2186

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007

Fast and Accurate Cosimulation of MPSoC Using
Trace-Driven Virtual Synchronization

Youngmin Yi, Member, IEEE, Dohyung Kim, and Soonhoi Ha, Member, IEEE

Abstract—As MPSoC has become an effective solution to ever-
increasing design complexity of modern embedded systems, fast
and accurate cosimulation of such systems is becoming a tough
challenge. Cosimulation performance is in inverse proportion to
the number of processor simulators in conventional cosimulation
frameworks with lock-step synchronization schemes. To overcome
this problem, we propose a novel time synchronization tech-
nique called trace-driven virtual synchronization. Having separate
phases of event generation and event alignment in the cosimu-
lation, time synchronization overhead is reduced to almost zero,
boosting cosimulation speed while accuracy is almost preserved. In
addition, this technique enables (1) a fast mixed level cosimulation
where different abstraction level simulators are easily integrated
communicating with traces and (2) a distributed parallel cosim-
ulation where each simulator can run at its full speed without
synchronizing with other simulator too frequently. We compared
the performance and the accuracy with MaxSim, a well-known
commercial SystemC simulation framework, and the proposed
framework showed 11 times faster performance for H.263 decoder
example, while the error was below 5%.

Index Terms—HW/SW cosimulation, multiprocessor system-
on-chip (MPSoC), parallel simulation, SystemC, system simula-
tion, virtual synchronization.

I. INTRODUCTION

ARDWARE/SOFTWARE cosimulation is the key en-

abler of successful hardware/software codesign method-
ology in embedded system design [1]. HW/SW cosimulation
validates both functional and timing correctness of the sys-
tem before it is actually prototyped, replacing real processing
components with component simulators that interact with one
another. Since faster validation of the system performance
promises wider design space exploration, boosting the cosim-
ulation speed has been a major focus in HW/SW codesign
research.

As MPSoC (Multiprocessor System-on-Chip) has become an
effective solution to ever-increasing design complexity of mod-
ern embedded systems, fast and accurate cosimulation of such
complex systems is becoming a tough challenge. With a con-
ventional lock-step synchronization scheme, cosimulation per-

Manuscript received November 21, 2006; revised February 15, 2007. This
work was supported in part by the BK21 project, by the SystemIC 2010, by the
IT-SoC, and by the KOSEF research program (R17-2007-086-01001-0). This
paper was recommended by Associate Editor L. Benini.

Y. Yi is with the Department of Electrical Engineering and Com-
puter Science, University of California, Berkeley, CA 94720 USA (e-mail:
ymyi@eecs.berkeley.edu).

D. Kim is with Google, Inc., Seoul 135-090, Korea (e-mail: dohyung@
google.com).

S. Ha is with the School of Electrical Engineering and Computer Science,
Seoul National University, Seoul 151-600, Korea (e-mail: sha@iris.snu.ac.kr).

Digital Object Identifier 10.1109/TCAD.2007.907048

300,000 £y
Ui
250,000 \
& 200,000
Q
: \
g 150,000 \.\7,59‘\“
[} A 2 o
3 100,000 20 -
b 230 9
A 0 %19) AD
50,000 2 s
PR
0 L 1 1 n 1 L
1 2 3 4 5 6 7 8
number of processor simulators
Fig. 1. Overall SystemC cosimulation performance is in inverse proportion to

the number of processor simulators.

formance is in inverse proportion to the number of the processor
simulators. The Fig. 1 depicts the overall cosimulation per-
formance measured in a commercial SystemC cosimulation
framework, MaxSim [3]. We executed a matrix multiplication
example using up to § ARM processor simulators on a 1.8 GHz
Dual-Xeon simulation host. All the simulators are executed
serially on one simulation host: if the simulated cycles are
T, each simulator executes its 7' cycles serially on the same
simulation host so that the total simulation time is the sum
of simulation times of all component simulators and context
switching overhead.

In this paper, we present a fast cosimulation framework that
employs ISSs for MPSoC systems. There are mainly three
approaches to achieve fast cosimulation: (1) increasing the
speed of a simulator itself; (2) reducing time synchronization
overhead among the simulators, and (3) executing the simu-
lators in parallel on distributed simulation hosts. We propose
a novel time synchronization technique, trace-driven virtual
synchronization to replace lock-step synchronization. With this
scheme, time synchronization overhead is reduced almost to
zero while accuracy is preserved within a certain bound. The
basic idea of the technique is to decouple event generation and
event alignment in the cosimulation. Each simulator executes
its own task(s) with as little synchronization as possible and
the cosimulation backplane aligns the generated events, recon-
structing the global time. Trace-driven virtual synchronization
technique correctly simulates complex and dynamic behavior
of system by repeating the event generation phase and event
aligning phase in the cosimulation.

Performance improvement by adopting faster simulators is
complementary to the one of reducing time synchronization
overhead. The proposed cosimulation framework further im-
proves cosimulation performance by employing fast simulators
such as SystemC simulation models. On the other hand, not

0278-0070/$25.00 © 2007 IEEE

YI et al.: FAST AND ACCURATE COSIMULATION OF MPSoC USING TRACE-DRIVEN VIRTUAL SYNCHRONIZATION

only for faster speed but also for design reuse, it is necessary to
adopt different abstraction level simulators. If IPs are given in a
fixed level, mixed level cosimulation is inevitable. The trace-
driven feature of the proposed time synchronization scheme
enables easy integration of different abstraction level simula-
tors. In addition, the reduced number of time synchronization
enables fast mixed level cosimulation.

Finally, the proposed cosimulation framework achieves the
higher performance through parallel cosimulation. Distributed
parallel cosimulation requires efficient time synchronization
between multiple simulator processes on different simulation
hosts or on different cores in a multicore machine. With trace-
driven virtual synchronization, simulators can be executed in
parallel increasing the overall performance.

The rest of this paper is organized as follows. Section II
reviews related work. Section III defines terminology used
in this paper and formulates the conventional cosimulation
performance with lock-step time synchronization. Section IV
explains the proposed trace-driven virtual synchronization tech-
nique. Section V presents mixed level cosimulation and paral-
lel cosimulation technique based on the proposed scheme. In
Section VI, the experimental results are discussed. Finally, we
conclude this paper in Section VII.

II. RELATED WORK

Research on HW/SW cosimulation has been actively
conducted during the past decade. We categorize and review
previous studies in time synchronization perspective: early
heterogeneous simulation, homogeneous simulation including
SystemC simulation, recent heterogeneous cosimulation for
mixed level cosimulation, and distributed parallel simulation.
Then, we finally review trace-driven simulation.

Early HW/SW cosimulation environments were heteroge-
neous simulation environments where the HDL simulator and
processor simulator communicate with each other using in-
terprocess communication (IPC) [4], [5]. In connecting het-
erogeneous simulators, the cosimulation backplane approach
is presented in [6] as opposed to pairwise-direct coupling. It
plays the role of master process to manage the IPC between
software simulator and hardware simulator and to integrate a
new simulator seamlessly.

Lock-step simulation of heterogeneous cosimulation envi-
ronment degrades the cosimulation performance significantly
since it involves huge IPC overheads for time synchronization.
To reduce per-synchronization cost of heterogeneous cosimu-
lation, several approaches were suggested that use the same
language for both software and hardware. The timing-annotated
C code is used as a model for both hardware and software
components in [7]-[9]. It is compiled as a host binary and
run directly on a host workstation. Similarly, [10] presents
VHDL-based HW/SW cosimulation where all the system is
included in an HDL simulator; software is also modeled in
VHDL (behavioral level) with delay information and hardware
is modeled in RTL.

In recent years, transaction level modeling (TLM) [11],
[12] has received a lot of attention. Reference [13] presents
C/C++-based design environment for HW/SW coverification

2187

using SystemC. SystemC simulation is a homogeneous cosim-
ulation environment where both software and hardware models
are modeled in a single language, built as a single process in the
host workstation. SystemC simulation is faster than traditional
heterogeneous cosimulation since not only the abstraction level
has been raised to transaction level from RTL but also time
synchronization overhead between simulation models has been
reduced from IPC overhead to thread switch overhead. Since
TLM can provide various abstraction levels, high-level co-
simulation using delay annotated host code execution in
SystemC is presented in [14].

However, for more accurate cosimulation, ISSs are typically
used in SystemC cosimulation [2], [3], [15], [16]-[19], which is
also the main target of focus in this paper. ISSs are attached to
a cycle accurate transaction level communication architecture
model and communicate via IPC. Thus, reducing the number
of synchronization has become important again. In [19], time
synchronization at every N cycle has been suggested instead of
every single cycle in a lock-step time synchronization scheme.
However, this sacrifices cosimulation accuracy with the reduced
time resolution.

In addition to the adoption of ISSs in SystemC framework,
several studies present more general mixed-level cosimulation
also including an RTL hardware simulator in SystemC frame-
work. In [20] and [21], ISSs and RTL hardware simulators are
connected to SystemC environment via IPC, and different ab-
straction level simulators are cosimulated. Since SystemC plays
the role of backplane, time synchronization is done in a lock-
step manner; each external simulator exchanges events with the
SystemC interface module at every system cycle and this binds
the cosimulation speed to the slowest simulator speed.

We now review time synchronization studies of parallel dis-
crete event simulation (PDES). There has been a lot of research
on this theme and they can be classified largely into two
approaches [22]: conservative [23] and optimistic [24]. These
approaches reduce the number of IPC for time synchronization
and make distributed parallel cosimulation feasible.

The conservative approach guarantees that no past event will
occur by advancing the local clock of a simulator in such a
way that it cannot be larger than the minimum timestamp in the
event queues of the incoming links. Thus, the simulators can run
in parallel at their full speed without any synchronization until
that timestamp value. If an event queue of any incoming link is
empty, the simulator has to block and this can lead to deadlock.
One solution to resolve the deadlock is that each simulator has
to exchange a null message, which contains only a timestamp
without any event. A null message is a promise of sending
simulator that it will not send an event whose timestamp is
smaller than the one in the null message. That is, null message
overhead is time synchronization overhead and reducing the
number of null messages is directly related to the performance
of parallel discrete event-driven simulation. If the null message
is exchanged at every cycle, this is lock-step simulation. To
reduce the null message overhead in a conservative approach,
it is necessary to increase the timestamp of the null message by
predicting the next ordinary message.

An optimized conservative approach [25] was proposed to
estimate the system-wide next earliest event. In this approach, a

2188

simulator may advance its local clock up to the estimated next
earliest event time without worrying about the occurrence of a
past event. However, it is not always possible to estimate the
future event time.

In [26], the time synchronization point is predicted based
on a static analysis of application software running on each
processor. It identifies in the application the interprocessor
communication instructions and statically predicts minimum
execution cycles from the current instruction to those IPC in-
structions. The predicted minimum timestamp, or lookahead in
other words, should be large in order to get better improvement.
Reference [27] employs a similar approach as in [26] but it
extends lookahead using dynamic execution path prediction and
hardware prediction. Branch prediction and the loop iteration
count prediction template and lookahead table are obtained at
compile-time and evaluated at run-time. Run-time prediction
extends lookahead to several tens or hundreds of clock cycles
of the target processor.

Reference [28] presents parallel cosimulation of multiple
processor simulators with conservative time bucket synchro-
nization scheme [22]. In this method, target execution is broken
up into fixed lock-step intervals called quanta. It is assumed that
target messages sent during one quantum can only affect target
state in the subsequent quanta.

Optimistic approach, on the other hand, allows each sim-
ulator to advance its local clock optimistically assuming that
no past event will arrive. If this assumption fails, it rolls back
its local time to the latest checkpoint time canceling all results
that have been processed after that time [29]. This approach is
costly to maintain the internal states at each check-point time.
In addition, if a processor simulator does not support a roll-back
mechanism, as usually is the case, it cannot be used.

In [30], the system time is maintained as the minimum
value of the local time of each component simulator. Time
synchronization is performed optimistically only at communi-
cation through the input port and only when the system time
and the local time are the same. However, if an interrupt is
triggered and its time stamp is earlier than the local time, this
scheme performs roll-back. A similar concept called memory
image server is used in a commercial cosimulation environment
[31]. This technique performs time synchronization only when
simulators access a predefined memory region. However, it
cannot correctly handle the occurrence of interrupt since it does
not employ a roll-back mechanism.

The time synchronization idea presented in this paper is
similar to one in [26], [27], and [30] in that it performs time syn-
chronization only at interprocessor communication (intertask
communication, to be exact). However, the proposed scheme
is clearly distinguished from the previous works in that local
time is not synchronized to global time and the local clock is
only used as a timer to measure the difference between events.
Decoupling of local time and global time enables the correct
handling of the interrupts without roll-back, while still perform-
ing time synchronization only at intertask communication (The
detailed explanation will be given in Section IV-B). In addition,
the previous approaches would require synchronization at every
local memory access as well as shared memory access in order
to simulate the correct timing of communication architecture

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007

such as bus arbitration delay when contention occurs. The
proposed approach can consider such behavior without
synchronizing at every memory access but only at intertask
communication, thereby maintaining high cosimulation speed.

Trace-driven simulation consists of trace collection and trace
processing and these steps are separated and performed without
any feedback in most cases [32]. Even if they may interact with
the others, they aim to reduce the slowdown of the simulation
and not for the correct and accurate simulation of dynamic
behavior of the system. Such inaccuracy of trace-driven sim-
ulation of the multiprocessor is pointed out in [33]. Reference
[34] addresses trace-driven cosimulation for rapid design space
exploration of mapping of application models onto architecture
models. Application is modeled in Kahn Process Network and
trace events are coarse grain and generated only from three
functions in YAPI [35] (read, write, and execute). It is similar to
traditional trace-driven simulation in that trace generation and
trace evaluation do not interact.

Trace-driven virtual synchronization is clearly distinguished
from the traditional trace-driven simulation approach in that
trace generation and trace evaluation parts interact for time
synchronization, or global time alignment of traces. The pro-
posed approach can reflect complex and dynamic behavior
including OS scheduling policy and contention in the bus, since
such architectural influence in the trace evaluation phase is
repeatedly fed back to the trace generation phase.

We have proposed an execution-driven virtual synchroniza-
tion technique [36] based on the following assumptions: (1)
the execution result depends only on the arrival order of input
events, not on the absolute arrival times; (2) the intertask or
interprocessor communication occurs at the boundary of task
execution and must be a nonblocking operation; (3) commu-
nication architecture has static delay. As a result, it was only
applicable to dataflowlike applications that consist of tasks
with nonblocking operation while assuming simple and static
communication architecture. In this paper, we overcome these
limitations by making the virtual synchronization technique
trace-driven not execution-driven.

III. TERMINOLOGY

In this section, we formally define the terms that we will use
to describe the proposed synchronization scheme in later sec-
tions. In addition, we formulate the cosimulation performance
with lock-step synchronization scheme as reference to compare
it later with the proposed one. In the definition of terms, we
borrowed the notations from [37].

A. Terminology

w;(z)v Write of a value v at address = by simulator 3.
ri(x)v Read of a value v at address x by simulator 4.
GCf(e) Timestamp of event e in global clock.

Execute(e,e’) Event e is executed before event ¢'.
Definition 3.1. Causal Order: We define that an event, e,
is in causal order to another event, ¢'(e — ¢’) if one of the
following conditions holds:
D) 3, j((e = wi(x)v)A(rj(z)r=€)AN(GC(e) <GC(e)))
2) Fe"(e — €' N —)

YI et al.: FAST AND ACCURATE COSIMULATION OF MPSoC USING TRACE-DRIVEN VIRTUAL SYNCHRONIZATION

The first condition of definition 3.1 describes true depen-
dency between events and the second one describes the tran-
sitive relation of the order.

Definition 3.2. Causality Constraint: If an event, e, is in
causal order to another event, €', then a simulator or simulators
must process e before €’. This can be simply denoted as follows:

Ve, e (e — ¢ = Execute(e, ¢’)) .

Definition 3.3. Out-of-Order Simulation: It is defined as
follows:

Je, ¢’ ((GC(e) < GC(e')) A (Execute(e’, e))) .

B. Analysis of Cosimulation Time With Lock-Step Scheme

In the lock-step synchronization scheme, simulators synchro-
nize at every cycle to satisfy causality constraint. It can be
denoted as follows:

Ve, e (GC(e) < GC(e') = Execute(e,e’)).

We formulate the cosimulation time of a lock-step time
synchronization approach as definition 3.4 [40].
Definition 3.4. Cosimulation Time With Lock-Step Scheme:

N Number of simulators.
T Total simulated cycles.
st; Simulation time to advance one cycle of simulator :.
sync Overhead per time synchronization.
Tirans Total number of communication transactions.
Styrans Simulation time to process a transaction.
N
Z {T X (Sti + SynC)} + Tirans X Sttrans- (D
Vi

In (1), the simulation time to advance one clock cycle in a
simulator, the overhead per time synchronization, the number
of transactions, and the simulation time for a transaction are
recognized as the major performance factors. We distinguish
the overhead per time synchronization (sync) and the sim-
ulation time to process a transaction for data synchroniza-
tion (Styrans)-

IV. TRACE-DRIVEN VIRTUAL SYNCHRONIZATION
A. Proposed Idea and Implementation

Definition 3.1 says that if an event, e, is in causal order
to another event, ¢’, then the global time of e is smaller
than that of ¢’. However, if the global time of an event is
smaller than the other, they are not necessarily in causal order:
That is, GC(e) < GC(e') = e — ¢’ is not necessarily true. For
such events e, €/, we can perform out-of-order simulation.
The previous approaches that fall into conservative approach
exploit this to reduce time synchronization overheads but the
main obstacle is the asynchronous occurrence of interrupts.
The proposed trace-driven virtual synchronization technique
reduces time synchronization overhead as much as possible
even when interrupts are used, by synchronizing only between

2189

'''''

[1ss1] ,
[1ss2] migiRRRgHA

2 7

1) Event generation
2) Event alignment € Maintain synchronized clock

(@)

Zi Backplane

1) Scheduling

(0+24)

[1ss1] Lo g bl 4 8
The clggk of ISS2: Y Y+4 z * *
+5
2 7

The clock of ISS1: X X
L g—
N2 A5

1) Event generation

(4+04)

1) Scheduling (0+02)
2) Event alignment

(b)

Fig. 2. (a) In previous approach, simulators both generate and align events.
(b) In the proposed approach, simulators only generate events and the backplane
aligns the events.

(2+A5)

events in causal order. For this goal, the proposed scheme
decouples event generation and event alignment.

The key difference of the proposed approach and the previous
ones is depicted in Fig. 2. In previous approaches, simulators
both generate events and also align them. To correctly align the
events and to prevent the occurrence of the past event, each
clock of simulators must be synchronized [Fig. 2(a)]. On the
contrary, in the proposed approach, simulators only generate
events and the cosimulation backplane aligns the events releas-
ing the simulators from the burden of the clock synchronization
[Fig. 2(b)].

In the event generation phase, each simulator generates
events such as local memory access without synchronizing
with the cosimulation backplane until it encounters intertask
communication such as shared memory access or completion
of its execution. Since simulators only play the role of event
generation and events are aligned globally in the backplane,
each simulator does not need to synchronize its clock to the
global clock. Instead, timestamp of an event is set as the relative
difference of execution time (i.e., simulated cycles) from the
previous event occurrence. Hence, the clock of a simulator is
rather considered to be a timer than a clock and used only to
measure the difference. Event information including timestamp
is kept as a form of trace and delivered to the cosimulation
backplane at the synchronization point.

In the event alignment phase, the cosimulation backplane
reconstructs the global time of the generated events, or traces,
by adding the time difference provided in a trace to the clock
of the component that the trace belongs to. Each clock of
components is maintained inside the backplane. Then, it aligns
the traces conservatively up to the maximum possible global
time; it first find out the earliest event (i.e., the trace with the
minimum timestamp) among all the components. Timestamp of
events from different components can now be compared since
it has been translated to global time. Trace-driven simulation
is performed with the earliest event and the global clock is
advanced during the trace-driven simulation. The backplane
continues the global time reconstruction and the alignment
through trace-driven simulation until any event queue gets
empty. To guarantee incremental event alignment and to prevent

2190

e event generation ™~
SW task D HW IP]:]

0S APIs datal] interface logic |
simulator traces simulator
interface interface

SW simulator HW simulator

backplane (cosimulation engine)

traces traces
_traces | (_traces |
C N K A

[SW task representative U-] [HW task representative U-]
[OS Modeler]

Comm. arch Modeler]——’

!

[Memory image Model]

event alignment

Fig. 3. Cosimulation framework for trace-driven virtual synchronization.

past event occurrence, the backplane must choose the earliest
event. If any event queue is empty, the event alignment is
paused and the event generation phase is invoked again. The
backplane schedules each simulator in such a way to obey
definition 3.2. By repeating these two phases, global time is
advanced conservatively up to the given end time after all.

Fig. 3 illustrates the structure of cosimulation framework
with trace-driven virtual synchronization. Each simulator has
its own simulator interface that connects to the cosimulation
backplane and generates traces in the event generation phase.
It reads input data from the backplane and sends output data
and traces to the associated representative in the backplane.
A representative is maintained per task and simply keeps the
traces. The total number of the tasks in the target system and
the mapping information is statically provided to the backplane
along with the relevant parameters such as a task priority, if
necessary. The backplane creates task representatives based on
the provided information when the cosimulation starts.

Trace-driven simulation is performed in the backplane and
it is further divided into two steps: OS modeling and commu-
nication architecture modeling. Both models are provided by
the backplane from the library and can be parameterized by the
designers.

OS modeling [38] is required since, in our framework, a sim-
ulator executes its application tasks nonpreemptively without
synchronization. To correctly reflect the occurrence of inter-
rupts, the OS modeler determines a sequential order of events
of all tasks in each processor by emulating the preemption be-
havior caused by the preemptive RTOS scheduler or interrupts.
It also reflects RTOS delays such as interrupt handling overhead
and context switch overhead that are given as parameters. In our
current implementation, OS modeler can model priority-based
preemptive scheduling and round-robin time-slice scheduling.
Note that, in Fig. 3, the representative that keeps the traces
is maintained per task rather than per component for the OS
modeling purpose.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007

A communication architecture modeler [39] computes inter-
connection and memory latency for memory traces, taking into
account the conflicts on the communication architecture. The
memory access trace can be viewed as a transaction request to
the communication architecture and the modeler provides cycle
count accuracy at transaction boundary by adding the delay of
communication architecture components. This kind of model-
ing is similar to the ones in [40] and [41]. However, the modeler
in this paper does not resort to any discrete event simulation
kernel but the modeler is defined as a function in the backplane.
The input parameters to the modeler include the topology and
the list of the components, the attributes of the components, and
the address maps of communication architecture.

When a trace is given, the modeler first takes the address
in a trace and finds out the component it is trying to access
referencing the address maps. Then, it figures out the path from
the requesting component to the destination component refer-
encing the topology information. Along the path, it adds the
time consumed on each communication component considering
the bus arbitration policy and the contention. Currently, the
modeler supports only AHB buses.

The simplified version of the trace aligning algorithm with
the OS modeler and the communication architecture modeler
is shown in Fig. 4. The algorithm is applied to every trace
until either cosimulation finishes (line 1) or there is no trace
left in a task representative (line 7). First, it finds out a task
that accesses the communication architecture at the earliest
time, translating the timestamp of each event into the global
time (line 9—11). Global time reconstruction is performed in a
function named GT() by adding the relative time in a trace to
the global time of the component (line 16—18). It examines all
the components in the system (line 3), considering OS schedul-
ing in the components (line 4). After the earliest event has
been identified, it is passed to the communication architecture
modeler and the global time is advanced during the modeling
(line 14, 19-24).

The Fig. 4(b) shows an example of the event alignment.
Suppose that there are two components in the system and the
traces “a” and “b” are generated from the first component and
are queued in eventQ[0], while traces “c” and “d” from the
other are queued in eventQ[1]. The clock of each component
in the backplane and the clock of the communication archi-
tecture are denoted as GC[0], GC[1], GC}_ca and are all set
to O initially. As explained, the backplane first finds out the
earliest event that requests a transaction to the communication
architecture. It translates the event time to the global time and
compares the time of the events from GC[0] and GC[1]. Since
GT(a) is earlier than GT(c), trace “a” is selected and is passed
to the communication architecture modeler. First, it advances
the clock of the component that the trace belongs to by the
request time of the trace (GC[0] becomes 1). Then, trace-driven
simulation is performed. In this example, for brevity, the static
delay (= A(tr)) of the communication is uniformly assumed to
be 2. To model the dynamic delay (i.e., arbitration delay) caused
by the contention, the clock is set to the larger value among the
current time of the communication architecture and the current
component time (i.e., request time). Finally, the component
time is advanced up to the communication architecture time.

YI et al.: FAST AND ACCURATE COSIMULATION OF MPSoC USING TRACE-DRIVEN VIRTUAL SYNCHRONIZATION

1 while (cosim_end==false) { // for each trace
2 /I for each components
3 for (i=start_idx; i<num_components; i++) {
4 task = OS_Modeler(i);
5 if (task->trace == NULL) { //eventQ is empty
6 start_idx = i;
7 return; /I activate trace generation part
8
9 if (GT(task->trace) < min_access_time)
10 min_access_time = GT(task->trace);
11 min_task = task; //find the earliest event
12 }
13 }
14 CommArch_Modeler(min_task->trace);
15
16 unsigned GT(trace *tr) { //reconstruct to the global time
17 return GCltr->proc] + tr->time;
18 }
19 CommArch_Modeler(trace *tr) {
20 /ladvance the global clock
21 ... GC[tr->proc] = GT(tr);
22 GC_ca = max(GC_ca, GCJtr->proc]) +A(tr);
23 GCJtr->proc] = GC_ca;
24)
(@
al bl A(tr):static delay
T+ T 1 Event alignment
1 5T6 GCIo) in the backplane
Cl contention d cei]
| ! ! | | | Altr) =2
e 4:I: — g:l:l—» GC[0] = 0
b=A2 |d=A3 GC{1 =0
eventQ[0] |, - \% ¢ = Aa| eventQ[1] GC ca=0

i) GT(a) = GC[0]+1 = 0+1=1 }
GT(c) = GC[1]+4 = 0+4=4
selecta

GC[0] =1

GC_ca = max(GC_ca, GC[0])+ A(a)
=max(0, 1) +2=1+2=3

GC[0]=GC_ca=3

GC[1] =4

GC_ca = max(GC_ca, GC[1])+ A(c)
=max(3,4)+2=4+2=6

GC[1]=GC_ca=6

GC[0] =5

GC_ca = max(GC_ca, GC[0])+ A(b)
=max(6,5) +2=6+2=8

GC[0]=GC_ca =8

GC[1]1=9

GC_ca = max(GC_ca, GC[1])+ A(d)
=max(8,9) +2= 9+2 = 11

GC[1]=GC_ca=11

(b)

Fig. 4. (a) Trace alignment algorithm with OS modeler and communication
architecture modeler and (b) Example.

—_—

ii) GT(b) = GC[0]+2 = 3+2=5 }
GT(c) = GC[1]+4 = 0+4=4
Sselectc

iii) GT(b) = GC[0]+2 = 3+2=5 }
GT(d) = GC[1]+3 = 6+3=9
selectb

iv) GT(d) = GC[1]+3 = 6+3=9

Sselect d

In such a way, the traces are correctly aligned in the backplane
in “a,” “c,” “b,” and “d” order.

Note that if the request time of the current trace [e.g.,
trace “b” in Fig. 4(b)] is earlier than the completion time of
the previous trace [e.g., trace “c” in Fig. 4(b)], the modeler
postpones the access of the current trace and this extra delay
accounts for the bus arbitration delay due to the contention.

The Fig. 5 shows a more complex example scenario of the
proposed cosimulation and how the dynamic behavior of the
system such as task blocking, preemption, and bus contention
can be correctly simulated with significantly reduced synchro-
nization overhead. Fig. 5(a) shows both the real behavior of
the system and the cosimulation result. Assume there are two

2191

wx)1 w(y)2
proc1
roc2
P { real time,
10 283 29 3540 556065 75 85 global time
(a) 26 in the backplane
wi(x)1 w()2
proc1 task1
simulator W1 23
task2
proc2 V) A Ps Ly)2 w(z)3
simulator task3 |
backplane | i N i \
[
34 56 @® @19 QK q q
(b) &

[]Event generation BEvent-aligning -> synchronization

¥ Inter-task communication |:|Memory access latency
Blocking during Inter-task communication

Fig. 5. Cosimulation example scenario with the proposed technique; (a) the
real behavior or the result of cosimulation and (b) Execution sequence of
simulators in the proposed framework.

processors; procl and proc2. Taskl is mapped to procl and
task2 and task3 are mapped to proc2. We assume that task3 has
a higher priority than task2 and they are scheduled by a priority-
based preemptive scheduler. Intertask communication is de-
picted using the notation defined in Section III. For example,
w(z)1 at time 29 means that task1 wrote a value 1 at address x.
We also specify memory access latency in Fig. 5(a) assuming
uniform delay for simple illustration. The actual execution
sequence of component simulators by the proposed approach
is shown in Fig. 5(b). The event alignment phase produces the
final results as shown in Fig. 5(a), which is the same as the real
behavior.

Suppose the backplane schedules procl simulator first. Then,
task1 is executed until it encounters w(x)1. Before this opera-
tion, procl simulator returns to the backplane since a simulator
has to synchronize before executing intertask communication.
The backplane cannot align the events since the event queues
of both task2 and task3 are empty: events of all the components
in the system must be compared to advance the global clock
safely. It schedules and executes task3 as it has the higher pri-
ority ((@). Likewise, proc2 simulator returns to the backplane
before 7(y)((®). Now that the backplane has the events of all
the processor simulators, it aligns the events conservatively up
to time 10 as such in Fig. 5(a). It cannot go further than time 10
as there is no trace left in the queue of task3. So it goes back to
the event generation phase again.

Suppose that r(y) is a blocking read operation. Task3 is
blocked while performing read operation since there has been
no w(y) before (®)). The proc2 simulator interface informs
the backplane of the status of task3 and the OS modeler
in the backplane now schedules task2 to be executed (@) and
the proc2 simulator synchronizes before r(x). The backplane
can now advance the global clock again conservatively up to
time 29, comparing the events of all the components in the

2192

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007

ISSI ISS]
i5 T8 5 4 p i5 BU] .
i4 TH - al M i H 4 | -
i3 T 35 LT} i3 i3 F LT
e T8 o 4 1,34_ e J34|__1'J o 4 ’.34_
i2 T2 LT’"TZ—. i --—l 2 i 2 7 2
i ! i i1 4 I i1 n i1+ n
5 —
— 3 — 3 4
—12 o—| |—2 — 3 S
— 1 11— —i —P2 e -
eventQi eventQj ‘;
(a) (b) © 2y (@)
LTj
« - 4—LT,
s B LT N N jp
i4 i T i i
i3 3 4—LTj i3 S i3 3
e J e » e s
i2 2 i2 T2 i2 2
i1 n i T i i
5 —.
i
S
. <8
5 — s—| |2 DR
4 — 4 —| [T , =1
i3 — i3 — - —j5
‘\\r'_»’ \N‘r',»—
1 1
v s
€ .35 ® (@u=*+ (h)
E 7] i3 &

Fig. 6. Conservative alignment of events in the proposed scheme. The upper part illustrates event distribution of a simulator as its time evolves and the lower
part represents the even queue of the simulator. (a) Simulator j was generating (rectangle) events and stops before e’ and fills up its event queue in the backplane.
(b) Since event queue of simulator 7 gets empty, simulator ¢ is scheduled. (c) Events are aligned. (d) Simulator ¢ is scheduled again and it executes e. (e) Since
event queue of simulator j gets empty, simulator j is scheduled and it executes €. (f), (g) Events are aligned. (h) Aligned events sequence.

system ((®). Note that, while it advances the global clock,
communication architecture modeler in the backplane detects
that both taskl and task2 try to access the same bus at time
20. It models the contention by serializing the access according
to the arbitration policy of given bus model; the memory
access that is requested initially by task2 at time 20 is actually
granted at time 23 and is finally completed at time 26 as such
in Fig. 5(a).

In this way, the cosimulation proceeds up to time 35, re-
peating the two phases () — (@)). Suppose that w(y)2 by task1l
at time 40 triggers an interrupt to proc2, waking up task3
from blocking. As a result, task3 preempts task2 immediately.
However, in Fig. 5(b), task2 is executed nonpreemptively until
it encounters 7(z) and taskl completes its execution after
performing w(y)2 (®—@). The backplane finds out that the
interrupts have occurred while aligning events of task1. Event
alignment pauses and the OS modeler schedules task3 to be ex-
ecuted (@). Although tasks are executed nonpreemptively in
the proposed technique, the occurrence of interrupts is correctly
modeled since tasks cannot execute intertask communication
without first synchronizing with the backplane. Since proc2 is
synchronized before 7(z), w(z)3 is executed first by task3 and
r(2)3 is then executed by task2, performing correct cosimula-
tion (@ — @). Note that out-of-order simulation is performed
even in the same processor simulator while preserving the
causality constraints.

Compared to the previous execution-driven virtual synchro-
nization technique, the proposed trace-driven scheme can accu-
rately reflect the communication architecture related delay by

simulating all the memory accesses trace by trace. This has the
effect of synchronizing at every memory access and thus allows
the backplane to detect and reflect the contention [e.g., time
20-23 in Fig. 5(a)]. In addition, the proposed scheme supports
general task execution models where tasks communicate via
blocking or nonblocking operations, as shown in Fig. 5(a). This
has become possible by maintaining task representatives and by
synchronizing at every intertask-communication as well as task
execution boundaries.

B. Proof of Validity

We prove that the proposed technique satisfies the causality
constraint using the definitions that we defined in Section III.

Theorem 4.1: Trace-driven virtual synchronization tech-
nique satisfies the causality constraint.

Proof: We first consider the case when there is no inter-
rupt. According to definition 3.2, the causality constraint can
be denoted as Ve, €'(e — ¢’ = Execute(e, ¢')). If such events
e and €’ belong to the same task, Execute(e, €’) is true because
a simulator executes the events of the same task sequentially.
Suppose that e and ¢’ belong to the different simulators; e is ex-
ecuted in simulator i(= w;(z)) and €’ in simulator j(= r;(z))
and GC(e) < GC(¢')(@). Even if e has not yet executed and
the backplane was executing simulator j, it stops before ¢’
and executes simulator ¢ [Fig. 6(a)] since the proposed scheme
enforces any component simulator to pause before executing
intertask communication and aligns events in the component
event queues conservatively. Conservative alignment indicates

YI et al.: FAST AND ACCURATE COSIMULATION OF MPSoC USING TRACE-DRIVEN VIRTUAL SYNCHRONIZATION

that, if any event queue becomes empty during the alignment, it
executes the simulator and obtains the trace first before aligning
traces further. The event queue of component 7 becomes empty
[Fig. 6(c)] before that of component j since GC(e) < GC(¢').
Hence, simulator ¢ will be scheduled and execute e [Fig. 6(d)]
before simulator j is scheduled and execute ¢’ [Fig. 6(f)]. That
is, GC(e) < GC(¢') = Execute(e, ¢')(®). Combining (1))
and (@) with definition 3.1 yields (e — ¢’ = Execute(e, ¢’)).

Currently, let us consider the case when interrupts occur
during the cosimulation. If an interrupt to a processing com-
ponent is generated from the other processing component, the
interrupt event is included in the generated trace. Otherwise,
a separate simulation model for interrupt generator is added to
the backplane. Then, the interrupt signals are aligned with other
trace data in the alignment phase. When an interrupt is detected
during the alignment, the OS modeler switches the execution to
the interrupt handling task. |

C. Performance and Accuracy

In addition to significantly removed time synchronization
overhead, the removal of idle duration is another key advantage
of the proposed technique. Since the local clock is referenced
only as a timer, its absolute value is no longer meaningful.
Therefore, when there is idle duration between the last exe-
cution and a new data arrival, we do not need to execute a
simulator meaninglessly only to advance the local clock to the
new data arrival time.

Definition 4.1 explains how trace-driven virtual synchroniza-
tion technique achieves significant performance improvement.
In addition to the terms defined in definition 3.4, we define the
utilization of a simulator, trace-related overheads, and the total
number of communication transactions to the shared memory.

Definition 4.1. Cosimulation Time With Trace-Driven Virtual
Synchronization Scheme (Revised from [42]):

U, Utilization of simulator 7.

Tsh . Total number of communication transactions to the
shared memory. Note that T},ans includes 728 .
Styrace Overhead per trace generation.
Steval Overhead for one trace evaluation (alignment).
N

Z{T X u; X st} + Ttsr};ns X (sync + stirans) + Tirans
Vi
X (Sttmce + Steval)- (2)

As you can see in the (2), the total number of cycles to
be simulated is reduced by 1 — u; and time synchronization
occurs only when data are exchanged (T¢2 .). To clarify the
cosimulation performance gain of the virtual synchronization
approach over the lock-step one, (3) is obtained by subtracting
(2) from (1)

Z{T x (1 —u;) x st;} +syne x (T'x N — T)
Vi

sh
+Sttrans X (Ttrans - Tthrans) - Ttrans X (Sttrace + Steval) (3)

The positive terms are the gain and the negative ones the
overheads of trace-driven virtual synchronization approach.

2193

There are mainly three kinds of gains. The first term explains
the removal of idle duration of simulation. The second term
shows how many synchronization points have been reduced:
synchronization occurs only when data are exchanged. The
third term indicates the removal of local memory transaction
simulation. Instead, trace generation and evaluation overhead
has been added. This overhead is insignificant and, even for
DivX player application that is memory intensive, it is below
3% of total cosimulation time in our framework. Note that all
the traces are contained in a memory buffer, not in a file and
Steval takes place in the backplane, not in a simulator.

Accuracy of the proposed approach is affected by the ac-
curacy of OS modeler and the communication architecture
modeler. In [38], the virtual synchronization approach with OS
modeler shows less than 0.1% error if cache is not used and still
an acceptable level of error (less than 7%) if cache is used.

D. Consideration

The basic assumption of trace-driven simulation is that the
relative time difference between events is not changed as the
latency of the memory system changes. This will not hold in
case of an out-of-order issue processor where instructions are
scheduled dynamically, resulting in different value of relative
time between events.

Another limitation is that OS itself is not executed directly
on a simulator and OS modeling results in possible timing
inaccuracy [38]. For example, the cache state in a processor
simulator becomes different from the reality in case of pre-
emptive scheduling since, with proposed technique, tasks are
executed nonpreemptively. Suppose that a task with a long ex-
ecution time gets preempted twice by another task with a short
execution time and period. The proposed approach executes
the long-running task nonpreemptively first and then executes
the preempting task consecutively. In such a case, the tasks
would experience smaller cache misses than the real situation.
In other words, it may underestimate cache related preemption
delay. One solution to overcome this inaccuracy is to disable
the cache simulation in a processor simulator and to perform
cache simulation separately in the backplane. Having a separate
cache simulation in the backplane becomes necessary if one
wishes to simulate a system with cache coherence protocol. The
current approach assumes that intertask communication occurs
only through shared memory communication.

Note that a little inaccurate timestamp of traces in event
queue may result in different order of events in the system,
even changing the functionality. However, such result comes
from the fact that the system itself is nondeterministic or
has race condition, not from the fact that the proposed time
synchronization fails.

V. ENHANCED COSIMULATION TECHNIQUES BASED ON
TRACE-DRIVEN VIRTUAL SYNCHRONIZATION

Separation of the event generation phase and event alignment
phase enables mixed level cosimulation and distributed parallel
cosimulation. The former utilizes trace-based interface between

2194

Slow
sim.
Fast
sim.

Slow
sim.

Fast
sim.

Fig. 7. (a) With lock-step synchronization, mixed level cosimulation speed is
bound to the slowest simulator speed while (b) Proposed approach can maintain
high cosimulation speed due to the removal of idle duration simulation and the
reduced number of synchronization.

a simulator and the backplane, and the latter exploits the out-of-
order simulation of the scheme.

A. Mixed Level Cosimulation With the Proposed Technique

Mixed level cosimulation is performed in order to tradeoff
performance and accuracy. Moreover, mixed level cosimulation
is inevitable when tasks are given in the form of fixed level IPs.
In the proposed cosimulation, simulation models or simulators
of different abstraction levels can be mixed together by the
backplane since a simulator interacts with the backplane with
the same format of traces. As long as simulators provide the
required interface for trace generation, the HDL simulator and
transaction level simulator can be cosimulated.

In addition, mixed level cosimulation with trace-driven vir-
tual synchronization is fast since the overall cosimulation speed
is not bound to the slowest simulator speed. A different abstrac-
tion level results in different speed of simulation. The overall
cosimulation speed would be bound to the slowest simulator
speed, if synchronization is performed at every cycle [Fig. 7(a)].
However, with the proposed scheme, since synchronization is
performed only at intertask communication and task boundaries
and idle duration is not simulated, if the portion of the simulated
cycles of the slowest simulator is not dominant or the utilization
of the simulator is low, the cosimulation speed would still
maintain high performance [Fig. 7(b)].

In fact, we found that the proposed cosimulation is very
useful to verify an RTL IP under development since real
application test vectors can be fed from ISSs with fast turn
around time.

We start with the description of a simulator interface to inte-
grate a simulator into the proposed framework. The simulator
interface must satisfy the following requirements.

1) It establishes the socket connection with the backplane.

2) It receives the input data from the backplane and sends

the output data along with the traces to the backplane.

3) It generates memory traces in the format of (address,

access type, size, time difference)

4) Tt references the local clock of the simulator to measure

the time difference between traces.

Related to the second requirement, the memory map of
shared memory for interprocessor communication must be
provided to simulator interface. This information is necessary

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007

SW task (C) [H\NT(RTL)

OS (scheduler) HDL

ISS HW IP simulator
Ipd (SystemC) Jpd

[bus functional model][bus interface][IP wrapper]

bus simulation model (SystemC)

SystemC kernel (cosimulation engine)

(a)
HW IP I
SW task (C) (SystemC) HWIP (RTL)
0OS APls bus interface “HDL
e cosim. interf | simulator
1SS |image mode .. SystemC pd | cosim Interf.
simulator

£

TDVS backplane (cosimulation engine)
(b)

Fig. 8. (a) Conventional SystemC cosimulation framework with ISS and HDL
simulator and (b) Proposed one with SystemC simulation.

for the interface to determine at run-time whether it has to ex-
change the data with the backplane at a certain memory access.

As for a processor simulator (ISS), it is typical to provide
callback function or hooking interface for memory image in
order to allow users to model their own memory-mapped pe-
ripherals. This interface is given memory access information
and called every time a memory access occurs. Hence, the
simulator interface is easily implemented using this hooking
interface.

On the other hand, as for an HDL simulator, the interface
is implemented in Foreign Language Interface (FLI) that is
associated with the bus interface logic. Since the FLI module
of the bus interface logic is executed every time the HW IP
module tries to access memory, the interface function can be
implemented. In our previous work, only the HDL simulator
is integrated into the proposed framework. SystemC simulation
can now be integrated as an HW simulator.

Fig. 8(a) shows the conventional SystemC cosimulation
framework that includes an ISS as a processor simulator. An
RTL hardware simulator is also attached to illustrate mixed
level cosimulation in the conventional framework. Here, Sys-
temC kernel plays the role of cosimulation scheduler that
schedules each component simulation model (i.e., ISSs and HW
IPs) and communication architecture simulation model. Note
that ISS and HDL simulator are connected to the SystemC
framework via interprocess communication (IPC) such as a
socket. A bus functional model of ISS and IP wrapper of an
HDL simulator convert memory accesses into the interface of
the communication architecture simulation model.

On the contrary, Fig. 8(b) shows the proposed framework
with SystemC simulator, where SystemC simulator plays the
role of HW simulator, not the cosimulation scheduler. Thus,
ISS and the HDL simulator must not be attached directly to the
SystemC simulation framework. All the component simulators

YI et al.: FAST AND ACCURATE COSIMULATION OF MPSoC USING TRACE-DRIVEN VIRTUAL SYNCHRONIZATION

void ahbmst_read(const unsigned addr, unsigned& data) {
myCosiminterf->readData(addr, data, 1);

}

void ahbmst_write(const unsigned addr, const unsigned data) {
myCosiminterf->writeData(addr, data, 1);

}

void cosimlinterf::readData(const unsigned addr, unsigned
data[], const int len) {
/1. Synchronize with the backplane
//2. Read data from the memory model
//3. Generate trace

}

void cosimlintef::writeData(const unsigned addr, const unsigned
data[], const int len) {
/M. Synchronize with the backplane
/12. Write data to the memory model
/3. Generate trace

}

virtual void ahbslv_read(const unsigned addr, unsigned& val)=0;

virtual void ahbslv_write(const unsigned addr, const unsigned
val)=0;

Fig. 9. Redefinition of bus interface to integrate SystemC simulation into the
proposed cosimulation framework.

are attached to the backplane via IPC and send the generated
traces. Note that bus functional model of ISS in Fig. 8(a)
is replaced with the simulation interface for memory image
model and an IP wrapper is replaced with the FLI module.
This mitigates the effort of integrating a component simulator.
Similarly, the simulator interface lies between the bus interface
module and the SystemC kernel so that neither SystemC kernel
nor HW IP is modified to apply the proposed scheme.

The Fig. 9 shows an example of how the simulator interface
[the bold box in Fig. 8(b)] implements the interface function
redefining the bus interface. The bus interface shown in the
figure is a transaction level AMBA simulation model from
Dynalith [43] while other general bus models can be redefined
similarly. The simulator interface is implemented in cosim-
Interf class and there is only one instance, myCosimlIntef. The
AMBA master interface is redefined to call cosimInterf member
functions that synchronize with the backplane. That is, it first
sends the previously written data in the memory image and
the generated traces via socket connection. Then, it receives
acknowledgement and input data, if any, and stores them in
the memory image in the simulator. It writes the data given as
argument to the memory image or reads the data in the memory
image to the buffer given as argument. Finally, it generates
the trace of the current access that contains the information of
memory access type, address, and the relative time difference
to the previous trace. Simulation API such as sc_time() is used
to reference the local clock.

On the other hand, the slave interface is a set of pure virtual
function whose implementation is defined in IP definition and
called by other masters in the bus. Thus, myCosimInterf needs
to call the slave interface of an IP, if a master in the bus tries

2195

to access the address of the IP. Therefore, in the initialization
phase, myCosimInterf must be given the pointer to each in-
stance of IPs that has the slave interface.

In summary, we may increase the abstraction level of a
component simulator as long as its simulation interface satisfies
the interface requirements. For instance, delay annotated host
code execution in SystemC may also be integrated in the mixed
level cosimulation with trace-driven virtual synchronization. In
such a case, the SystemC module plays the role of a high-level
software simulation model.

B. Parallel Cosimulation

Since event generation can be done independently in each
component simulator, the proposed technique has the potential
of getting benefits from parallel simulation. Parallel execution
of tasks in MPSoC architecture is achieved by mapping in-
dependent tasks in different cores or by executing tasks in a
pipelined way if they have dependency. In case of mapping
independent tasks in different cores, it is straightforward to
execute those component simulators in parallel with the pro-
posed scheme since there is no data dependency and component
simulators do not need to synchronize at every bus access for
local memory access.

However, in case there exists data dependency between tasks
on different cores, parallel cosimulation of those component
simulators is complicated. Parallel invocation of simulators
does not necessarily lead to parallel execution of simulators.
Fig. 10(a) illustrates pipelined execution in reality when a
task on procl and a task2 on proc2 have producer—consumer
dependency. Fig. 10(b) illustrates the serialized execution of
simulators if synchronization is performed before every write
or read operation of interprocessor communication. As in the
Fig. 10(b), the backplane repeats the invocation of simulators
and the waiting for the simulators. The backplane initially
invokes the two component simulators concurrently. The sim-
ulator2 returns to the backplane before read operation, and
so does simulatorl before write operation. At the second in-
vocation, simulator2 becomes blocked during read operation
since the buffer is empty. It cannot continue to execute until
it synchronizes with the backplane and is provided with data
produced by simulatorl. Only at the third invocation, simu-
lator2 can execute its first iteration and synchronizes again
before the read operation of the next iteration. However, at
this time, simulatorl gets blocked during write operation not
knowing that simulator2 has consumed the data. In this way,
the simulators are serialized.

To overcome this problem, we propose another synchro-
nization protocol with virtual buffer. In this protocol, time
synchronization is not performed before write operation of
interprocessor communication but the result of write opera-
tion is kept in the virtual buffer. Virtual buffer is a repre-
sentative of the pipeline buffer but whose size is enlarged
enough to enable the parallel execution of simulators without
blocking. Suppose that two tasks belong to the processors
that correspond to pipeline stage m and stage n, respec-
tively. Then, we increase the size of the pipeline buffer by
(14 (n —m)) times in the cosimulation. Due to the virtually

2196 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007
-1 ye2md 589y ﬁ.._N?h_..;!‘ Proc 1
W W=, W=
i wr N S r Proc 2
N1 | i e
I(.................... _>< _) (........... _) < _>
1st ond 3rd Nth
(a)
t d .
1€ y LA > € ormee—me— e 12 AR Simulator 1
T
Tl —,l y Simulator 2
r St-
A y
€ 1 Y P — 4. _1s_t _> o + —grd >
[T |
(b) Backplane
1st 2nd 3rd 4th
é i, 7 S v_%é__;)< - -
__________________ ST y :
r TTTmeeell N et O Ranr N4
............................. == _1St___> ..H 2_nd__ = <.._ 3_rd__ _)
A A4 A A 4 A
| = |]
(C) virtual buffer
viewpoint of simulator1 }_T
viewpoint of simulator2 |:|:|
w : Write w : Write Blocked --» :data dependency . : invoke simulator
r :Read r :ReadBlocked — :synchronization [] :waitsimulator
Fig. 10. (a) Pipelined parallel execution in MPSoC architecture when there are two write and read operations in each iteration, (b) Serialized execution of

simulators without virtual buffer, and (c) Parallel cosimulation with virtual buffer.

increased buffer size, the simulators that execute each task
do not get blocked after the initial phase, resulting in parallel
cosimulation.

Fig. 10(c) shows the pipelined parallel cosimulation with
virtual buffer. Since the original size of the buffer is 1 and
the two processors are in the consecutive pipeline stages, the
virtual buffer is set to the size of 2 =1 + 1. Simulatorl does
not synchronize with the backplane before the write operation
but it synchronizes with the backplane only if it gets blocked
during the write operation. Hence, simulatorl runs at its full
speed until it is blocked during the write operation in the third
iteration. On the other hand, simulator2 synchronizes before the
read operation in the first iteration. The backplane reconstructs
the correct state of pipeline buffer in shared memory image
merging the information on the buffer from each simulator.
As the buffer is full (with A and B), only proc2 simulator is
executed and synchronizes with the backplane before the read
operation of the next iteration.

The backplane updates the state of the buffer in its shared
memory reflecting the consumption (of A) by simulator2. Then,
both simulators can now be resumed since the buffer is neither
full nor empty. The backplane updates the production of data
(of C) after simulator]l synchronizes and also updates the
consumption of data (of B) after simulator2 synchronizes. As
such, the virtual buffer enables parallel cosimulation.

Virtual buffer technique in a trace-driven virtual synchro-
nization scheme is out-of-order simulation where a processor
simulator that corresponds to a pipeline stage m executes the
1 + 2th iteration at the same time a processor simulator that
corresponds to a pipeline stage m + 1 executes the ¢th iteration.
The memory access to the increased virtual buffer is translated
into the original buffer when the traces are aligned in the
backplane.

We can define the cosimulation time in parallel cosimulation
with trace-driven virtual synchronization as follows.

Definition 5.1. Cosimulation Time in Parallel Cosimulation
With Trace-Driven Virtual Synchronization Scheme:

p; Parallelism in simulator (0 < p; < 1).
k Total number of simulation hosts.
N Total number of simulators.

We define the index in 7" X u; X p; X st; in such a way that
T X uy X py X sty isthe largest value and 7' X uy X py X sty
is the smallest value

k
TXU1 X D1 XSt1+Z{TX’U,1; X (17]7,) XStZ‘}
N =1
+ Z {T x u; x st} +T5R X (Sync + stirans)

i=k+1

+ Ttrans X (Sttrace + Steval)~ (4)

YI et al.: FAST AND ACCURATE COSIMULATION OF MPSoC USING TRACE-DRIVEN VIRTUAL SYNCHRONIZATION

TABLE 1
PARTITIONING RESULT AND THE SIMULATION TIME
DISTRIBUTION OF H.263 DECODER EXAMPLE

Processor Element Simulation Time

Name Algorithm Block Name Distribution (%)
ARM(0) H263Reader 0.4
VLD

ARM(1) DeQuantizer 50.4
InvZigZag, etc.

IDCT(Y) IDCT_Y

IDCT(U) IDCT U 12

IDCT(V) IDCT V

ARM(2) MotioTﬁCOmpensation 24.0
DisplayFrame 24.0

The first term indicates the simulation time reduction by par-
allel cosimulation. Among NN simulators, & simulators are exe-
cuted in parallel in k£ simulation hosts and 7" X u; X p; X sty is
chosen by the definition as max(T X uj X py; X sty,...,T X
ug X pr X stg). The second term indicates the portion that
cannot be executed in parallel must be executed in serial. The
forth and the fifth terms are identical as in (2). The third term is
also the same as in (2) except the index starts from &k + 1.

VI. EXPERIMENTAL RESULTS
A. Experimental Environment and Application Example

Currently, the proposed cosimulation framework is imple-
mented in PeaCE [44] codesign environment. We evaluated the
cosimulation performance and accuracy with H.263 decoder
application. As shown in Table I, Inverse Discrete Cosine
Transform(IDCT) was mapped to hardware and the others
were mapped to three ARM926¢ej-s processors. Fig. 11 shows
the MPSoC architecture that we assume in this experiment,
where each processor has its own local bus and local memory.
Shared memory is attached to the global bus and is accessed
for interprocessor communication. IDCT hardware IPs and
Vectored Interrupt Controller (VIC) are also attached to the
global bus. Interrupts are generated by IDCTs after consuming
the input and after producing the output. Note that this example
architecture is by no means optimal but assumed to be given
somehow. Finding out the optimal architecture is beyond the
scope of this paper.

In Table I, H263Reader reads the input file of avi format
and delivers the data to the decoder frame by frame. The
other blocks except DisplayFrame are executed macroblock by
macroblock. Since we used the input file of QCIF format in
this experiment, 99 macroblocks are decoded per frame. For
each macroblock, VLD, DEQuant, InvZigzag are performed
in ARM(1), IDCT in hardware IP, and MotionCompensation
in ARM(2). The macroblock block decoding loop is executed
in parallel on two processors and hardware IPs in a pipelined
way. We performed the cosimulation until the H.263 decoder
application executes three frames (I, P, P).

In the proposed cosimulation framework, ARMulator [45]
was used for ARM processor simulator and IDCT was simu-
lated in SystemC. We used 1.8 GHz Intel Dual-Xeon machine

2197

as a simulation host and target code was built using arm-elf-
gce 3.4.5 with O3 option.

B. Comparison of Cosimulation Performance and Accuracy

We compared the proposed cosimulation performance and
accuracy against MaxSim, a well-known commercial SystemC
cosimulation environment. The proposed framework employs
trace-driven virtual synchronization and communication archi-
tecture modeling while MaxSim framework employs lock-step
synchronization and provides cycle-accurate communication
architecture simulation models.

For the cosimulation in MaxSim environment, H263Reader
was compiled with armcc in order to use the I/O modeling
support of the compiler for the file related library function such
as fopen() and so on. However, the other tasks were compiled
with arm-elf-gcc 3.4.5 as in the proposed cosimulation envi-
ronment. The portion of H263Reader task in simulated cycles
was only 1.0% (55 148 cycles). Moreover, we found that, for
H263Reader, the accuracy error in simulated cycles with arm-
elf-gcc 3.4.5 (03 option) was only —6% compared against
one with armcc. Therefore, we ignore the error related with
H263Reader task.

The result is shown in Table II. The cosimulation perfor-
mance of the proposed trace-driven virtual synchronization
scheme is about 300 kcycles/seven if the simulators are exe-
cuted serially (VS}_serial) in one simulation server. It is more
than eight times the performance improvement. As explained in
the previous section, the improvement comes from the reduced
time synchronization overheads, the removal of idle duration
simulation, and replacing memory transaction simulation in
detailed simulation model with communication architecture
modeling. On the other hand, the accuracy error is defined as

simulatedCycles,, ,oscq — sSimulatedCycles e ence

€Iror —

Simu]atedCyClesreference

and is about 5% for this example. The error arises from the
architecture modeling error as explained in the previous section
and from the little difference in the two target codes for different
cosimulation frameworks.

If the simulators are executed in parallel with the virtual
buffer (VS}_parallel), the performance is about 400 kcycles/s,
resulting in the 11 times faster speed than the reference frame-
work. The performance improvement by parallel cosimulation
against the serial cosimulation in the proposed framework is
about 28% for this example. The gain can vary depending on the
parallelism in the partitioned application. Two processors and
IDCTs are executed in a pipelined way consisting of three
stages on the dual core machine. Therefore, we can estimate
the upper bound of performance improvement by parallel
cosimulation as 100/{max(50.4,24.0 + 1.2) 4+ 0.4 + 24.0} =
1.34, where the distribution of simulation time is obtained by
executing the application serially as shown in Table I. Note that
since H263 Reader task and DisplayFrame block are executed
frame by frame, they cannot be executed in the pipelined loop of
macroblock decoding. The difference in accuracy error between
VS}_serial and VS}_parallel comes from the little difference in
the target codes due to virtual buffer.

2198

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007

Local Local ARM(2)
Memory Memory 926-ejs
> <« >

>

ARM(1) Local ARM(0)
926-ejs Memory 926-ejs
< > <
D i
vig || Shered [IDCT vic
Memory

Fig. 11. MPSoC architecture we assume in H.263 decoder example.

TABLE 1I
PERFORMANCE AND ACCURACY COMPARISON OF THE PROPOSED FRAMEWORK WITH MAXSIM
Simulated Cycles Simulation Time Speed Error Speedup
MaxSim 6.0 5,053,686 cycles 142.57 sec 35,447 cycles/sec 0% 1.00
VS_serial 5,329,886 cycles 17.20 sec 309,877 cycles/sec 5% 8.74
VS_parallel 5,261,980 cycles 13.24 sec 397,430 cycles/sec 4% 11.21
TABLE III TABLE V

PARTITIONING RESULT AND THE SIMULATION TIME
DISTRIBUTION OF DIVX PLAYER EXAMPLE

Processor Element Simulation Time

Nam Algorithm Block Name Distribution (%)
MP3 decoder 2.4
ARM(0) Avi Parser 0.2
VLD, etc 15.2
ARM(1) DeQuantizer 20.7
ARM(2) IDCT, etc 29.5
MotionCompensation, etc 16.0
ARMG) DisplayFrame 16.0
play
TABLE 1V

DISTRIBUTED PARALLEL COSIMULATION OF DIVX PLAYER EXAMPLE

Simulation Time Speedup
VS serial 24.37 sec 1.00
VS parallel with 11.87 sec 2.05

4 simulation hosts

We applied the proposed technique to the different appli-
cation in order to show that the proposed parallel cosim-
ulation can be performed as well in distributed simulation
hosts. Table III shows the mapping results of DivX player
into four ARM processor simulators. DivX player consists
of H.263 decoder, mp3 decoder, and avi file parser. The
cosimulation was performed in parallel in four distributed
simulation hosts that has 3.0 GHz Intel PentiumD processor
and each ARM processor simulator was executed in each
simulation host. The upper bound of the performance is
estimated as 100/{max(16.0, 29.5,20.7,15.2) + 16.0 + 2.4 +
0.2} = 2.08. We obtained the 2.05 times of performance im-
provement as shown in Table IV.

The result illustrates that, with the proposed parallel cosim-
ulation scheme, performance gain increases as the number

MIXED LEVEL COSIMULATION OF H.263 DECODER EXAMPLE

Simulation Time (portion) Speed
RTL (ModelSim) 54.13 sec (71.50%) 2, 177 cycles/sec
SystemC 0.25 sec (0.33%) 470,448 cycles/sec
ISS (ARMulator) 19.10 sec (25.23%) 222,206 cycles/sec
Backplane 2.23 sec (2.95%) N/A
Overall 75.71 sec (100.00%) 70,883 cycles/sec

of processor simulators does, just like in the real MPSoC
architecture.

Finally, Table V shows the results of the mixed level cosimu-
lation where two different abstraction levels of hardware simu-
lators are cosimulated with an ISS. Both MotionCompensation
and IDCT blocks are mapped to hardware but MotionCompen-
sation is modeled in RTL and simulated in modelSim while
IDCTs are modeled in TLM and simulated in SystemC simula-
tor. The other blocks and tasks are mapped to an arm926ej-s
core and simulated on the ARMulator. In the mixed level
cosimulation with the proposed scheme, although HDL sim-
ulator is the bottleneck of the overall performance, the overall
performance is not bound to the performance of HDL simulator.
The overall cosimulation performance is still over 70 kcycles/s
in this example.

VII. CONCLUSION

In this paper, we have proposed a novel HW/SW cosim-
ulation technique which enables fast and accurate hard-
ware/software cosimulation for MPSoC. Trace-driven virtual
synchronization scheme boosts the speed of cosimulation by
reducing the time synchronization overhead to almost zero,
while it considers dynamic behavior of the system such as
OS scheduling and contention in the bus. We have proved
the validity of the proposed time synchronization scheme and

YI et al.: FAST AND ACCURATE COSIMULATION OF MPSoC USING TRACE-DRIVEN VIRTUAL SYNCHRONIZATION

analyzed the performance gain factors of the proposed scheme
against the lock-step synchronization one.

Two enhanced cosimulation techniques that utilize the pro-
posed time synchronization scheme are also presented; one is
a fast mixed level cosimulation where SystemC simulation is
seamlessly integrated and the overall cosimulation speed is not
bound to the speed of the lowest abstraction level simulator.
The other is parallel cosimulation technique for a pipelined
parallel execution where out-of-order parallel cosimulation is
performed on distributed simulation hosts or different cores in
a multicore machine. Through parallel SystemC cosimulation,
it is shown that the simulation speed can be boosted up as the
real system does with parallel processors.

Compared with MaxSim, a well-known SystemC cosimu-
lation framework, the proposed framework showed 11 times
faster cosimulation speed while the error was maintained below
5% for H.263 decoder example.

ACKNOWLEDGMENT

The ICT and ISRC at Seoul National University and IDEC
provided research facilities for this study.

REFERENCES

[1] W. Wolf, “Hardware-software co-design of embedded systems,” Proc.
IEEE, vol. 82, no. 7, pp. 967-989, Jul. 1994.

[2] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,
“MPARM: Exploring the multi-processor SoC design space with
SystemC,” J. VLSI Signal Process., vol. 41, no. 2, pp. 169-182, Sep. 2005.

[3] ARM Ltd., RealView MaxSim. [Online]. Available: http://www.arm.com/
products/DevTools/MaxSim.html

[4] C. Valderrama, F. Nacabal, P. Paulin, and A. Jerraya, “Automatic gen-
eration of interfaces for distributed C-VHDL cosimulation of embedded
systems: An industrial experience,” in Proc. Rapid Syst. Prototyp., 1996,
pp. 72-77.

[5] D. Becker, R. Singh, and S. Tell, “An engineering environment for hard-
ware/software co-simulation,” in Proc. Des. Autom. Conf., Jun. 1992,
pp. 129-134.

[6] W. Sung and S. Ha, “A hardware software cosimulation backplane with
automatic interface generation,” in Proc. Asia South Pac. Des. Autom.
Conf., 1998, pp. 177-182.

[7] C. Passerone, L. Lavagno, C. Sansoe, M. Chiodo, and A. Sangiovanni-
Vincentelli, “Trade-off evaluation in embedded system design via co-
simulation,” in Proc. Asia and South Pac. Des. Autom. Conf., Jan. 1997,
pp. 291-297.

[8] C. Passerone, L. Lavagno, M. Chiodo, and A. Sangiovanni-Vincentelli,
“Fast hardware/software co-simulation for virtual prototyping and trade-
off analysis,” in Proc. Des. Autom. Conf., Jun. 1997, pp. 389-394.

[9] V. Zivojnovic and H. Meyr, “Compiled HW/SW co-simulation,” in Proc.
Des. Autom. Conf., Jun. 1996, pp. 690-695.

[10] B. Tabbara, M. Sgroi, A. Sangiovanni-Vincentelli, E. Filippi, and
L. Lavagno, “Fast hardware-software co-simulation using VHDL
models,” in Proc. Des. Autom. Test Eur., Mar. 1999, pp. 309-316.

[11] T. Grotker, S. Liao, G. Martin, and S. Swan, System Design With SystemC.
Norwell, MA: Kluwer, 2002.

[12] L. Cai and D. Gajski, “Transaction level modeling: An overview,” in Proc.
Hardware/Software Codes. Syst. Synth., Oct. 2003, pp. 19-24.

[13] L. Semeria and A. Ghosh, “Methodology for hardware/software co-
verification in C/C++,” in Proc. Asia South Pac. Des. Autom. Conf., 2000,
pp. 405-408.

[14] A. Bouchhima, S. Yoo, and A. Jerraya, “Fast and accurate timed
execution of high level embedded software using HW/SW interface sim-
ulation model,” in Proc. Asia and South Pac. Des. Autom. Conf., 2004,
pp. 469-474.

[15] CoWare Inc., ConvergenSC. [Online]. Available: http://www.coware.com/
products/

[16] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino,
“SystemC cosimulation and emulation of multiprocessor SoC designs,”
Computer, vol. 36, no. 4, pp. 53-59, Apr. 2003.

2199

[17] F. Fummi, S. Martini, G. Perbellini, and M. Poncino, “Native ISS-
SystemC integration for the co-simulation of multi-processor SoC,” in
Proc. Des. Autom. Test Eur., Mar. 2004, pp. 564—-569.

[18] L. Formaggio, F. Fummi, and G. Pravadelli, “A timing-accurate HW/SW
co-simulation of an ISS with SystemC,” in Proc. Hardware/Software
Codes. Syst. Synth., Sep. 2004, pp. 152-157.

[19] F. Fummi, M. Loghi, S. Martini, M. Monguzzi, G. Perbellini, and
M. Poncino, “Virtual hardware prototyping through timed hardware-
software co-simulation,” in Proc. Des. Autom. Test Eur., Mar. 2005,
pp- 798-803.

[20] P. Gerin, S. Yoo, G. Nicolescu, and A. Jerraya, “Scalable and flexible
cosimulation of SoC designs with heterogeneous multi-processor target
architectures,” in Proc. Asia and South Pac. Des. Autom. Conf., Jul. 2001,
pp. 63-68.

[21] A. Sayinta, G. Canverdi, M. Pauwels, A. Alshawa, and W. Dehaene,
“A mixed abstraction level co-simulation case study using SystemC for
system-on-chip verification,” in Proc. Des. Autom. Test Eur., Mar. 2003,
pp. 95-100.

[22] R.Fujimoto, “Parallel discrete event simulation,” Commun. ACM, vol. 33,
no. 10, pp. 30-53, Oct. 1990.

[23] K. M. Chandy and J. Misra, “Asynchronous distributed simulation via
a sequence of parallel computations,” Commun. ACM, vol. 24, no. 11,
pp. 198-206, Apr. 1981.

[24] D.R. Jefferson, “Virtual time,” ACM Trans. Program. Lang. Syst., vol. 7,
no. 3, pp. 404425, Jul. 1985.

[25] W. Sung and S. Ha, “Efficient and flexible cosimulation environment for
DSP applications,” IEICE Trans. Fundam. Electron., Commun. Comput.
Sci.—Special Issue VLSI Design CAD Algorithms, vol. E§1-A, no. 12,
pp- 2605-2611, Dec. 1998.

[26] J. Jung, S. Yoo, and K. Choi, “Performance improvement of multi-
processor systems cosimulation based on SW analysis,” in Proc. Des.
Autom. Test Eur., Mar. 2001, pp. 749-753.

[27] M. Chung and C. Kyung, “Enhancing performance of HW/SW cosimula-
tion and coemulation by reducing communication overhead,” IEEE Trans.
Comput., vol. 55, no. 2, pp. 125-136, Feb. 2006.

[28] S. Mukherjee, S. Reinhardt, B. Falsafi, M. Litzkow, S. Huss-Lederman,
M. Hill, J. Larus, and D. Wood, “Fast and portable parallel architecture
simulators: Wisconsin wind tunnel II,” IEEE Concurrency, vol. 8, no. 4,
pp. 12-20, Oct.—Dec. 2000.

[29] S. Yoo and K. Choi, “Optimistic distributed timed cosimulation based
on thread simulation model,” in Proc. Int. Workshop Hardware/Software
Codes., Mar. 1998, pp. 71-75.

[30] K. Hines and G. Borriello, “Dynamic communication models in em-
bedded system co-simulation,” in Proc. Des. Autom. Conf., Jun. 1997,
pp- 395-400.

[31] Mentor Graphics, Inc., SeamlessCVE. [Online]. Available: http://www.
mentorg.com/seamless

[32] R. Uhlig and T. Mudge, “Trace-driven memory simulation: A survey,”
ACM Comput. Surv., vol. 29, no. 2, pp. 128-170, Jun. 1997.

[33] S. Goldschmidt and J. Hennessy, “The accuracy of trace-driven simula-
tions of multiprocessors,” in Proc. Meas. Model. Comput. Syst., Jun. 1993,
pp. 146-157.

[34] F. Terpstra, S. Polstra, A. Pimentel, and B. Hertzberger, “Rapid evaluation
of instantiations of embedded systems architectures: A case study,” in
Proc. Progress Workshop Embed. Syst., Oct. 2001, pp. 251-260.

[35] E. Kock, G. Essink, W. Smits, P. Wolf, J. Brunel, W. Kruijtzer,
P. Lieverse, and K. Vissers, “Yapi: Application modeling for signal
processing systems,” in Proc. Des. Autom. Conf., Jun. 2000, pp. 402—405.

[36] D. Kim, C. Rhee, and S. Ha, “Combined data-driven and event-driven
scheduling technique for fast distributed cosimulation,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 5, pp. 672-678,
Oct. 2002.

[37] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:
Concepts and Design, 4th ed. Reading, MA: Addison-Wesley, 2005,
pp. 755-759.

[38] Y. Yi, D. Kim, and S. Ha, “Fast and time-accurate cosimulation with
OS scheduler modeling,” Des. Autom. Embed. Syst., vol. 8, no. 2/3,
pp- 211-228, Sep. 2003.

[39] T. Oh, Y. Yi, and S. Ha, “Communication architecture simulation on the
virtual synchronization framework,” in Proc. Int. Workshop Syst., Archit.,
Model. Simul., Jul. 2007, pp. 1-10.

[40] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Extending the transac-
tion level modeling approach for fast communication architecture explo-
ration,” in Proc. Des. Autom. Conf., Jun. 2004, pp. 113-118.

[41] G. Schirner and R. Domer, “Accurate yet fast modeling of real-
time communication,” in Proc. Hardware/Software Codes. Syst. Synth.,
Oct. 2006, pp. 70-75.

2200

[42] D. Kim, Y. Yi, and S. Ha, “Trace-driven HW/SW cosimulation using
virtual synchronization technique,” in Proc. Des. Autom. Conf., Jun. 2005,
pp. 345-348.

[43] Dynalith. [Online]. Available: http://www.dynalith.com

[44] S. Ha, C. Lee, Y. Yi, S. Kwon, and Y. Joo, “Hardware-software codesign
of multimedia embedded systems: The PeaCE approach,” in Proc. Embed.
Real-Time Comput. Syst. Appl., Aug. 2006, vol. 1, pp. 207-214.

[45] ARM Ltdl, RealView ARMulator. [Online]. Available: http://www.arm.
com/products/DevTools/Real ViewDevSuite.html

[46] Mentor Graphics, Inc., ModelSim. [Online]. Available: http:/www.
mentor.com/products/fv/digital _verification/modelsim_se/index.cfm

Youngmin Yi (M’07) received the B.S. degree in
computer engineering and the M.S. and Ph.D. de-
grees in electrical engineering and computer science
from Seoul National University, Seoul, Korea, in
2000, 2002, and 2007, respectively.

He was a Research Fellow with the Embedded
Software Institute, Korea University, Seoul. He is
currently a Postdoctoral Researcher with the Uni-
versity of California, Berkeley. His research interest
includes hardware/software codesign, system-level
simulation, and embedded software design for
multiprocessor system-on-chip.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007

Dohyung Kim received the B.S. degree in computer
engineering and the M.S. and Ph.D. degrees in elec-
trical engineering and computer science from Seoul
National University, Seoul, Korea, in 1997, 1999,
and 2004, respectively.

He was a Postdoctoral Researcher with Seoul Na-
tional University, in 2004, and with the University
of California at San Diego, La Jolla, from 2005
to 2006. He is currently a Software Engineer with
Google, Inc., Mountain View, CA, starting from
2007. His research interest includes various aspects
of multiprocessor systems such as specification, performance prediction and
simulation.

Soonhoi Ha (S’87-M’94) received the B.S. and
M.S. degrees in electronics engineering from Seoul
National University, Seoul, Korea, in 1985 and 1987,
respectively, and the Ph.D. degree in electrical engi-
neering and computer science from the University of
California at Berkeley, Berkeley, in 1992.

He was with Hyundai Electronics Industries Cor-
poration, Seoul, from 1993 to 1994 before he joined
the faculty of the School of Electrical Engineering
and Computer Science, Seoul National University,
where he is currently a Professor. He is a Program
Cochair of CODES+ISSS’2006, ASPDAC’2008, and ESTIMedia’2005-2006.
He has been a member of the technical program committee of several technical
conferences including DATE, CODES-+ISSS, and ASP-DAC. His primary
research interests are various aspects of embedded system design including
hardware/software codesign, design methodologies, and embedded software
design for multiprocessor system-on-chip.

