Σ⎛ ⎞= − −⎜ ⎟Σ ⎝ ⎠

= −
Σ

=
Σ

∫ ∫  (90) 

where g
iiP  is the grain self-collision probability. By inserting the solution for the matrix, Eq. 

(83), into Eq. (89), the following solution is obtained: 

  ( )
( )

( ) ( )
00

( )
00

( )
0 0 0

( ) (0) (1 ) ( )  

         ( (0) ) ( )

         ( (0) ) ( ) ( )   

     

i
i

i
i

i i
i i

L yg x y x yi
i ii as i

i
L yg x yi

ii as as i
i

L Ly yg xi
ii as i as i

i

Sx P e e g y e dy

S P e g y e dy

S P e g y e dy g y e dy

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

−Σ−Σ − −Σ −

−Σ−Σ −

− Σ −Σ −Σ−Σ

= + + −
Σ

= + − +
Σ

= + − +
Σ

∫
∫

∫ ∫
0

0

ˆ    ( (0) )

ˆ ˆ         (0) ( )  .

g x g gi
ii as i as i

i
g x g g x
i as i i i

S P e E E

E e E E e

ϕ ϕ ϕ

ϕ ϕ ϕ

−Σ

−Σ −Σ

= + − +
Σ

= + − +

 (91) 

where the reduced grain escape probability is defined as: 

  
( )

0
ˆ ( )i

i
L yg

i iE g y e dy− Σ −Σ= ∫  (92) 

and  

  
g

ii
i i

i

PSϕ =
Σ

. (93) 

Finally, the flux at any point is obtained as the weighted average of the matrix and all grain 

fluxes: 

  0 0
1

0 0 0
1 1 1

( ) ( ) ( )

ˆ         = ( ) ( (0) )( )  .

N

i i
i

N N N
g g x

as i i as i i i i
i i i

x p x p x

p p E p p E e p

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
=

−Σ

= = =

= +

+ + − + +

∑

∑ ∑ ∑

 (94) 
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5. Implementation of DH Analytic Solution in MOC Calculation 

 

The method of characteristics (MOC) calculation is to trace the change in the ray intensity along 

the line of ray which is called the characteristic line since it represents the line of motion of the 

neutron. For the ray tracing, the problem domain and angular space need to be discretized. In 

the spatial discretization, small regions are defined which is called the flat source region (FSR) 

because the source as well as the cross sections are considered constant. In the stochastic 

medium, the physical flat source region would contain grains and the matrix. Thus the analytic 

solution obtained for the stochastic medium can apply. In the following, the basic solutions of 

the MOC are described first and the stochastic solution is combined with the MOC solution to 

give the solution for the grains as well as for the matrix within a flat source region. 

Considerations of the consequence of the boundary layer problem which was introduced to be 

able to obtain the analytic solution in the previous section will also be considered. 

 

5.1 Basic MOC Solutions 

 

Suppose a FSR in which the incoming intensity of a certain ray is specified. The balance 

equation along the ray is simple as: 

  ( )    ,  (0) in
d x S
dx
ϕ ϕ ϕ ϕ= −Σ + =  (95) 

whose analytic solution is 

  ( )( ) 1 .x x
in

Sx e eϕ ϕ −Σ −Σ= + −
Σ  (96) 

At the exit of the FSR for the ray which is away by L from the entrance point, the outgoing 

angular flux is obtained as  

  (1 )out in
Sϕ ϕ β β= − +
Σ  (97) 

where  

  
1 Leβ −Σ= −

 (98) 
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which approaches to 1.0 as L increases. The difference between the outgoing and incoming 

angular fluxes is then: 

  D out in in
Sϕ ϕ ϕ β ϕ⎛ ⎞= − = −⎜ ⎟Σ⎝ ⎠

. (99) 

The average of ( )xϕ  along the path of L is  

  in
D

S
S S

L L

ϕ ϕϕ β
−
Σ= + = +

Σ Σ Σ Σ
. (100) 

5.2 Incorporation of DH Analytic Solution into MOC Solution 

 

If the FSR is a stochastic medium, the outgoing flux of the FSR would be the matrix outgoing 

flux which is given by Eq. (80). This is in the same form as the MOC solution of Eq. (96). By 

the comparison of Eqs. (80) and (96), we can see that the cross section to be used should be 

the effective cross section Σ  defined by Eq. (88) and the effective source is should be 

  0
0

1 g
as i i i

i

S S p E S
p

ϕ
⎛ ⎞Σ

= Σ = +⎜ ⎟
Σ ⎝ ⎠

∑  (101) 

with the following newly defined cross sections which are obtained from the second line of the 

above equation by using Eqs. (56) and (60): 

  ( )0
0 1

1= 1 ,
N

g
i i

i

t T
l =

Σ Σ + −∑  (102) 

  0
0

1 ˆ(1 ) .g
i i

i

t T
l

Σ = Σ + −∑  (103) 

Since the definition of Σ  is implicit in that ˆ g
iT  is the transmission probability of Type i grain 

obtained when the grain cross section is diminished by Σ  from iΣ , the calculation of Σ  

should be done iteratively. Once the effective cross section is determined and the effective 

source which consists of the sources in the grain and in the matrix, the outgoing flux of the 
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region can be determined by Eq. (97) and also the average angular flux in the matrix by Eq. 

(100). The ray tracing can continue through the next region by using the outgoing current of Eq. 

(97) as the next incoming current. 

 

During the ray tracing, the average angular flux in the matrix is updated by  

  
0

in
S

S
L

ϕ
ϕ β

−
Σ= +

Σ Σ
 (104) 

whereas the average angular flux in the grain can be obtained from Eq. (91) which gives 

together with Eqs. (100) and (93): 

  0

0

0

(0) ˆ

ˆ    =  

ˆ ˆ    = ( )  .

g gas
i i as i i

g g
i as i i

g g g g i
i as i i ii

i

E E
L
S E E

SE E E P

ϕ ϕ
ϕ β ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

−
= + +

Σ
⎛ ⎞− + +⎜ ⎟Σ⎝ ⎠

+ − +
Σ

 (105) 

The grain average angular flux should be summed up to form the scalar flux. The scalar flux of 

the grain will then determine the source iS  by the multiplication of fission and scattering cross 

sections. 

 

5.3 Resolution of Non-Conservative Formulation 

 

It was assumed in the derivation of the analytic solution of the renewal equation that the region 

incoming current does not affect the grain flux by limiting the validity of Eq. (63) for ix L> , 

But the solution given by Eq. (96) assumes the validity of the equation over the whole track 

length. This is so called the boundary layer problem which appears as the violation of the basic 

conservation relation. It can be shown by examining the balance between the total production 

and leakage over the track. By using the renewal solutions for the matrix and grains, Eqs. (80) 

and (91), the net production along the track is obtained: 
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p p E

βϕ ϕ

βϕ ϕ ϕ

ϕ

βϕ ϕ
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∑ ∑
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 (106) 

where  

  0 0
i

ˆˆ g
i i ip p EΣ = Σ + Σ∑ . (107) 

and the term containing L above disappears due to the asymptotic flux given by Eq. (87) and 

the second definition of Σ  given by Eq. (44). 

 

On the other hand, the leakage obtained by the MOC solution is given by Eq. (99), namely with 

as
S ϕ=
Σ

 of Eq. (101): 

  
( )out in as inϕ ϕ β ϕ ϕ− = −

. (108) 

The conservation of neutrons requires that the net production should be the same and the 

leakage which in other word requires the equality of Eqs. (106) and (108). The equality does 

not hold since Σ̂ ≠ Σ . Therefore in order to force conservation it is necessary to adjust the 

outgoing current of the MOC solution such that it matches with that of Eq.(106). This can be 

done conveniently by using ˆ rβ β=  instead of β  in Eq. (108), where 
ˆ

r Σ
=
Σ

 is the 

renormalization factor, only when obtaining the outgoing current. For the calculation of the 
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average angular flux in the matrix and grain, the regular value of β  which is based on Σ  

should be used. This guarantees the net production term which can also be represented as 

0 0 0 0( ) ( )i i i i
i

L p S p Sϕ ϕ
⎛ ⎞

+ Σ + − Σ⎜ ⎟
⎝ ⎠

∑  instead of the one given in Eq. (106) be the same as the 

adjusted leakage: 

  ( )ˆ
out in as inϕ ϕ β ϕ ϕ− = −  (109) 



SNURPL-SR-001(07) 

 37

6. Treatment of Heterogeneous Grains 

 

In the derivation of the analytic solution in Section 4, the internal structure of the grain was not 

considered. With the homogeneous grains, the knowledge of chord length distribution was 

enough to the construction and solution of the renewal equation. For the heterogeneous grains, 

however, which have the internal structures consisting of layers, the cross sections and sources 

depend on the relative position (or local position) within the material. In this case, the 

probability for each possible trajectory to pass through the material should be considered. This 

section refines the solution of the renewal equation considering the internal structures. 

 

6.1 Trajectory Probability 

 

We observe that a trajectory (or chord) is uniquely specified by a relative point r  and a relative 

direction Ω  as shown the following figure.  

 
We consider two probabilities defined below: 

 

       ( ),if n d dA⋅r Ω Ω Ω  =  probability that a phase point be around ( ),r Ω  where r  

is a point on the surface 
i

gΓ  of the grain and Ω  is an 

exiting direction in ( )2 outπ  at the point in [ ], d+Ω Ω Ω  
and the position is within the surface element dA about r , 

Figure 7. Trajectories specified by its exiting point r  and its exiting direction 
Ω (left) and an interior point r  and a direction Ω (right) 

1Ω
( , ', ')R θ ϕ=r

n

0

where 0 in this casen⋅ >Ω

1Ω

( , '', '')r θ ϕ=r

0

2Ω

( )1Chord Length ,r Ω

( )2Chord Length ,r Ω

( )1Chord Length ,r Ω

2Ω

( )2Chord Length ,r Ω
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       ( ),ig d dVr Ω Ω      =  probability that a phase point be around ( ),r Ω  where r  

is a point within the volume 
i

gV  of the grain and Ω  is a 

direction in ( )4π  at the point in [ ], d+Ω Ω Ω  and 
position within the volume element dV about r  

 
The probability density functions ( )if r,Ω  and ( )ig r,Ω  may depend on the specific ray 

and on the position x along the ray, but here we consider only homogeneous and isotropic 

statistics for which they depend only on r  and Ω . The PDFs satisfy the normalization 

condition: 

  ( )
( )2

, 1
g
i out

if nd dA
πΓ

⋅ =∫ ∫ r Ω Ω Ω , (110) 

  ( )
4

, 1
g

i
iV

g d d
π

=∫ ∫ r Ω Ω r . (111) 

For a sphere, we can find ( ),if r Ω  in terms of the local spherical coordinate formed by taking 

the outward normal vector as the polar axis. Let the angle between the outward normal vector at 

r and Ω  be nΩ . The ( ),i nf Ωr  should then be constant for 0
2n
πθ< < . In order to 

determine the constant, perform the following integration by changing the integration variable: 

  
( ) ( )

2
2 2 0

1

0

cos cos 2 sin

12 2
2

g g g
i i iout out

g g
i i

n n n n

g
i

nd dA d dA d dA

                                d dA dA A

π

π π
θ θ π θ θ

π μ μ π π

Γ Γ Γ

Γ Γ

⋅ = =

= = =

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

Ω Ω Ω . (112) 

From this and the normalization condition of (110), it is clear for a sphere that  

  
( )

1 ,
,

0

g
ii n

for outward directions
Af
      , for inward directions

π
⎧
⎪= ⎨
⎪⎩

r Ω
. (113) 

From this it can be inferred that in order to perform the integration over the angle only for the 

outward angle, the angular distribution function ( ),g
i i nA fπ r Ω  must be used in the integrand 

which will give the value of unity only for the outward angle. 
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6.2 Interface Flux 

 

As for the homogeneous grain, there are two contributions in the heterogeneous grain if 

( )
i

out xϕ  is for grain flux. The first one is due to the surface source which originates from the 

incoming neutrons at the surface of the grain. The other one is due to the interior source 

consisting of the fission and scattering within the grain. Let’s denote the position of the first 

source by ( ),x l− r Ω  in the absolute coordinate and the second source by z−r Ω  in relative 

coordinate as shown below. 

 

After traveling the distance ( ),l r Ω  from the first source (incoming source), the neutrons in a 

certain ( ),r Ω  would experience an exponential attenuation determined by the optical distance, 

( ), , ( , )i le−τ r Ω r Ω , where ( ), ,i zτ r Ω  is the optical distance from the surface point r  to the interior 

point z−r Ω . So the flux at x due to a certain surface flux specified by ( ),r Ω  can be 

represented by following equation: 

   
( ) ( ) ( ), , ( , )

0 ( , ) ,   .i l out
ie x l f n d dAϕ− − ⋅τ r Ω r Ω r Ω r Ω Ω Ω  (114) 

On the other hand, the neutrons originating from the second source (internal source) travel over 

the distance z. Thus the neutron at a certain ( ),r Ω  would experience an exponential 

attenuation determined by the optical distance, ( ), ,i ze−τ r Ω . After integrating along the distance z, 

Figure 8. Two sources contributing to ( )out xϕ
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the flux at x due to the internal source at ( ),r Ω is obtained as the following: 

  
( )( ) ( ) ( )

, , ,

0
, ,i

l z
i ie S z dz f n d dA− − ⋅∫

r Ω τ r Ω r Ω Ω r Ω Ω Ω  (115) 

Finally we can write the outgoing flux at x as following:  

 
( ) ( ) ( )( ) ( )

( )

, , ( , )

02
( ) ( , ) , ,

li

g
i out

out e out out
i i ix e x l f nd dA

π
ϕ ϕ ϕ

−−

Γ
= − + ⋅∫ ∫

τ r Ω r Ω

r Ω r Ω r Ω Ω Ω . (116) 

Here ( ),out
iϕ r Ω  is the exiting flux due to the internal sources along the trajectory ( )r,Ω : 

  ( ) ( )( ) ( )
, , ,

0
, ,i

l zout
i ie S z dzϕ −= −∫

r Ω τ r Ωr Ω r Ω Ω . (117) 

Note that the source term depends on the local (grain) coordinate, while the average transition 

flux 0
outϕ  depends on the absolute position on the ray. We now introduce the length chord 

variable y by simply inserting the identity ( )
0

( , )
iL

y l dyδ −∫ r Ω =1 inside the d dAΩ  integration 

in Eq. (116). The ( )yδ  is the Kronecker delta function, namely, ( )yδ  equal to 1 in y=0 and 0 

otherwise. So the identity ( )
0

( , ) 1
iL

y l dyδ − =∫ r Ω  always holds: 
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∫ ∫ ∫
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r Ω r Ω Ω

 (118) 

where the ( )H y  is a Heaviside step function, namely, ( )H y  equal to 1 in y>0 and 0 

otherwise and Α  indicates the integration over the surface 
i

gΓ  and over ( )2 outπ with 

multiplication by ( ),if n⋅r Ω Ω . We are now able to show that our generalization of renewal 
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processes contains as a limiting case the previous formulation. Indeed, if we assume that the 

optical thickness and the source in the material depend only on the position along the ray, i.e. 

  
( ) ( ) ( ) ( ), , , , ,i i i iy x y x y S x yτ= − − = −τ r Ω S r Ω Ω

, (119) 

then Eq. (118) reduces to the more familiar form: 

  ( )( ) ( ),
00

( ) ( ) ( ) ( )i i
L x y xout out

i i i ix S x y Q y x y f y e dyτϕ ϕ − −= − + −∫ , (120) 

where 

  ( )( ) ( , )i A
f y y lδ= − r Ω , (121) 

is the probability density for chord of length y. Note that ( , )l r Ω  is the chord length for the line 

segment stretching toward Ω  at a surface point r . This analog shows also how to proceed in 

the more general case when the grains have internal structure. In fact, it suffices to define 

appropriate averages to reduce Eq. (118) to the familiar form. For instance, we may associate 

an average optical thickness ( )i yτ  to chords of length y by the expression: 

  
( ) ( ) ( ), ,( ) ( , )i iy z

i
A

f y e e y lτ δ− −= −τ r Ω r Ω , (122) 

and an average source ( )iS y  to chords of length greater than y according to: 

  ( ) ( ) ( ) ( ) ( ), ,( ) , ( , )i iy z
i i i

A
S y Q y e e S y H l yτ− −= − −τ r Ω r Ω Ω r Ω , (123) 

which effectively allows to rewrite Eq. (118) in the form of Eq. (120). However, in order to 

deal directly with each different layer in the grain, we choose to write the source contribution in 

terms of the escape probability. The grain which has internal layers is shown in Figure 9. 
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Consider a uniform, unity and isotropic neutron distribution within the k-th layer so that the 

angular source density is 1.0. In order to identify the neutron emitting from layer k within grain 

type i, introduce a characteristic function ( )ikχ r  which is equal to 1 for r  in layer k and 0 

otherwise. For a neutron produced at position y−r Ω  with direction Ω , the probability that 

the neutron will escape from the grain without making a collision is ( ), ,i ze−τ r Ω . For a given 

surface element dA  and a direction Ω , there can be a pipe line stretched to the interior of the 

grain along the −Ω  direction. The cross sectional area of the pipe is ˆ'dA n dA= ⋅Ω . The 

volume element at y  for dy  is thus ˆ'dV dy n dA= ⋅Ω . Therefore the source given at y for 

moving toward dΩ  around Ω  is ˆdy n dAd⋅Ω Ω . For given dA , the integral over the angle 

should be done only for the outward directions which requires the multiplication of 

( ),g
i iA fπ r Ω as discussed below Eq. (113). Noting that there are a total of 4 g

ikVπ  neutrons 

emitting from the layer, we can obtain the escape probability: 

  
( ) ( )

( )

( )
( )

( ) ( )
( )

( )

, , ,

2 0

2

1 ,
4

, ,

,

i
g
i out

g
i out

l zg g
ik i iik g

ik

g
i ik i

g
i ik A

E e y dy n A f dAd
V

A f nd dA

A

π

π

χ π
π

π ϕ

π ϕ

−

Γ

Γ

= − ⋅

= ⋅

=

∫ ∫ ∫

∫ ∫

r Ω τ r Ω r Ω Ω r Ω Ω

r Ω r Ω Ω Ω

r Ω

 (124) 

where 

Figure 9. The heterogeneous grain 

( ) (=Chord Length)l r,Ω

Ω

n
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  ( ) ( ) ( )
( ), , ,

0

1,
4

i
l z

ik ikg
ik

e y dy
V

ϕ χ
π

−= −∫
r Ω τ r Ωr Ω r Ω , (125) 

is the uncollided flux exiting the grain at ( )r,Ω  due to a unit isotropic and uniform source in 

layer k. When the sources within the grain are uniform and isotropic in each layer, then we can 

use Eqs. (124), (125) and (68) to write the source contribution in Eq. (116) as: 

  ( ) ( )
( )

( )( ) ( ) ( )
( )

( )( ) ( ) ( ) ( )
( )

( )( ) ( ) ( ) ( )

2
, , ,

2 0
, , ,

2 0
, , ,

0

, ,

      , ,

      , ,

      , ,

g
i out

i
g
i out

i
g
i out

i

out out
i i i

l z
i i

l z
ik i i

k
l z

ik i i

f nd dA

e S z dzf nd dA

e z S z dzf nd dA

e z S z dzf

π

π

π

ϕ ϕ

χ

χ

Γ

−

Γ

−

Γ

−

= ⋅

= − ⋅

= − − ⋅

= − − ⋅

∫ ∫
∫ ∫ ∫

∑∫ ∫ ∫
∫

r Ω τ r Ω

r Ω τ r Ω

r Ω τ r Ω

r Ω r Ω Ω Ω

r Ω Ω r Ω Ω Ω

r Ω r Ω Ω r Ω Ω Ω

r Ω r Ω Ω r Ω Ω
( )

( )( ) ( ) ( )
( )

2
, , ,

2 0
      ,

4 4      

g
i out

i
g
i out

k
l z

ik ik i
k

g g g
g g gik i ik

ik ik ik i ik ik ikg g g
k k ki i i

nd dA

S e z dzf nd dA

V V VS E S l p E S
A A V

π

π
χ

π
π

Γ

−

Γ
= − ⋅

= = =

∑∫ ∫
∑ ∫ ∫ ∫

∑ ∑ ∑

r Ω τ r Ω

Ω

r Ω r Ω Ω Ω

,(126) 

where we have used the decomposition of unity as ( )1 ik
k

χ=∑ r  which is valid in any point 

within the grain, and where 
g

g ik
ik g

i

V
p

V
=  is the volumetric fraction of layer k in grain i. Note that 

the above outgoing flux due to the internal source for the heterogeneous case is the 

generalization of the corresponding one for the homogeneous case given in Eq. (82). Using Eq. 

(122) to calculate the transition term gives the result: 

  
( )

00
( ) ( ) ( )i i

L yout out out
i i ix x y f y e dyτϕ ϕ ϕ−= − +∫ . (127) 

This equation is very similar to Eq. (63) and again the solution for the average exiting fluxes is 

given by Eqs. (80) and (83). The asymptotic flux of Eq. (87) is now modified as the 

following with the heterogeneous grain source term: 
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  0 0
0 0

0 0
0 0 0

0
0

0
0

0
0

1 1

 =
1 1 1

1
1 1      =

1 (1 )

out g g
ii i i ik ik ik

i i k
as

g g
i i i i

i i

g g
i ik ik ik

i k g g
i ik ik ik

g i ki
i

i i

S t S t l S p E
l l

t T t T
l l l

S p S p E
p S p S p E

p pT
p l

ϕ
ϕ

+ +
=
Σ − Σ + −

+
⎛ ⎞

= +⎜ ⎟Σ ⎝ ⎠Σ + −

∑ ∑ ∑

∑ ∑

∑ ∑
∑ ∑

∑

. (128) 

Also, all the coefficients depending on the XS of the grain must be modified to account for the 

internal structure. In particular, Eq. (82) are replaced by: 

  
( ) ( )

( ) ( ) ( )

,

0
, ,

0

( )
ˆ ( )

i i i

i i i

L yg
i i A

L y y lg
i i A

T e f y dy e

T e f y dy e

τ τ

τ τ

− −

− +Σ − +Σ

= =

= =
∫
∫

r Ω

r Ω r Ω

, (129) 

while Eqs. (102) and (103) are modified using Eq. (30) to: 

  ( ) ( )0 0
00 1 1

0 0
0 01 1 1 1

1 1= 1 1

1 1  =

N N
g gi

i i i
ii i

N K N K
g g g

i ik ik ik ik ik ik
i k i k

pt T T
pl l

p p E p E
p p

= =

= = = =

Σ Σ + − = Σ + −

Σ + Σ = Σ + Σ

∑ ∑

∑ ∑ ∑∑
, (130) 

  
0

0 1 1

1 ˆ= ( ) ( )
N K

g
ik ik ik

i k

p E
p = =

Σ Σ + Σ − Σ Σ∑∑ . (131) 

Note again that Eq. (131) implicitly defines the effective cross section for the mixture. It 

should be solved iteratively. 

 

6.3 Interior Flux 

 

The equation for the interior flux ( )i xϕ  is also obtained in a similar manner. By using the 

density of probability, ( )ig r,Ω , we can write an equation for the average flux at x when this 

point is in layer k of a grain of type i. There are also two contributions in this case if ( )i xϕ  is 

for the average angular flux in grain i at x. The first one is due to the surface source and the 



SNURPL-SR-001(07) 

 45

other one is due to the interior source. Let’s denote the position of the first source by 

( ),x l− r Ω  in the absolute coordinate and the second source by z−r Ω  in the relative 

coordinate as shown below. 

 

After traveling the distance ( ),l r Ω  from the first source (incoming source), the neutrons at a 

certain ( ),r Ω  would experience an exponential attenuation determined by the optical distance, 

( ), , ( , )i le−τ r Ω r Ω . So the flux at x in a certain ( ),r Ω  would be: 

  ( ) ( ) ( ), , ( , )
0 ( , ) ,i l out

ie x l g dVdϕ− −τ r Ω r Ω r Ω r Ω Ω  (132) 

On the other hand, the second source (internal source) travels over the distance z and the 

neutrons at a certain ( ),r Ω  would experience an exponential attenuation determined by the 

optical distance, ( ), ,i ze−τ r Ω . After integrating along the distance z, the flux would be: 

  
( )( ) ( ) ( )

, , ,

0
, ,i

l z
i ie S z dz g d dV− −∫

r Ω τ r Ω r Ω Ω r Ω Ω  (133) 

Finally we can write the flux at x as the following:  

Figure 10. Two sources contributing to ( )i xϕ  
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( )l r,Ω

( )0
out x lϕ ⎡ ⎤−⎣ ⎦r,Ω
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( ),g
i z−S r Ω Ω

( )l r,Ω
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( ) ( ) ( )( ) ( ), , ( , )

04

( )
,

( ) ( , ) ,i
g

i

ik

l iout
ik i gV

ik

x
g

e x l d d
pπ

ϕ

χ ϕ ϕ−= − +∫ ∫ τ r Ω r Ω r Ω
r r Ω r Ω Ω r

 (134) 

where ( ),l r Ω  is the distance in direction -Ω  from the point r  to the surface of the grain 

(distance to the point at which the trajectory enters the surface of the grain), ( ),iϕ r Ω  is the 

contribution of the internal sources to the flux at ( ),r Ω , namely: 

  ( ) ( )( ) ( )
, , ,

0
, ,i

l z
i ie S z dzϕ −= −∫

r Ω τ r Ωr Ω r Ω Ω , (135) 

and ( ), ,i zτ r Ω  is the optical thickness from point r  to point z−r Ω . The characteristic 

function ikχ  in Eq. (134) is introduced to perform the integral only at the k-th layer and the 

PDF is divided by the layer volume fraction defined by: 

  ( ) ( )
4

,
g

i

g
ik ik iV

p g d d
π
χ= ∫ ∫ r r Ω Ω r  (136) 

in order to reflect that the original PDF is defined for the whole grain, not just for the layer. 

Renormalization is thus necessary to make the new PDF sums up to 1.0.  

 

As before we introduce the length along the trajectory y by inserting ( )
0

( , )
iL

y l dyδ −∫ r Ω  inside 

the d dΩ r  in Eq. (134). After bringing the integration over dy out to the outside, we obtain an 

expression very similar to Eq. (118), namely: 

  
( ) ( ) ( ) ( )(

( )( ) ( ) ) ( )
( ) ( ) ( ) ( )(

( ) ( ) ( ) ( )) ( )

, , ( , )

, , )

04 0
, , ,

0

00 4
, ,

( )
( , ) ( , )

       , ,

( , )

        ( , ) , ,

lii

g
i

i

yii

g
i

i

g
ik ik

L e out
ikV

l z
i i

L e out
ikV

y
ik i i

p x
y l dy e x l

e S z dz g d dV

y l e x y

H l y e S y g d d

π

π

ϕ
χ δ ϕ

χ δ ϕ

χ

−

−

−

−

−

−

= − −

+ −

= − −

+ − −

∫ ∫ ∫
∫

∫ ∫ ∫

τ r Ω r Ω

τ r Ω

r Ω τ r Ω

τ r Ω

r r Ω r Ω

r Ω Ω r Ω Ω

r r Ω

r r Ω r Ω Ω r Ω Ω Vdy

 (137) 
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( ) ( ) ( )( ( )
( ) ( ) ( ) ( ) )

, , ( , )

00

, ,

( , )

        ( , ) ,

lii

i

L e out
ik

V
y

ik i V

y l e x y

H l y e S y dy

χ δ ϕ

χ

−−

−

= − −

+ − −

∫
τ r Ω r Ω

τ r Ω

r r Ω

r r Ω r Ω Ω
 

Now V  indicates the integration over the grain volume g
iV  and solid angle ( )4π  after 

multiplication by ( )ig r,Ω . Noting that 4 g
iVπ  should be multiplied to ( ),ig r Ω to merely 

select the phase point where ( ), 0ig ≠r Ω . We define the collision probability as the following 

in order to account for the contribution from the sources of each layer: 

  ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )

, , ,
, 4 0

, , ,

4 0

4

1 4 ,
4

14 ,
4

4 , ,

4 ,

i
g

i

i
g

i

g
i

l yg g
ik il ik ik il i igV

il
l yg

i ik ik il igV
il

g
i ik ik il iV
g

i ik ik il V

P e y dy V g d d
V

V e y dyg d d
V

V g d d

V

π

π

π

χ χ π
π

π χ χ
π

π χ ϕ

π χ ϕ

−

−

= Σ −

= Σ −

= Σ

= Σ

∫ ∫ ∫

∫ ∫ ∫
∫ ∫

r Ω τ r Ω

r Ω τ r Ω

r r Ω r Ω Ω r

r r Ω r Ω Ω r

r r Ω r Ω Ω r

r r Ω

(138) 

where ( ),ilϕ r Ω  is the uncollided flux at ( ),r Ω  due to a unit isotropic and uniform source 

in layer l. This flux is obtained from Eq. (125) by merely replacing ik with il. The difference 

now is that ( ),r Ω  is an interior point in the grain and that ( ),l r Ω  is the length of the 

trajectory from the entering point on surface 
i

gΓ  to point r . With these definitions, we can 

write the volumetric source contribution to ( )ik xϕ  in Eq. (137) as the following: 

  ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

, , ,

4 0

, , ,

4 0

, , ,

4 0

1 , ,

1    , ,

1    ,

1 1     =

i
g

i

i
g

i

i
g

i

l z
ik ik i ig V

ik
l z

ik il i ig V
lik

l z
il ik il ig V

lik
g

ilg g
ik i ik

e S z dzg d dV
p

e z S z dzg d dV
p

S e z dzg d dV
p

V S
p V

π

π

π

ϕ χ

χ χ

χ χ

−

−

−

= −

= − −

= −

Σ

∫ ∫ ∫

∑∫ ∫ ∫

∑ ∫ ∫ ∫

r Ω τ r Ω

r Ω τ r Ω

r Ω τ r Ω

r r Ω Ω r Ω Ω

r r Ω r Ω Ω r Ω Ω

r r Ω r Ω Ω

,

,
1     =

g
il ik il

l

g g
il il ik ilg

lik ik

P

V S P
V Σ

∑

∑

(139) 

To account for the contribution from the interface flux ( )0
out x yϕ −  we introduce an average 
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optical path for each layer as: 

  ( ) ( ) ( ) ( ) ( ), , ( , )ik iy y
i ik V

g y e e y lχ δ− −= −τ τ r Ωr r Ω  (140) 

where ( )ig y  is the density of probability that, given that the point x is inside grain i, the 

distance of the trajectory from the entering point to x is y, i.e. 

  ( ) ( )( , )i V
g y y lδ= − r Ω . (141) 

Putting the two contributions (volumetric and surface) together we have: 

  ( ) ( ) ( ) ( )00

1 i ik
L y out

ik i ikg
ik

x e g y x y dy
p

ϕ ϕ ϕ−= − +∫ τ  (142) 

Therefore, use of solution (91) yields the result: 

  0
ˆ ˆ( ) (0) ( )g x g g x

ik ik as ik ik ikx E e E E eϕ ϕ ϕ ϕ−Σ −Σ= + − + . (143) 

The escape probabilities in this formula are given in terms of the density ( )ig y  as: 

  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

1

1ˆ

i
ik i

i ik i

L yg
ik i ikg Vik

L y y lg
ik i ikg Vik

E e g y dy e
p

E e g y dy e
p

χ

χ

− −

− +Σ − +Σ

= =

= =

∫
∫

τ τ r,Ω

τ τ r,Ω r,Ω

r

r

 (144) 

where ( ) ( ), ( )i i l=τ r,Ω τ r,Ω r,Ω  is the optical distance in direction −Ω  from point r  to the 

surface 
i

gΓ .  

 

With the definitions of the layer escape probabilities, the layer average angular flux 

corresponding to the homogeneous case, Eq. (105) becomes now  

  0 ,
1ˆ ˆ= ( )  .g g g g g

ik ik as ik ik il il ik ilg
lik ik

E E E V S P
V

ϕ ϕ ϕ+ − +
Σ ∑  (145) 
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and the peudo cross section needed for the renormaliztion, Eq. (107), is now 

  0 0
1 1

ˆˆ
N K

g
ik ik ik

i k

p p E
= =

Σ = Σ + Σ∑∑ . (146) 

Noting that Eq. (131) can be rewritten as: 

  
0 0 0

1 1 1 1

ˆ ˆ ˆ( ) =
N K N K

g g
ik ik ik ik ik

i k i k

p p E p p E
= = = =

⎛ ⎞
Σ + Σ Σ + Σ = Σ⎜ ⎟
⎝ ⎠

∑∑ ∑∑  (147) 

we can represent the peusdo cross section in a simpler way as: 

  ˆ rΣ = Σ  (148) 

where the renormalization factor is defined as: 

  0
1 1

ˆ ( )
N K

g
ik ik

i k

r p p E
= =

= + Σ∑∑ . (149) 
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7. Calculation Sequence for MOC with Double Heterogeneity  

By integrating the MOC solution and the analytic solution for the heterogeneous grain, we can 

now set the calculation sequence for the stochastic medium as the following: 

1) calculate the collision probabilities and escape probabilities corresponding to Eqs. (138) 
and (144) for the grains given the cross sections and geometry  

 
2) determine ˆ  and g

ikE Σ  iteratively, by Eq. (131) and Eq. (144)  
3) calculate β  by Eq. (98) and r  by Eq.(149), and ˆ rβ β=  
4)  set the source in the matrix and each grain layer and obtain the asymptotic flux asϕ by 

Eq. (128) and then the effective source for MOC by multiplying asϕ  byΣ  
 
5) update the matrix and grain layer average angular flux by Eqs. (104) and (105), and 

accumulate each scalar flux  
 
6) determine FSR-outgoing current by Eq. (109) 
 
7) move to the next FSR by using the outgoing current of the previous region 
 
8) update matrix and grain sources using the scalar flux after the ray sweep is done for all 

angles 
 
9) repeat the MOC-DH iterations ( Steps 4-9 ) until the flux converges 
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