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Abstract—In this paper, we are concerned about performance es-
timation of bus-based communication architectures assuming that
task partitioning and scheduling on processing elements are al-
ready determined. Since communication overhead is dynamic and
unpredictable due to bus contention, a simulation-based approach
seems inevitable for accurate performance estimation. However,
it is too time-consuming to be used for exploring the wide design
space of bus architectures. We propose a static performance-esti-
mation technique based on a queueing analysis assuming that the
memory traces and the task schedule information are given. We
use this static estimation technique as the first step in our design
space exploration framework to prune the design space drastically
before applying a simulation-based approach to the reduced de-
sign space. Experimental results show that the proposed technique
is several orders of magnitude faster than a trace-driven simula-
tion while keeping the estimation error within 10% consistently in
various communication architecture configurations.

Index Terms—Communication architecture, design space explo-
ration, performance estimation, queueing theory.

I. INTRODUCTION

I NSTIABLE demand of system performance makes it in-
evitable to integrate more and more processing elements

in a single system-on-a-chip (SoC) to meet the performance
requirements. As a new design paradigm for such high-perfor-
mance SoCs, the separation between function and architecture
and between communication and computation is recently
proposed [1], [23]. Adapting this paradigm, it is assumed
that system behavior is modeled as a composition of function
blocks, and communication architecture is determined after
a decision is made on which processing elements are used
and which function blocks are mapped on which processing
elements. Therefore, it allows designers to explore communi-
cation architectures independently of component selection and
mapping.

While diverse interconnection networks are searched for,
particularly in the realm of network-on-chip (NoC) design, we
are concerned about bus-based communication architectures
since they are still the most widely used due to their simplicity

Manuscript received March 13, 2004; revised June 4, 2004, and October 16,
2004. This work was supported by the National Research Laboratory under Pro-
gram M1-0104-00-0015, Brain Korea 21 Project, and the IT-SoC project. ICT
at Seoul National University provided research facilities for this study.

S. Kim and S. Ha are with the Department of Electrical Engineering and
Computer Science, Seoul National University, Seoul 151-742, Korea (e-mail:
ynwie@iris.snu.ac.kr; sha@iris.snu.ac.kr).

C. Im is with Samsung Advanced Institute of Technology, Yongin, Gyeonggi
440-600, Korea (e-mail: csim@iris.snu.ac.kr).

Digital Object Identifier 10.1109/TVLSI.2004.842912

Fig. 1. Performance variation due to dynamic bus conflicts on a single bus
for two bus request rates: (a) 0.115 (typical for multimedia applications) and
(b) 0.17 (highly intensive cases).

and popularity. However, even after a specific bus standard is
chosen, the design space of bus architectures can still be huge.
For example, we need to determine how many bus segments
are used with what topologies and which processing elements
and memory banks are allocated to which bus segments. We
also have to decide memory types and memory system con-
figurations. If we include the selection of bus operation clock
frequency and arbitration policy, the design space explodes.

Since a bus is a shared medium between multiple pro-
cessing elements that compete with each other for using it,
communication overhead is highly unpredictable due to bus
contention. Fig. 1 shows the performance variation due to such
dynamic conflicts in terms of bus clock cycles on the single bus
complying with the AMBA AHB specification [21] varying
the number of processing elements. Each processing element
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Fig. 2. Proposed design space exploration flow.

issues bus requests randomly with a given request rate. The
request rate of 0.1 means that 10% of the total execution time
is used for bus accesses. The average request rate of processing
elements in Fig. 1(a) is 11.5%, which is a typical bus request
rate in multimedia applications such as H.263 encoder/de-
coder, MP3 decoder, and so on. Fig. 1(b) shows the case of
and average request rate of 17%, which can be thought of as
intensive bus traffic. The execution time of each processing
element is divided into two sections: white and dark. The dark
section indicates the waiting time for the bus grant while the
white section shows the actual execution time including the
bus access time. The figure shows that the overhead due to bus
conflicts becomes the dominating factor on the entire execution
time as the number of processing elements increases and the
bus request rate becomes higher. Thus, it is critical to consider
the bus conflicts for accurate performance estimation.

In order to explore the wide design space, we need to estimate
the performance of communication architectures fast as well as
accurately. While a simulation-based approach is widely used
for accurate estimation, it is too slow to explore the huge design
space. To overcome this drawback, our communication archi-
tecture exploration framework consists of two techniques: static
performance estimation and trace-driven simulation. We focus
on the static performance estimation technique, which is used to
prune the design space drastically before the trace-driven sim-
ulation technique is applied. As the static estimation gets more
accurate, the design space becomes smaller. The proposed static
estimation technique computes the expected waiting time due to
bus contention through the queueing analysis.

The remainder of this paper is organized as follows. In
Section II, we briefly present our design space exploration
framework. Section III reviews some related works and
summarizes our contributions. In Sections IV–VI, the static
estimation methods based on the queueing models for fixed pri-
ority, round-robin, and two-level time-division multiple-access
(TDMA) arbitration based bus systems are explained, respec-
tively. Section VII contains the detailed discussions on the
estimation method considering the schedule information and
the extension to multiple bus systems. The effect of schedule
complexity on the estimation time is discussed in Section VIII.
In Section IX, we provide the experimental results and draw
conclusions in Section X.

Fig. 3. (a) Behavior specification of an illustrative example. (b) Its single-bus
implementation. (c), (d) Dual-bus implementations, which are different in the
mapping of shared memories SM_arc2 and SM_arc3.

II. PROPOSED DESIGN SPACE EXPLORATION FRAMEWORK

The proposed design space exploration flow is shown in
Fig. 2. We assume that the task schedule on each processing
element and the memory trace information, including both local
and shared memory accesses, from each processing element are
given. The memory traces are obtained using a cycle-accurate
instruction set simulator for each processor core and an HDL
simulator for ASIC parts after the mapping is completed.

We traverse the design space in an iterative fashion, starting
with a single bus architecture that becomes the only element in
the “set of architecture candidate” initially and the best archi-
tectures at the end of each iteration. From the best architecture
of the previous iteration, we explore the design space incremen-
tally by selecting a processing element and allocating it to a dif-
ferent bus or a new bus. For a better understanding of the ex-
ploration flow and the target architectures of interest, we use an
illustrative example of Fig. 3. The system behavior is specified
as the block diagram of four functions blocks. The arcs between
the function blocks show the execution dependency. Those func-
tion blocks are mapped to three processing elements: and
are mapped to the processing element PE0, to PE1, and to
PE2, respectively.

Fig. 3(b) represents a single bus implementation. Its memory
subsystem contains seven logical memory segments: three local
memory segments and four shared memory segments. The
memory segments LM_PE0, LM_PE1, and LM_PE2 are the
local memory segments of PE0, PE1, and PE2, respectively.
The arcs between function blocks are implemented as shared
memory segments for intercomponent communication.

In the first iteration, the single bus architecture in Fig. 3(b)
becomes the best architecture. Now we go into the second it-
eration and generate the candidate architectures by selecting a
processing element and allocating it to a different bus. Suppose
that we select PE2 and allocate it to a new bus resulting in a
dual bus system. Since all local memory segments should re-
side in the same bus as the associated processing elements, there
are four candidate architectures depending on where to put the
shared memory segments associated with PE2: SM_arc2 and
SM_arc3. The function blocks and use the shared memory
segment SM_arc2 so that it may be allocated to either bus0 or
bus1. However, SM_arc0 that is accessed by and should
remain at bus0. Among four candidate architectures, Fig. 3(c)
and (d) shows two candidate architectures. In the case that we
select PE0 and move it to a new bus, we generate 16 different
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candidate architectures since PE0 is associated with four shared
memory segments. In this fashion, we can generate 24 candi-
date architectures in the second round of iteration by moving
a processing element into a new bus and considering all pos-
sible shared memory segment allocations. In addition, we con-
sider the different priority assignments of processing elements
on each bus.

The proposed static estimation technique is applied to all can-
didate architectures to select the reduced set of candidate archi-
tectures. Suppose that the accuracy of the static estimation is
10%. Then we select the top 10% of the candidate architectures
in terms of the estimated performance. Among the reduced set
of candidate architectures, we select the best candidate architec-
ture through the accurate trace-driven simulation. Then, we go
to the next iteration. A more detailed description of the frame-
work is beyond the focus of this paper and is given in [20].

III. RELATED WORK AND OUR CONTRIBUTION

Some researchers have considered communication architec-
ture selection simultaneously during the synthesis of the com-
putation parts of a system and the mapping step. Since the com-
munication overhead is needed for the mapping decision, the
static estimation of the communication architecture has been
investigated. Knudsen and Madsen estimated the communica-
tion overhead taking into account the data transfer rate varia-
tion depending on protocol, configuration, and different oper-
ating clock frequencies of components [6], [7]. A technique has
been proposed to estimate the communication delay using the
worst-case response analysis of the real-time scheduling [8]. Or-
tega and Borriello took into account the static information such
as data transfer size, bus protocol overhead, and bus bandwidth
to estimate the worst-case bus delay [9]. Nandi and Marculescu
proposed the performance measure technique based on a contin-
uous-time Markov process [10]. Daveau et al. considered only
static information, such as maximum bandwidth of channel,\
and average and peak bandwidth of a processing element, to
estimate the performance of communication links between pro-
cessing elements [11]. Drinic et al. used the profiled statistics
of communication traffics between cores for a given application
for core-to-bus assignment [22]. Thepayasuwan and Doboli pro-
posed the bus architecture synthesis technique that minimizes
the cost considering bus topology, communication conflict, and
bus utilization using a simulated annealing [25]. However, these
techniques do not model the dynamic effects such as bus con-
tention and explore only the limited configuration space.

For the exploration of communication architectures, a simu-
lation-based estimation has been widely adopted in many aca-
demic research projects [3]–[5], [24] and commercial tools at
various abstraction levels, at the transaction level [13], [14], or
at the pin-level [15]. The simulation-based method gives accu-
rate estimation results but pays too heavy a computational cost
to be used for exploring the large design space. Thus, the re-
search based on this method cannot only exploit a few design
axes to reduce the design space.

Lahiri et al. presented the hybrid approach combining static
estimation and simulation [12]. In their work, communication
and computation segments are grouped to make a bus and
synchronization event (BSE) graph from the trace data obtained
after system cosimulation. They focused on intercomponent

communication activities that are usually localized in time at
the boundary of computation segment. The trace groups are
scheduled on a communication media, which are shifted by the
estimated delays considering the resource contention. They use
some static analysis to group the traces and apply a trace-driven
simulation with the trace groups. Their approach is similar
to ours in that they apply some static analysis to the traces
to reduce the time complexity of the trace-driven simulation.
However, their approach converges to the trace-driven simula-
tion as the memory traces become larger since the BSE graph
size is dependent on the memory traces. On the other hand,
our proposed technique extracts only the statistical parameters
from the traces. Therefore, the run time of our technique is
independent of the trace size.

Our work is inspired by Brandwajn’s work [2] in which a
simple queueing model of an SCSI bus is proposed, which is
summarized in Section IV-A. The model produces remarkable
results compared with the simulation results. Since the commu-
nication behavior of a processor bus is quite different from that
of an I/O bus, however, their approach cannot be directly ap-
plicable. Instead, we make several extensions to improve the
estimation accuracy significantly. First, the queueing model it-
self is modified for the processor bus system. Second, based on
the fixed priority model, we develop a novel way of modeling
other types of buses, such as round-robin and two-level TDMA
buses. The extended models are explained in Sections IV-B, V,
and VI, respectively. Third, we make use of the task schedule
information by the aid of a system-level specification to con-
sider the burstness of bus requests. Finally, the model of a single
bus is extended to a multiple bus system, which makes the pro-
posed estimation technique viable for communication architec-
ture exploration considering various bus topologies. The details
are given in Section VII.

The key contributions of this paper can be summarized as fol-
lows. First, we propose the efficient static-estimation technique
using the queueing model to take into account dynamic behav-
iors due to bus contention and dynamic memory traces. Second,
by adopting the task schedule information, we make the accu-
racy of the estimated entire execution time comparable with that
of the trace-driven simulation. Finally, we enable designers to
explore the wide design space of communication architectures
considering the design axes than the previous works.

IV. QUEUEING MODEL OF A FIXED PRIORITY BASED BUS

A. Base Queueing Model for a Single I/O Bus

A base estimation technique using a queueing model for a
fixed priority based I/O bus is reviewed in this section. The
basic idea and the notations used here are borrowed from [2].
There are processing elements
competing for the use of a bus. It is assumed that a bus arbi-
tration is based on the fixed priorities of processing elements.

is assigned the highest priority. The bus access is assumed
to be nonpreemptive.

Fig. 4 shows the queueing model of a single bus architec-
ture. denotes the rate at which the processing element
issues memory requests. It is computed as the ratio between the
memory access counts and the scheduled length of execution. If
the execution time is lengthened due to bus contention, the effec-
tive arrival rate of requests becomes smaller than . We denote
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Fig. 4. Queueing model of a single bus.

the actual memory access rate by , which is actually seen on
the bus. The mean service rate of a server for the request from

is denoted by and its mean service time is the reciprocal
of the service rate, i.e., . Let be the expected number of
requests from waiting for use of the bus. It is within the
range of if does not issue the next memory request
until the current request is served. Also, we denote as the ex-
pected waiting time of the stalled request. Then, we obtain the
following equation:

(1)

where is the bus utilization factor of . Little’s
law [16] says

(2)

We want to obtain from (2), which indicates the delays in-
curred from bus contention. We can extract from the memory
traces. By the memory system and the average burst length of
the memory traces, is determined statically. There remains an
unknown parameter in the right side of (1). To obtain this, we
use a state transition diagram and its steady-state probability.

As the simple model of a single bus with processing ele-
ments, each processing element has one of three states: compu-
tation (no bus request), waiting for bus grant, and bus access,
and a bus lies in one of states depending on which pro-
cessing element is currently using the bus, including the idle
state. These processing elements and the bus compose the
state space of the bus system by tuples. Although this
model is accurate, the number of states explodes exponentially
with the increase of . For example, if equals 10, a system
has or 590 490 states. This means that this simple model
cannot be used for fast architecture exploration. Thus, we use
an approximate but effective state transition diagram while pre-
serving the accuracy within a certain limit.

We draw a state transition diagram from the viewpoint of
each . We define the system state as
a quadruple and its steady-state probability by ,
where there are requests of ,

requests of the processing elements with a higher
priority than , and requests of
the processing elements with a lower priority than and

' ' ' ' ' ' ' ' is the priority group that uses the bus cur-
rently. We also define a set of processing elements with a higher
priority as and a set of processing elements with a lower
priority as , respectively. The total numbers of processing el-
ements in and are defined by and , which equal
and , respectively.

The state moves to the state
if another request arrives from a processing element in and
its transition rate is approximated by , ,

where is the average rate of arrivals for the requests from .
can be computed by summing up (1) from to as

(3)

The transition rate to the state is approx-
imated as follows:

(4)

Similar equations can be given to the requests from . The
readers are referred to [2] for more details on the derivations
of , , , and , where and are the average request
rate and the mean service time of , respectively. From the
state transition diagram and the transition rates, we can compute
the steady-state probability using the following
additional requirement:

' ' ' ' ' ' ' '

After all steady-state probabilities are computed, we can com-
pute the expected number of waiting requests by summing up
the probabilities of a certain set of states as follows:

' ' ' ' ' ' ' '

(5)

Note that the evaluation of needs by (3) and
(5). Therefore, these equations should be solved by an iterative
method until becomes stable. Also, this iterative procedure
to get is repeated for each priority level

. We used a linear program package to solve the equations
and found that the solutions are converged within less than ten
iterations in all cases, which takes much less than the trace-
driven simulation.

B. Extension to Processor Bus

The base queueing model of the previous section assumes a
continuous system where the bus request can be served at any in-
stance of time. In reality, however, bus arbitration is performed
at discrete sampling points (i.e., clock edges) among all bus re-
quests accumulated so far. If we assume that there occurs only
one event, either request arrival or service completion, in each
clock period, the base queueing model may be used as an ap-
proximate model. This assumption is suitable for the I/O bus
case where bus requests are infrequent compared with the ser-
vice time and the service time is relatively large. However, sev-
eral events are very likely to occur during a single clock period
in our case. Thus, we modify the base queueing model to allow
simultaneous events. The state transition rate of a transition arc
should be replaced by the state transition probability within a
clock period.

As explained in the previous section, the state of the entire
bus system is approximated by a set of state transition diagrams
drawn for each processing element. To draw each state transition
diagram, we divide the processing elements into three groups:
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TABLE I
STATE TRANSITIONS FROM THE STATE (N ;N ;N ; S) TO OTHER STATES

the processing element of interest, those with a higher priority,
and those with a low priority. In this approximate model, an
event is defined by a single increment or decrement for each
coordinate of the state . There are two kinds of
events which are the bus requests from three priority groups
and the completion of current bus access. Table I shows all pos-
sible state transitions in our compromised model. We classify
the transitions into two types, Type 1 and Type 2, depending
on how many events occur during the next clock cycle. Note
that we do not allow the state transition from to

in the compromised model.
For the computation of the transition probabilities, we define

two parameters and as the probabilities that at least one
processing element issues a new request from and , re-
spectively

(6)

In the case that a processing element in is using a bus, the
transition probability from to

becomes .
In order to validate the accuracy of our compromised model,

we compare it with a more general but complicated model to
deal with simultaneous events. In this model, we also allow
a certain priority group to request more than one simultaneous
event. Then the transition from the state to the
state is valid as long as the following constraints
are satisfied:

(7)

The rate of the transition from to
, , can be expressed as the product of three

terms, i.e., , where , , and are
the contributions by the events from the three priority groups,
respectively. The equations for the terms are given in (8), at the
bottom of the next page. indicates the transition rate from

to ignoring other processing elements. The equations for

and are complicated depending on to which case the
next state might belong where:

• number of processing elements reaches or ;
• priority group is not granted a bus and new requests occur;
• priority group is granted a bus and new requests occur;
• service for the request is completed.

Comparisons between the base queueing model, our compro-
mised model, and the general model are made in Fig. 5. We use
single bus systems and randomly generated memory traces in
the comparisons. The general model is configured with the var-
ious numbers of maximum simultaneous events 2–4. The esti-
mation errors are computed against the trace-driven simulation
results. More detailed explanation on the experimental environ-
ment is referred to Section IX-A.

Fig. 5(a) shows that both our compromised model and the
general model achieve a significant improvement in accuracy
compared with the base model. However, even though the gen-
eral model tends to be more accurate with more simultaneous
events, the accuracy improvement is not remarkable. Further-
more, as shown in Fig. 5(b), it is observed that no clear distinc-
tion exists for the variations of the estimation errors between
the compromised and the general models. Fig. 5(c) represents
the execution time of the linear program solver. Execution times
for solving the models are about the same because the problem
size by the queueing model is not dependent on the number of
transitions but dependent on the number of states. However, the
modeling complexity grows exponentially as the number of si-
multaneous events grows. Considering those observations, we
confirm that our compromised model can be used effectively.

V. MODELING OF A ROUND-ROBIN-BASED BUS

The queueing model of a fixed priority bus serves as the base
model for other arbitration schemes. In this section, we present
the queueing model for a bus with a round-robin arbitration
scheme. The round-robin arbitration is commonly used in
on/off-chip bus standards with a hybrid arbitration scheme,
incorporating with fixed priority or TDMA arbitration [18],
[19].
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In the round-robin scheme, contrary to the fixed priority
scheme, the priority of each processing element dynamically
varies between the highest and the lowest depending on the
position of the processing element and the distance from
the most recent processing element accessing a bus in the
circular bus grant order. Processing elements are granted a
bus in the order that their indexes are wrapped around. To
construct a state transition diagram for the round-robin system,
we decompose the round-robin system into multiple fixed
priority systems as shown in Fig. 6 to construct a hierar-
chical state transition diagram. We define
as the fixed priority based bus system with processing
elements and the priorities given in the
sequence of . has
the highest priority. Next, we define - as the
round-robin based bus system with processing elements

. Therefore, we have

- - -

A hierarchical state - is entered when
completes a bus access. Therefore, the state transition rate from

- to - is the product of the service
rate of and the actual bus access rate of in the fixed pri-
ority system inside - . If we denote as the
actual bus access rate of inside - , it can
be computed by solving the fixed-priority-based system using
the queueing model proposed in the previous section. In fact,

is equal to of the previous section if the priority

list is identically set. Since the service rate of is consis-
tent throughout the execution, the state transition rate from

- to - becomes

(9)

Once all transition rates are determined, we obtain the steady-
state probability of each hierarchical state using an additional
requirement

Now we are ready to compute the expected wait time
for a bus access of on the round-robin-based system. It
is the weighted sum of the expected wait time of in
each hierarchical state - . Thus, we arrive at the
following equation:

(10)

VI. MODELING OF A TWO-LEVEL TDMA-BASED BUS

We also use a hierarchical state diagram to model more com-
plicated arbitration policies: modeling of a two-level TDMA-
based bus is explained in this section. It consists of two arbitra-
tion schemes, primary TDMA and secondary round-robin. The

if and
if and
if and and ' '
if and
otherwise.

if and ' '

if and ' '

if and ' '

if
otherwise.

if and ' '

if and ' '

if and ' ',and ' ' or ' '

if and ' ' and ' '

and , or

if and ' ' and ' '

and , and
if ,
otherwise

(8)
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Fig. 5. Comparisons between the compromised queueing model and the
general queueing models with the various numbers of simultaneous events.

first level of arbitration uses a timing wheel where each slot is
statically reserved for a unique master. A processing element
with heavy communication requirements may reserve more than
one slot. Although the TDMA-based architecture guarantees a
fixed bus bandwidth for each processing element, no bus re-
quest from the processing element associated with the current
slot means the waste of bus bandwidth. In order to prevent the
waste of this unused slot, another processing element may be
granted the bus by round-robin arbitration during the slot.

A two-level TDMA system can also be treated as the com-
position of multiple fixed priority systems similarly to the
round-robin based system discussed in the previous section.

Fig. 6. State transition diagram of a round-robin arbitration bus.

Consider the example system that has four processing elements
. When the total bandwidth of a bus is normal-

ized to 1, is assigned a bandwidth less than 1 and
the sum of the bandwidths of all processing elements becomes
1. Suppose that is assigned the current TDMA slot and

has the highest priority in the round-robin order. The
bus grant order for round-robin arbitration is again assumed
to be the order of processing element indexes. Therefore, the
priority at the current time slot will be (0,1,2,3), i.e., has
the highest priority, becomes the second, and so on.

More generally, we define an assignment sequence of time
slots as follows:

where processing elements are assigned and is a set of
time slots that is assigned. We also define the two-level
TDMA based bus system as

-

- -

where - is the hierarchical state in
which is assigned the current time slot and
has the highest priority in the priority based system with

processing elements except for . Therefore,
the overall priority order in - becomes

.
Fig. 7(b) shows the example state transition from

- for a given fixed 16-slot assignment
of the TDMA protocol as shown in Fig. 7(a). If is granted
a bus in the state - , the next state is one of

- , - , - ,
and - depending upon which processing
element gets the next TDMA slot. Overall 12 transitions can
be drawn from - as shown in Fig. 7(b). But
some destination states are duplicated in the figure. For instance,
the transition from - to -
can occur by granting the bus to either or . On the
other hand, some state transitions are not allowed in the given
slot assignment. For example, when is assigned the cur-
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Fig. 7. (a) An example of TDMA slot assignment and (b) the state transitions from bs - according to the slot assignment in (a).

Fig. 8. (a) An example schedule of PE and PE , and PE and its corresponding queueing model, (b) new queueing model after the function block C is
finished at T , and (c) another queueing model after the function block B is finished at T .

rent slot in Fig. 7(b), the next slot can be allocated only to
and so that no transitions to - and to

- can be made. Those infeasible transitions
are represented as the dashed lines in Fig. 7(b). In general, for
given processing elements, there are less than
state transitions from a certain state.

We define as the probability that can be assigned
the next TDMA slot when is assigned the current slot.
In the case of Fig. 7(a), and become 0.67 and 0.33,
respectively. Both and are zero. Suppose that the
destination state is - when is granted
a bus in - . Then the transition rate from

- to - , ,
becomes the product of the actual bus request rate of in

- , the service rate of , and so that
we get the following equation:

(11)

where is the actual bus request rate of in
- and can be obtained by solving the fixed

priority system where and have the highest and the
second priorities respectively as explained in Section IV. We
obtain the steady state probability of each -
with these state transitions rates and an additional requirement:

-

A similar equation as (10) can be used to compute the ex-
pected wait time for each processing element.

VII. STATIC ESTIMATION USING SCHEDULE INFORMATION

A. Estimation of Single Bus Systems

This section explains how the task schedule information is
used in our estimation method. A simple statistical modeling
of the bus requests from a processing element assumes that the
bus requests are distributed evenly throughout the whole execu-
tion duration of an application. This assumption is one of the
main sources of the inaccuracy of simple static statistical mod-
eling. Since we assume that the schedule of function blocks is
predetermined, the pattern of bus requests is determined stati-
cally as shown in Fig. 8. Note that the initial schedule is made
without considering the wait time for bus access. We divide the
schedule into several time slots in such a way that all processing
elements maintain their bus request patterns during each time
slot. Then, we apply the proposed queueing analysis in each
time slot starting from the beginning of schedule. The shaded re-
gions in the figure indicate the remaining sections for the static
estimation.

During the first time slot, three function blocks , , and
are executed concurrently on , , and respectively.
To evaluate the expected wait delay for bus access from each
processing element, a queueing system is constructed as shown
in Fig. 8(a). From the proposed queueing analysis, we compute
how much the initial schedule length of function blocks is ex-
tended due to bus contention. Suppose that the function block
on is finished first at . Then we consider the next time
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Fig. 9. Schedule-aware performance estimation algorithm for a single bus.

slot where two function blocks and are accessing a bus as
shown in Fig. 8(b) and construct another queueing model with

and . This time slot is also lengthened until the func-
tion is completed at . After , another queueing model
with and is made for the evaluation of the remaining
schedule. This evaluation process is repeated until the queueing
model examines all of the scheduled function blocks.

The overall algorithm of the estimation technique for a single
bus is described in Fig. 9. The procedure Estimate_Single_Bus
has five inputs. represents the data structure of a single
bus. MT is the memory traces of all processing elements and
ORI_SCHED is the initial schedule. PL is a set of processing
elements and FL is a set of function blocks used. The output,
EVAL_SCHED, of this procedure is the updated schedule after
considering all bus conflicts and any other overheads.

The main procedure of the queueing analysis is Esti-
mate_End_Time. Before the queueing analysis, we first
determine which processing elements request a bus by calling
the procedure Get_Current_Fb and compute the statistical
parameters by calling the procedure Get_Stat_Params. We
compute two statistical parameters of each function block from
the memory traces MT: they are the memory access rate with
no bus conflicts and the mean service time . The memory
access rate during the execution of the function block FB on
the processing element PE is formulated as follows:

(12)

where is the total memory access counts and
is the execution time of the function block on

the processing element . When computing the mean service
time, we consider the different burst transfer size according to
the memory access type. For example, code memory access is
usually the burst access of which the size equals to the cache
line size, whereas data memory access may have various burst
lengths. Therefore, we define a set of memory access types
with three types: code memory access , data memory
access , and shared memory access

Fig. 10. The modeling of communication via a bus bridge.

For each set of access types, we further define a set of burst
transfer types according to the burst transfer length:

- -

There may be more burst transfer types in general. However,
for simplicity, we assume only 4 types of burst transfers, which
are used in the ARM720T processor. Then, the mean service
time for the function block on the processing element
is computed as

(13)

where and are the service time in-
cluding the bus overhead as well as the memory access time and
the burst transfer counts of the type in the memory access
type for the function block allocated on the processing
element respectively.

The final procedure Update_Schedule modifies the initial
schedule to obtain the updated schedule, EVAL_SCHED, after
the current time slot. From the updated schedule, we define the
next time slot and go back to the main iteration body until all
function blocks are considered. In the case that the number of
function blocks is huge or the schedule length is very long, the
time complexity of our proposed technique approaches to that
of the trace-driven simulation due to too frequent invocation
of linear program solver. To reduce this problem, neighboring
function blocks can be clustered into a group, which is discussed
in Section VIII-C.

B. Extension to Multiple Bus Systems

Communications across buses are achieved via a bus bridge
in multiple bus systems. A bus bridge plays both roles of a pro-
cessing element and a memory as displayed in Fig. 10. We as-
sume for simple analysis that no communication passes through
more than 3 buses.

Fig. 10 shows how the bridge is modeled when a processing
element on the bus src accesses the memory Mem on the bus
dest. The request rate of the processing element is re-
flected to the bus by the request rate of the bridge. We
have to know the expected waiting time of the processing
element on the bus to compute . At the same time,
the bridge looks like a memory from the bus point of view.
Therefore, the service rate of the bridge should be com-
puted. Let be the expected waiting time of the bridge on
the bus . Then, and are computed as follows:

(14)

where is the overhead associated with the bridge. On
the other hand, and are obtained from our estimation
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TABLE II
COMPLEXITY OF THE PROPOSED ESTIMATION TECHNIQUE

technique after computing and . Therefore, the esti-
mation and the bridge modeling are performed iteratively until
all parameters become stable.

VIII. TIME COMPLEXITY

As explained in the previous section, our proposed technique
progresses dividing the entire schedule into several time slots in
which separate queueing models are constructed and to which
the proposed queueing analysis is applied. Therefore, the time
complexity of the proposed technique depends on the product
of the time complexity of the queueing analysis and the number
of time slots. First, we consider the time complexity of the
queueing analysis.

Table II shows the run time of the proposed estimation
technique and the maximum and the minimum number of states
varying the number of processing elements on Xeon 2.8 GHz
workstation running Linux. We used a GNU Scientific Li-
brary (GSL) [17] to solve the linear equations of the proposed
method. In the case of the fixed priority base system, for each
processing element , the number of states
is where is the total number of processing elements.
The number of states depends on the priority of the processing
element of interest. Since the time complexity of linear program
solver is pseudo-polynomial, the overall time complexity is
also pseudo-polynomial.

As for the round-robin based system, since there exist pri-
ority lists for processing elements, the complexity becomes
roughly times larger than that of the fixed priority based
system. On the other hand, since the two-level TDMA based
system with processing elements may have up to
priority lists, its complexity is roughly times larger
than the fixed priority case. Note that all three cases still have the
pseudo-polynomial time complexity although the overall com-
plexity increase as the arbitration scheme becomes complicated.
Table II confirms that the proposed technique has the acceptable
complexity for fast design space exploration.

A. Comparison With Trace-Driven Simulation

While the time complexity of the proposed technique depends
on the number of processing elements as discussed above, that
of the trace-driven simulation depends on the trace size as well
as the number of processing elements. Considering those pa-
rameters, comparisons are made quantitatively by measuring the
execution time as shown in Fig. 11. The number of processing
elements is varied from 2 to 16. The average schedule length of
each processing element is also varied from 10 cycles to 10
cycles. The average bus request rate for each processing ele-
ment is set to about 0.12, which is a typical value for multimedia
applications.

Fig. 11. Comparison of time complexity between the proposed technique and
a trace-driven simulation technique.

The time complexity of the proposed technique increases
faster than the trace-driven simulation as the number of pro-
cessing elements increases. It explains why the time complexity
of the proposed technique is larger when the schedule length is
short and the number of processing elements is 16 in Fig. 11.
However the execution time of the trace-driven simulation
grows proportionally to the trace size while that of the proposed
approach remains the same. Therefore the benefit of using
the proposed technique grows as the length of the time slot
increases.

B. Effects of Schedule Complexity

The time complexity of the proposed technique is also pro-
portional to the number of time slots. Since each time slot is de-
fined when a function block finishes its execution, the number of
time slots is about the same as the number of scheduled function
block invocations. In many video applications, the number of
function block invocations can be very large due to the different
execution rates of function blocks. Fig. 12 shows an H.263 de-
coder specification example that is mapped to two processing el-
ements: an ARM9 processor and a dedicated hardware for IDCT
as specified in Fig. 12(a) and (b), respectively. To decode one
macro block, one invocation of gray function blocks and four
invocations of black function blocks are required. To decode
one QCIF-formatted frame that consists of 99 macro blocks,
the schedule contains the total 6968 invocations of the function
blocks.
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Fig. 12. The specification of H.263 Decoder and the mapping of function
blocks to: (a) an ARM9 processor and (b) a dedicated IDCT hardware.
The groups in (a) and (b) are executed 99 times during decoding one frame.

Fig. 13. Grouping the function blocks in the schedule is required to enhance
the efficiency of the proposed technique.

C. Effects of Schedule Complexity

Fig. 13 shows that the naïve application of the proposed tech-
nique is worse than the trace-driven simulation since the av-
erage granularity of the function blocks is too small. Therefore,
we group the function blocks that are repeatedly executed in
the same sequence. Such grouping also reduces the effective
number of time slots. In this example, we group the function
blocks that decode one macro block and apply the proposed es-
timation technique to the first invocation of the group. A signifi-
cant efficiency gain, about 47 times, is obtained by grouping the
function blocks as shown in the figure.

IX. EXPERIMENTS

A. Estimation Accuracy of Single Bus Systems

To investigate the accuracy of the proposed static estimation
method over a wide variety of working conditions, the first set of
experiments considers a single bus architecture varying number
of processing elements, bus request rates, bus service rates (or
memory access times), and burst lengths. Then we compared
the estimation results with those obtained from the trace-driven
simulation. Our trace-driven simulator adjusts the time stamps
of trace data by accurately modeling the communication archi-
tecture that includes buses and memories. More precisely, in
these experiments, the bus model used in our trace-driven simu-
lator consists of 4 phases: bus-arbitration, start-address-drive,
sequential-burst-transfer, and last-data-drive.

Fig. 14. Burst transfer of four words on our bus model.

Fig. 15. (a) Schedule of function blocks on N processing elements
(PE ; PE ; . . . ; PE ) and (b) a single bus architecture that consists of
N processing elements and a memory subsystem.

Fig. 14 shows the burst transfer of four words complying with
this bus model. The part tagged with ’ ’ means the waiting time
of a processing element due to bus conflicts. The parts , ,
and are the bus protocol specific overheads and are all set to
1 cycle in this experiment. The part consists of more than
one word accesses to the memory. The memory is configured
with two parameters, which are the initialization cycle for burst
transfer and the access cycle taken for a single word during the
burst transfer. For example, they are set to 1 and 2 clock cycles
respectively in Fig. 14. It is assumed that other control signals
are synchronized with the address bus and are not shown here
for simplicity.

A template example system for our first set of experiments is
described in Fig. 15. processing elements are selected and all
processing elements are busy during the same schedule length,
10 000 cycles. In order to maximize bus conflicts, all processing
elements are connected to a single bus as shown in Fig. 15(b).
The number of processing elements and the memory subsystem
access time define the configuration points in this architecture
template. We vary the number of processing elements from 2
to 10. The bus request rate of each processing element is
chosen randomly within the range from 0.05 to 0.2. For a se-
lected bus request rate, we generated the memory traces from
each processing element following the Poisson distribution (i.e.,
the exponentially distributed inter-arrival times between bus re-
quests). While generating the memory traces, we also random-
ized the burst lengths. As for the memory subsystem, the burst
initialization overhead is always fixed to 1 cycle. The single
word access time of each processing element is assigned in four
different ways: the identical assignments of 1, 3, and 5 cycles to
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Fig. 16. Estimation accuracy according to the number of processing elements
and the memory access time for each arbitration scheme.

all processing elements and the random assignments, among 1,
3, and 5 cycles, to each processing element. In the case that is
0.1 and memory access time is 1 cycle, the portion of the total
memory access time over the entire execution time is about 0.36.
This portion is almost same as the case of an H.263 encoding al-
gorithm, which will be discussed later.

Using these configuration points, 20 example systems were
constructed for each of three arbitration schemes: fixed priority,
round-robin, and two-level TDMA. We performed the proposed
static analysis and the trace-driven simulation to compare the
total execution time of the example systems. For each set of ex-
periments, we generated the memory traces 10 times. Fig. 16
shows the experimental results, which indicate the range of es-
timation errors of the completion times. It is observed that the
estimation error of the proposed method does not exceed 4%
in all cases. These experiments show the robustness of the pro-
posed technique on various architecture configurations and ar-
bitration schemes.

B. Comparison With Simpler Models

In this section, we show the improvement of our proposed
model over two simpler estimation models: the base queueing
model of an I/O bus reviewed in Section IV-A and the intuitive
analytical model assuming a fixed priority bus system. It is ques-
tionable whether there is a simpler static estimation method that

is reasonably accurate. So, we devised an intuitive equation on
the expected waiting time of , , by bus contention, as
shown in (15) for a single bus that has processing elements

(15)

where , , and are the total memory access time, the
total execution time, and the mean service time of respec-
tively. At the right side of (15), the first term is the expected
waiting time due to the bus requests from the priority group
and the second term is the waiting time due to the current out-
standing request of the priority group .

The same experimental environment in Fig. 15 is used again.
We estimated the performance of 20 communication architec-
ture configurations using the base model of an I/O bus and (15).
Each experiment was repeated 10 times with randomly gener-
ated memory traces. Fig. 17(a)–(c) summarize the estimation
results by three estimation techniques in terms of the absolute
error range compared with the trace-driven simulation. One bar
graph for a given number of processing elements covers all kind
of the memory access times mentioned in the previous section.

Although the average estimation error of the base queueing
model does not exceed 6% as shown in Fig. 17(d), the variation
of errors becomes larger rapidly as the number of processing
elements increases. The intuitive equation does not produce the
acceptable estimation accuracy on the variation of errors as well
as the average error rate. On the other hand, the processor bus
model shows the consistent estimation errors within the range
of about 1.3% on average.

C. Design Space Exploration of 4-Channel DVR

Next, we validate our proposed technique by applying it to a
practical example, 4-channel digital video recorder (DVR). The
raw bit streams from external four sources are encoded sepa-
rately by DVR using an H.263 encoding algorithm. Fig. 18(a)
shows the specification of an H.263 encoding algorithm. All
function blocks of an H.263 encoder except for the motion-es-
timation (ME) and the discrete-cosine-transform (DCT) blocks
are mapped to one ARM720T. And all and DCT blocks
are mapped to the dedicated hardware blocks for ME and DCT,
respectively, so that four H.263 encoders share two hardware
blocks. Therefore the initial schedule of each function block
is constructed like Fig. 18(b). Fig. 18(c) summarizes the total
memory access counts for each processing element. Memory
traces are obtained by encoding a P-frame of QCIF-formatted
bit-stream from the same video clip for all channels.

With the DVR example, we verified our proposed exploration
flow explained in Section II. Many architecture candidates are
generated changing the number of buses, the mapping of pro-
cessing elements to buses, the move of related shared memory
segments, and the associated bridge connections. Other commu-
nication architecture parameters, such as priority assignment,
bus data-width, and so on, are fixed to the arbitrary values [20].
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Fig. 17. The comparison of estimation errors for the example systems of
Fig. 15 between: (a) the base queueing model for an I/O bus, (b) the intuitive
equation, and (c) the proposed model for the processor bus. (d) Average
estimation errors according to the estimation techniques.

The results of exploration are summarized in Table III. The
number of buses is changed from 1 to 6. For a given number
of buses, the number of bus bridges reflects indirectly the com-
plexity of bus topology. In the last two columns on the right
side, the estimation errors compared with the trace-driven sim-
ulation are reported with its range and the average absolute
values. During the exploration over more than 200 architectures
for each arbitration scheme, our proposed estimation technique
keeps its accuracy within the range from 6% to 8.5%. The time

Fig. 18. (a) The specification of an H.263 encoding algorithm, (b) the initial
schedule of 4-channel digital video recorder (DVR), and (c) the size of memory
traces.

TABLE III
EXPERIMENTAL RESULTS ABOUT 4-CHANNEL DVR

FOR THREE ARBITRATION SCHEMES

for the trace-driven simulation is about 5 min for one bus archi-
tecture with fixed priority arbitration while the proposed scheme
spends about 1.5 s. Through this experiment, we verified the va-
lidity of our proposed static estimation techniques.

X. CONCLUSION

In this paper, we presented an efficient static estimation
technique of bus architectures based on three commonly used
arbitration schemes: fixed priority, round-robin, and two-level
TDMA. It is based on the queueing model and makes use
of the schedule information and the memory traces. Since
the estimation time is pseudo-polynomial to the number of
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processing elements, the number of function blocks, and the
number of buses used, the proposed technique can be used to
prune the large design space before the trace-driven simulation.
Experimental results show that our proposed technique is sev-
eral orders of magnitude faster than the trace-driven simulation
while keeping the estimation error within 8% consistently in
the various communication architecture configurations.

The bus architectures we assume in this paper do not have
the advanced features being used in the-state-of-art bus architec-
tures such as split-transaction, multiple outstanding bus masters,
out-of-order transaction, and so on. Such advanced features will
affect the service rate of the memory system in our simplified
queueing model. It will be a future research topic to investigate
the scope of applicability of the proposed technique. Since the
objective of the proposed static analysis is to reduce the design
space, a reasonable amount of inaccuracy is still tolerable to ac-
celerate the design space exploration.

So far, we assumed that the schedule of function blocks is
known a priori before static estimation. In a more general case
of multi-task environment, the schedule can be dynamically
varying. We are currently extending the estimation technique to
accommodate such dynamically varying cases conservatively.
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