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Abstract- In this paper, a new direction of arrival (DOA) 

estimation algorithm, direction lock loop (DiLL), is proposed. 
It has a similar concept to the delay lock loop (DLL) that is 
used for synchronization. It estimates the DOA of a signal by 
iterations, and can track the DOA of a moving source. The 
DiLL scheme is found to track better than the DOA 
estimation scheme based on the PASTd, and its performance 
is less sensitive to the DOA of a signal than that of the DOA 
estimation scheme based on the PASTd. The DOA estimation 
accuracy and the tracking capability are demonstrated by 
analysis and computer simulations. 

I. INTRODUCTION 

The demand for wireless communication services is 
growing at an explosive rate. To enhance the capacity of 
wireless communication systems, space division multiple 
access (SDMA) systems are of considerable interest. The 
SDMA systems are implemented by using smart antenna 
systems. In recent years, smart antenna systems based on 
direction of arrival (DOA) estimation methods have been 
developed. The problem of estimating the DOA of signals 
from array data is well documented in [1]. Eigen structure 
methods such as MUSIC and ESPRIT have been found 
widespread use in providing estimates of the DOA of 
signals [2], [3]. However, the computational burden of the 
eigen analysis increases significantly with the number of 
antenna elements. 

To reduce the complexity of the eigen methods, 
projection approximation subspace tracking with deflation 
(PASTd) was proposed by Yang [4], [5]. This algorithm 
tracks the signal subspace recursively. Using this algorithm, 
the eigenvectors may be tracked easily. However, the 
PASTd algorithm is not for DOA estimation but for signal 
subspace estimation. Thus, an additional DOA estimation 
algorithm such as MUSIC or ESPRIT, is required to 
estimate the DOA of signals. 

In this paper, a new DOA estimation algorithm is 
proposed. Since this algorithm is similar to the delay lock 
loop (DLL) used for synchronization [6], it is referred to as 
the direction lock loop (DiLL) scheme in this paper. An 
error signal for DOA estimation is generated from the 
correlation of an input signal and the array response vectors 
whose directions are ±∆θ shifted from the DOA estimate. 
This error signal is used to update DOA estimates 
iteratively. The DiLL does not require a separate DOA 
estimation. Thus, the DiLL scheme is conceptually simple, 
and tracks a moving source by iterations. 

This paper is organized as follows. The system model is 
shown in Section II. In Section III, the new DOA 
estimation scheme, DiLL is presented and the 
characteristics of the DiLL scheme are explained. The 
performance analysis of the DiLL scheme is shown in 
Section IV. In Section V, numerical results are given. 
Conclusions are drawn in Section VI. 

II. SYSTEM MODEL 

Consider a uniform linear array with N half-wavelength 
spacing antenna elements. For simplicity of explanation, 
the single user case is investigated in this paper. Thus, the 
received signal may be represented as 

( ) )()()( ttdt var +θ=                                                           (1) 
where 

l [ ]TN trtrt )(,),()( 1 L=r  is an N×1 vector of 
received signals at time t; 

l ( )θa  is the array response vector for a signal with a 
DOA θ. The value of θ  is constant when the source is 
fixed, or varies when the source is moving. The vector 

( )θa  is defined as 

        ( )[ ]Tsin1sin0)( θπ−θπ=θ Njjj eee La ; 
l )(td  is a source signal at time t, and it is assumed 

1)(
2 =td  for simplicity of explanation; 

l v(t) is an N×1 additive noise vector, which is assumed 
to be spatially and temporally white, having Gaussian 
distribution with covariance matrix σ2 I, where σ2 is 
the noise variance. 

III. DIRECTION LOCK LOOP (DILL) 

A. Principles of the DiLL Scheme 

In this subsection, the principle of the DiLL scheme is 
explained. Fig. 1 shows a block diagram of the DiLL 
scheme. Note that its structure is similar to the DLL for 
time-domain synchronization. The received signal vector is 
correlated simultaneously with right-shifted and left-shifted 
array response vectors ( )( )θ∆+θ iˆa  and ( )( )θ∆−θ iˆa  to 
produce correlator outputs )(izR

 and )(izL
, when the DOA 

estimate at the ith time is ( )iθ̂  and the shift angle is ∆θ 
which is set to a constant value regardless of θ, for 
simplicity of explanation. The correlator outputs )(izR

 and 
)(izL
 may be represented as  
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where ( )21, θθR  is a normalized spatial correlation function, 
which is defined as 
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( ) ( )( ) ( )ii
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iv H
R va θ∆+θ= ˆ1 , ( ) ( )( ) ( )ii

N
iv H

L va θ∆−θ= ˆ1 , and 

the superscript H denotes the Hermitian transpose. 
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The difference between the amplitude-squares of two 
correlator outputs is used to produce an error signal )(ie , 
which is defined as  

( )( ) ( )iviGizizie eLR +θθ=−= ˆ)()()(
22                               (4) 

where ( )( )θθ iG ˆ  is a direction discriminator characteristic 
and is defined as 

( )( ) ( ) ( ) 22
)ˆ,()ˆ,(ˆ θ∆−θθ−θ∆+θθ=θθ iRiRiG                       (5) 

and ( )ive
 is defined as 

( ) ( ) ( )
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The characteristics of ( )( )θθ iG ˆ  determine the DOA 
estimation performance of the DiLL and the plot of 

( )( )θθ iG ˆ  is referred to the S-curve. The error signal, e(i) is 
filtered and fed to the numerically controlled oscillator 
(NCO) to update DOA estimates iteratively. Hence, the 
DOA estimate at the (i+1)th time may be expressed as  

( ) ( )( )ifieKii ⊗⋅+θ=+θ 0)(ˆ)1(̂                                           (7) 
where f(i ) is the impulse response of the loop filter, 

0K  is 
the NCO gain, and ⊗ denotes convolution. 

Fig. 2 shows the plot of ( )θθ̂G  as a function of θ̂ , using 
(5), when o0=θ , N=4, and ∆θ=12.24°. When the DOA 
estimate at the ith time ( )iθ̂  is less than the actual DOA θ, 
the error signal is larger than zero, and thus NCO increases 
the DOA estimate value at the (i+1)th time. When ( )iθ̂  is 
larger than θ, the error signal is less than zero, and thus 
NCO decreases ( )1ˆ +θ i . Repeating this procedure, the DOA 

estimate ( )iθ̂  converges to the DOA of the signal θ. When 
the DOA of the signal is time varying, the DiLL algorithm 
tracks the DOA of a moving source through  iterations. 

Note that the negative S-curve slope value ensures that 
the DOA estimate ( )iθ̂  converges to an actual DOA, θ, 
when the initial DOA estimate is in a certain range which is 
called a locking range. As shown in Fig. 2, 

+θ ,zc
 is the 

smallest positive value of θ̂ , at which the S-curve has a 
zero value. Similarly, 

−θ ,zc
 is the smallest negative value of 

θ̂ , at which the S-curve has a zero value. The locking 
range for the DiLL is defined as ( )+− θθ zczc ,  in this paper. 

Since it is difficult to exactly determine 
+θ ,zc

 and 
−θ ,zc

, 

+θ ,zc
 may be approximated as 

+θ , which is the smallest 

positive value of θ̂ , at which ( )2ˆ, θ∆−θθR  has a zero value. 

Similarly, 
−θ ,zc
 may be approximated as 

−θ , which is the 

smallest negative value of θ̂ , at which ( )2ˆ, θ∆+θθR  has a 

zero value. From (5), the S-curve is always zero when θ̂  is 
±90°. From these results, 

+θ ,zc
 and 

−θ ,zc
 are approximated 

as [7] 
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From (8), it is shown that the locking range is inversely 
proportional to N, and increases as θ∆  increases. 

The slope of the S-curve at θ=θ̂  plays an important 
role in the DiLL scheme like the DLL scheme [6]. The 
slope of the S-curve s(θ) at θ=θ̂  is calculated as 

( ) ( )( )
( )

( ) θθ
θ

θθ
θ

=
∂

∂
=

i
i

iG
s

ˆ
ˆ

ˆ .                                                        (9) 

Fig. 3 shows the slope of the S-curve as a function of θ∆  
using (9), when θ =0° and N =8. Note that the slope value 
oscillates between positive and negative values. It is 
required for the DiLL scheme to be operated properly that 
the slope of the S-curve should be negative and the value of 
∆θ should be chosen as the less one than the first zero 
crossing point. The ∆θ values in Table 1 are what 
maximize the magnitude of the slope of the S-curve, when 
θ=0° for N=2,4 and 8. 

 

B. Characteristics of the modification factor 

In the DiLL scheme, to estimate the DOA of a signal 
correctly, the value of the S-curve should be zero when 

( ) θ=θ iˆ . When θ=0°, N=4 and ∆θ=12.24°, the value of the 
S-curve is zero. This ensures that θ̂  converges to 0° 
through iterations. However, ( )( )θθ=θ iG ˆ  is not always 
zero. Fig. 4 shows the S-curve for θ=60°, N=4 and 
∆θ=12.24°, and indicates that ( )iθ̂  does not approach to 60° 
but to 62.4°. This means that the DiLL scheme is a biased 
estimator. When θ=θ̂ , ( )[ ] ( )θθ= GieE . It is found from (5) 

that ( )θθG  may be represented as 
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The term in (10), ( )( ) ( )( )θ−θ∆+θ−θ∆−θ−θ sinsinsinsin , 
is  not generally zero due to the nonlinearity of the sine 
function. This is why ( )θθG  is not generally zero.  From 

(10), ( )θθG  is found to increase as ∆θ increases. 

To remove the bias, the error signal should be modified 
as follows. For simplification of representation, ( )θθG  is 
referred to as ( )θm , the modification factor. The modified 
error signal ( )iem

 is represented as  

( ) ( ) ( ) ( ) ( )θ−−=θ−= mizizmieie LRm
22

)( .                      (11) 

In (11), the actual DOA θ is needed to estimate a 
modification factor. However, θ is not available in the 
DOA estimation algorithm. In the DiLL scheme, the DOA 
estimate θ̂  is used for the modification factor estimation. 
Thus, the equation (11) may be changed to 

( ) ( ) ( ) ( ) ( )ivGmizizie emLRm +θθ=θ−−= ˆˆ)(ˆ 22                   (12) 

where ( ) ( ) ( )θ−θθ=θθ
∆

ˆˆˆ mGGm
, and its characteristic plot is 

called the modified S-curve. Fig. 4 shows the modified S-
curve for o60=θ . Note that it has a zero value at o60ˆ =θ  



and has a negative slope value. The DOA estimate at the 
(i+1)th time may be expressed as 

( ) ( )( )ifieKii m ⊗⋅+=+ ˆ)(̂)1(̂ 0θθ .                                     (13) 

IV. PERFORMANCE ANALYSIS 

In this section, the DOA estimation error variance for the 
DiLL scheme is analyzed. The DOA estimation error at the 

ith time ( )iε  may be defined as ( ) ( )ii θ−θ=ε
∆

ˆ . From (12) 
and (13), the DOA estimation error at  the (i+1)th time may 
be expressed as  

( ) ( ) ( )( ) ( )( ) ( )ifiviGKii em ⊗+θθ⋅−ε=+ε ˆ1 0
.                     (14) 

If the DOA estimation error is small enough, ( )( )θθ iGm
ˆ  

may be approximated as ( ) ( )ism εθ− , where 
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the DOA estimation error may be approximated as 
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Thus, the DOA estimation error may be represented in 
the z-domain as 
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where ( )zF  is the z-transform of the loop filter ( )if . 
Therefore, using (16), the  DOA estimation error variance 
in the steady state, 2

sεσ , may be expressed as [6] 
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                                                          (17) 

where 
LB  is the two-sided noise bandwidth of the closed 

loop transfer function, ( ) ( ) ( )
( ) ( )( ) 1
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using (6), the variance of ( )ive
 may be expressed as 
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where ( )sq ε  is defined as 
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ssq , ( )sq ε  may be represented as [6] 
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Using (17), (18) and (20), 2
sεσ  may be represented as 
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or solving for 2

sεσ  
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where
2

1
σ

=ρ
∆

and 

( ) ( ) ( )( )θ∆−θθ∆+θθ∆−θθθ∆+θθ−γ=ξ ∗
∆

,,,Re2 RRR . When the 
BL/ρ is small, 2

sεσ  of the DiLL can be linearly 

approximated as in (15), thus 
( ) 1

2
2 <<

ρ⋅θ⋅
α

m

L

sN
B  like the DLL 

scheme [6]. Since the signal power is assumed to be 1 and 
the noise variance is 2σ  for each antenna element, as 
described in Section II, ρ represents the signal-to-noise 
(SNR). From (22), 2

sεσ  is inversely proportional to SNR. 

V. NUMERICAL RESULTS 

In this section, the analysis and simulation results for the 
DOA estimation error variance, 2

sεσ  are shown to compare 
the performance of the DiLL and PASTd based DOA 
estimation algorithm. A uniform linear array of omni-
directional antenna elements with half-wavelength spacing 
is used for analysis and simulation. Analysis and 
simulation are performed for a single user case. The 
parameters used in the analysis and simulation are selected 
to make the DOA estimation error variances for both 
scheme be equal with SNR=10dB, θ=18°. For the DiLL 
scheme, the NCO gain 

0K  is set equal to 0.05, and the one-
pole IIR filter with forgetting factor 0.9 is used for the loop 
filter whose z-transform is 

19.01
1.0

)( −−
=

z
zF . The values in 

Table 1 are used for ∆θ regardless of the DOA of a signal. 
They maximize the absolute value of the slope in the S-
curve for each N. For the PASTd, the forgetting factor is 
set equal to 0.97 and the initial value of the eigenvalue 
estimate is chosen to be one [5]. After each subspace 
update, ESPRIT [3] is applied to compute the DOA of 
signals from the signal subspace estimate [4], [5]. 

A. DOA estimation accuracy vs. DOA of signal θ 

Fig. 5 shows how 2
sεσ  for the DiLL scheme varies with 

the DOA of a signal for N=2, 4, and 8, when SNR is 10dB. 
In this figure, the simulation results for the DiLL with an 
unmodified error signal and the PASTd with ESPRIT are 
also shown when N =8. Note that the simulation and 
analytical results for the DiLL scheme are very close. 2

sεσ  
for the DiLL scheme using a modified error signal is found 
to be relatively insensitive to θ in comparison with those 
for the DiLL using an unmodified error signal, and the 
PASTd with ESPRIT. Thus, the DOA estimation accuracy 
of the DiLL becomes better than that of the PASTd with 
ESPRIT as the magnitude of θ increases. 

B. DOA tracking for a moving source 

In this subsection, the tracking performance of the DiLL 
scheme is investigated when N=8, SNR=10dB, and the 
parameters are same as the previous simulation. Fig. 6 
shows the trajectories and the tracking error of the DiLL 
scheme and PASTd with ESPRIT. Fig. 6 (a) shows the true 
trajectory of a DOA over time, and the trajectories tracked 
using the DiLL scheme and the PASTd with ESPRIT. The 
DOA θ(i) stays at 18° for the first 100 symbol period, and 
then the DOA of a signal varies as 

( )
o









+






 −

−=θ 18
1000

100
sin60

i
i  from the 100th to the 4000th 

symbol time. Fig. 6 (b) shows for the two scheme the 
squares of the DOA tracking error, obtained by ensemble 
averaging over 100 independent trials. For the PASTd with 



ESPRIT scheme, when the DOA of a signal start to change 
at the 100th symbol time, the DOA tracking error increases 
significantly, and then, the DOA tracking error decreases as 
the rate of the DOA angle change decreases. The DOA 
tracking error again increases, as the rate of DOA angle 
change increases. Unlike the PASTd with ESPRIT, the 
DiLL scheme is relatively insensitive to the variation in the 
rate of DOA angle change.  The reason is that if BL is larger 
than the rate of DOA angle change, the tracking error is 
only related with the noise variance. Thus, the tracking 
error is insensitive to the rate of DOA angle change.  

From these results, it is found that the DiLL scheme has 
the better tracking capability than the PASTd with ESPRIT 
when the two schemes have the same DOA estimation 
error variance. 

VI. CONCLUSIONS 

In this paper, a DOA estimation algorithm, DiLL is 
proposed and analyzed. It estimates the DOA of a signal 
iteratively by using the difference of the correlation of an 
input signal and the array response vectors whose 
directions are ±∆θ shifted from the DOA estimate.  

The DiLL scheme is found to track better than the 
PASTd based DOA estimation scheme, and its 
performance is less sensitive to the DOA of a signal than 
that of the PASTd based DOA estimation scheme when the 
two scheme have the same DOA estimation error variance.  
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Table 1. ∆θ 
 ∆θ (degrees) 

N=2 26.28° 
N=4 12.24° 
N=8 6.12° 
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Fig.1. Block diagram of the DiLL scheme 
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Fig. 2. S-curve (θ=0°, N=4, ∆θ=12.24°) 
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 Fig. 3. The slope of the S-curve (θ=0°, N=8) 
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Fig. 4. Modified and Unmodified S-curves  

(θ=60°, N=4, ∆θ=12.24°) 
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Fig. 6. DOA tracking of the time-varying θ(i) 


