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Performance Comparison of FFH and MCFH Spread-Spectrum Systems
with Optimum Diversity Combining in Frequency-Selective
Rayleigh Fading Channels
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Abstract—in this letter, the performance of frequency-hopping
spread-spectrum systems employing noncoherent reception and
transmission diversity is analyzed for frequency-selective Rayleigh b, BFSK ") R
fading channels. Two different types of transmission diversity sys- modulator "
tems, a fast frequency-hopping (FFH) system and a multicarrier \T/ T
frequency-hopping (MCFH) system, are investigated. In order to RF

Hopper osciltator

combine received signals from transmit diversity channels, the op-
timum diversity combining rule based on the maximum-likelihood
criterion is developed. Probability of error equations are derived,
and utilized to evaluate the performance of the two systems.
MCFH systems are found to outperform FFH systems when the

@)

channel delay spread is severe, while FFH systems are superior Noncoherent Combining | b,
to MCFH systems when a channel varies rapidly. Furthermore, Detector " Logic [
it is found that performance enhancement due to an increase of

diversity order is more significant for MCFH systems than for RF

FFH systems in frequency-selective fading channels. The effect oscillator | | Denopper

of frequency-selective fading is also investigated in determining

optimum frequency deviations of binary frequency-shift keying Q)

signals. Fig. 1. FFH system block diagrams. (a) Transmitter. (b) Receiver.

Index Terms—DPiversity methods, frequency-hop communica-
tion, frequency-selective Rayleigh fading, frequency-shift keying, ~ Transmission diversity provides protection against jam-

spread-spectrum communication. ming, multiple-access interference, and fading. For FHSS
systems, the diversity may be realized in the form of fast fre-
|. INTRODUCTION guency-hopping (FFH) and multicarrier transmission. FFH is a

conventional diversity technique in FHSS systems; multicarrier
FREQUENCY'HOPPING spread-spectrum (FHSS) Sy$zansmission is an alternative diversity technique in FHSS
tems have been widely used in military communicationgy stems. In an FFH system, diversity is obtained by changing a
Demands for high data rate services in FHSS systems haig,qmit frequency more than once over one symbol duration.
been increasing. In high data rate systems, the effects qfg yransmit frequency is selected from the entire transmit
frequency-selective fading should be considered due 0 @8q,ency band. In a multicarrier frequency-hopping (MCFH)
increase in the ratio of delay spread to symbol duration. TREstem the total frequency band is partitioned into several
effects of frequency-selective fading on an FHSS syst€fiiigint subbands on which replicas of the same signal are
employing orthogonal binary frequency-shift keying (BFSKYjmtaneously transmitted. Each replica hops independently in
signals are investigated in [1] and [2] under the assumptiqQ q,phand. FFH systems have attracted considerable interest
that the frequency separation between two orthogonal BFQy their performance has been widely studied over the past
signals is large enough for the correlation between two corgy, qecades [4], [5]. Recently, a multicarrier transmission
lator outputs to be negligible. In practice, it is advantageo&gchnique has been proposed and the use of MCFH has been
to use the minimum frequency separation in m“”ip'e'accer?ﬁ/estigated for coherent FHSS systems employing binary
env?ronments to incr_ease the number of .frfaquency slots tﬁ’ﬁase—shift keying (BPSK) in [6]. However, in FHSS systems,
a given total bandwidth [3]. When the minimum freqUencyyperent demodulation for BPSK signal is relatively difficult.
separation is employed, the correlation between two Co”elaﬁ‘équency-shiﬂ keying (FSK) modulation with noncoherent

outputs as a result of frequency-selective fading and fast fadigg,oqulation is typically employed in FHSS systems [1]-[5].
may be significant, and it is not assumed negligible in this Iett‘?—ﬁence in this letter. BESK modulation and noncoherent

demodulation are assumed to be employed for both FFH and

Paper approved by Z. Kostic, the Editor for Wireless Communication of tfCFH systems. Block diagrams of the FFH system and the
IEEE Communications Society. Manuscript received June 5, 1999; revised MgyCFH system are shown in Figs. 1and?2 respectively. MCFH
12, 2000. This work was supported by the Brain Korea 21 Project. This paper . . '
was presented in part at the 10th IEEE Symposium on Personal, Indoor é%?t.ems.requ'r_e more devices than F.FH systems. However, the
Mobile Radio Communications (PIMRC'99), Osaka, Japan, September 199devices including frequency synthesizer for FFH systems are

The authors are with the School of Electrical and Computer Engineeri%quired to operate more rapidly than those for MCFH systems.
Seoul National University, Seoul 151-742, Korea (e-mail: osshin@molzh f EEH be f ible for hiah d
bile.snu.ac.kr; Klee@snu.ac.kr). e use o system may not be feasible for hig ata rate

Publisher Item Identifier S 0090-6778(01)02168-7. systems, due to its high speed requirements.

0090-6778/01$10.00 © 2001 IEEE



410 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 3, MARCH 2001

derived. In Section IV, performance evaluation is presented and
performance comparisons between FFH and MCFH systems are
made. Finally, conclusions are drawn in Section V.

Hopper 1

b, BFSK
modulator

Il. SYSTEM AND CHANNEL MODELS

Ho RF The systems considered in this letter are FHSS systems with
oscilator BFSK modulation, noncoherent detection, and diversity order
L. Diversity order refers to the number of hops per symbol for
FFH systems and the number of subbands for MCFH systems.
Each transmit diversity channel is modeled as a frequency-se-
lective Rayleigh fading process and is assumed to be indepen-
dently faded. The maximum delay spread of each diversity re-
ception is assumed to be smaller than one hop duration for FFH
N systems, which is smaller than the symbol duration. Itis also as-
sumed that one symbol is transmitted during one hop duration in
MCFH systems, and adjacent symbols in time are transmitted in
Nomooherent | b, far distant frequency slots such that multipath interference from
—"@—' Detector ™| Combining ’ the previous symbol is negligible.
kogre Transmitter block diagrams of FFH and MCFH systems are
- Dehopper 2 : depicted, respectively, in Figs. 1(a) and 2(a). The complex base-
) band equivalent of the transmitted signal for each system can be
represented as

pper 2

Hopper L

@

Noncoherent
Detector

e

Dehopper 1

Noncoherent N
@ Detector it
F27(fe. w4+br fa)t+de. &
k=0£=0
(®) o) = pr, (t — KT — ¢T3,); FFH @
Fig. 2. MCFH system block diagrams. (a) Transmitter. (b) Receiver. ilf et S )
‘/2563 TJe, k kJd e,k
i o H H : . k=0£=0
For systems employlng transmission dlverS|ty, dlver3|ty L pr (t—kT;)' MCEH
h [V}

receptions should be combined in some way in the receiver. ) ) ) ) )
A number of diversity combining schemes for FFH systerﬁﬁheres is the transmit power of each dlver§|ty transmission,
have been developed, and their performances have been stutfigli Symbol duration, arif}, is the hop durationf;, , and¢,
[4], [5], [7]. These combining schemes may also be applied &€ re_spectlvely, the hop frequency and random phasg féththe
MCFH systems. The optimum combining schemes based @Nersity transmission of theth symbol.b;, € {-1, +1} is the
the maximum-likelihood criterion have been developed onfith data symbol, ang,(#) = 1 for ¢ < (0, A) and zero, oth-
for static and frequency-nonselective slowly varying channe@Wise. The frequency deviation of a BFSK signal is denoted
For static channels with partial-band interference, the optimu¥ fa = (/21 = Af/2), whereh is the normalized fre-
combining is the sum of the logarithms of zeroth-order modfuency deviation and f is the frequency separation between
fied Bessel functions [5]. For slow and frequency-nonselecti$¢/0 BFSK signals. When the total transmit powerstf) is .5;,
Rayleigh fading channels, the optimum combining rule, givéR€ value ofS'in (1) for an FFH system is; and that ofs for
that all of the diversity receptions have the same power spec®IMCFH system s, /L. Similarly, the value off}, for an FFH
density (PSD) of background noise, is square-law equal-g&¥stem isl’/L and that off}, for an MCFH system ig". Corre-
combining [7]. In this letter, the optimum combining rule issPondingly, the values of; andA f would be different for the
developed for frequency-selective fast varying Rayleigh fadiff© Systems. _ _ _
channels with the background noise PSD of each diversityThe _channel model is a Wlde-serjse stationary uncorrelated
reception not being equal. This rule is also applicable &attering (WSSUS) model, described in [8] and [9]. The
frequency-nonselective slowly varying channels. low-pass equ|valer_1t impulse response of tfib diversity
Based on the developed optimum diversity combining rulghannel may be written as
bit-error rate (BER) eqyations are.c.jerived for FFH and MCFH celt; 7) = ault; T)ngf(t;f)’ (=0,1,....L—1 (2)
systems. These equations are utilized to compare the perfor-
mances of these two systems, and to investigate the effectsvblere o, (¢; 7)’s are independent and identically distributed
diversity order. Furthermore, the effects of frequency-selectigiei.d.) Rayleigh random processes aggt; 7)’s are i.i.d.
fading on the optimum frequency deviations for transmit FSKniform random processes ovffr, 2r). The autocorrelation

signals are investigated. function of the WSSUS channel is given as [8]
This letter is organized as follows. Section Il describes the N1 . ,
system and channel models. In Section IIl, the optimum diver- Ro(At; 7, 7') = 5 E[c"(t; m)c(t + At; 77)]

sity combining rule and equations for the probability of error are =R.(At; T)6(T —7) 3)
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Fig. 3. Noncoherent detector for tlith diversity reception.
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Zg,l l l Ré,l
t=(0+DT,

Z@,—l | | R{,—l
t=(+1)T,

where x denotes a complex conjugate operation. Since theThe two correlator outputs of théh diversity reception are
channel response for each diversity transmission is assumedeooted, respectively, by, ; andZ,, _, and may be expressed
be i.i.d., the autocorrelation of each channel is the same for ad

£, so that the subscrigtis dropped in (3). If we letAt = 0 in
R.(At; 1), the resulting autocorrelation functio.(0; 7) is

a multipath intensity profile, and denoted A$7). Assuming

that the multipath intensity profile is time invariadt.(At; 7)
may be represented as

Rc(At; 7_) = Ic(T)d)c(At) (4)

where¢,. (At) is the autocorrelation function in thit variable
normalized byl.(r) for all = [8].

I1l. PERFORMANCEANALYSIS

A. Correlator Outputs and Their Statistics

1 Of T .
Zg 1= / / V2S5t T)egaf(t”) dt dr
0 T

Th
1 [T ,
+o ne(t)e ™2 Jat g (6)
¢t J0
1 fTm Tk . .
Ze, 1= / / V2Sa(t; 7)edf ) 2T gt gy
h JoO T
1T :
+ 7/, ne(t)e?F™at gt @)

In static environments, when symbell is transmitted in the
absence of noise7,, _; is zero if an orthogonal BFSK is em-
ployed. However, in fading environment8, _; is not zero,
since multipath signal components and signal variation over one
hop duration may destruct orthogonality. This effect is repre-

Receiver block d_iagrams are sh(_)wn in Figs. 1(b) and 2(@ented asthe firstterm of (7), which will be referred to, hereafter,
After down-converting and dehopping, the complex baseband e terence component in this letter. The second term in (6)

equivalent of the received signal over the first symbol duraticghd (7) represents an AWGN component. Since all the terms in

may be expressed as

s L—1

T
Z/ \/ﬁag(t; T)ej(QWbOfdt'i'el’(t?T))dT
=070
pT, (t — [Th) + ﬂg(t), te [0, T); FFH

L—1 T,
Z/ \/ﬁag(t; T)Cj(QTFbOfdt'f'e((t;‘r))dT
=070

L +ne(t), t€ [0, T); MCFH

®)

(6) and (7) are zero-mean complex Gaussian random variables,
Zg,1 andZ, _; are also zero-mean complex Gaussian random
variables whose variances and correlation coefficient are given

by

1 28 [T [ThoT
otr=g B[zl =7 [
¢t JO 0

wheref,(t; 7) = (o(t; 7) + ¢¢ 0, andT,,, is the maximum
delay spread of each diversity channel(t) represents a
background noise and modeled as a low-pass equivalent
additive white Gaussian noise (AWGN) process with PSD
N,. We assume that data symHUgl is either+1 or —1 with
equal probability. Without loss of generality, it is assumed that
data symbolb, is +1 hereafter. Each diversity reception is
demodulated by a noncoherent detector [3]. As shown in Fig. 3,
a noncoherent detector consists of two branches of correlator
followed by an envelope detector. We assume that the receiver
is time synchronous to the first arriving signal (i.e.= 0).

) t+7 Ny
R.(t; 7) <1 T ) dt dr + T, (8)
1 25 [T g7
2 1 2] _ 25
T, —1— 2 E [|Zé,—1| } T, /0 /0

t N

R.(t; 7) cos(2m A ft) <1 _it T) dtdr + %

1B 1B
)

= $E[Z; 1 Z, 1)/oc, 1001

T pTn pTn
L U Rty — s yerz A
5] c\t1l 2 7')6
Th 0 T T

N, T
'dtl dtg dT+ —2/ GJQWAftdt 0¢.10¢,—1-
Th 0

(10)
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As shown in Figs. 1(b), 2(b), and 3, decisions are made baskd,; and W¥,_; are uniform random variables
on L pairs of noncoherent detector outpuls,; = |Z, 1| and over [0, 27). By averaging the conditional joint pdf
Ré,fl = |Z[7,1| for £ € {0, 1, ..., L — 1} They should PR, ¥, (7‘[71, Te¢,—1, 1/)[71, 1/)[7,1|b0 = +1) over \I/[71 and
be combined in some way to form decision statistics for th&, _;, we can obtain the conditional joint pdf @&, ; and
receiver. Re 1

. . . . (r ¢, —1 |bo = +1
B. Optimum Diversity Combining Rule PR (e, e -1 b0 = +1)

Te,17¢, —1
To find the optimum diversity combining rule based on the o o2 o2 (1 “p |2)
maximum-likelihood criterion, we should find the conditional 6176 -1 ¢
joint probability density function (pdf) of noncoherent detector \pe| - Te.17e, -1
outputs,R; ; and R, _ for ¢ € {0, 1, ..., L — 1}, condi- Iy R
tioned on a transmitted data symbol. This pdf is referred to as 0¢,10¢, -1 (1 = |pel )
a likelihood function. Since each diversity reception is assumed s 5 o
to be independent of each other, the likelihood function for data Cexp |— 9%, —1"1 T 00T (15)
symbolbg = +1 can be expressed as 20(27 10(27 B (1 B |pé|2)
PR(70,1, 71,15 -+ TL—1,1, 70, —1+ wherelq(-) is the zeroth-order modified Bessel function of the
TL 1y ooy L1, 1 |bo = +1) first kind. Similarly, the likelihood function for data symbol
L1 bop = —1 will be obtained from (11) and (15), by exchanging
= H PR, (1,1, 7¢, ~1 |bo = +1) (11) o¢1 andog, —y in (15).
=0 After straightforward algebraic manipulation and extraction

is the conditional joint pdf of of common terms in the log-likelihood functions, the optimum

wherepg, (1¢.1, 7¢. _1]bo = +1
(11, e ) decision rule is derived as

the noncoherent detector outputs for ttiediversity reception. i

The joint pdfpg, (r¢ 1, 7¢, —1]b0 = +1) can be easily found -1 o2 — o2 bo;“

using the joint Rayleigh distribution given in [7], if the variances ¢1 ¢t . (RQ - Rz ) < 0. (16)

CR) o1~ 1)

of Z; 1 andZ,, _, are the same. However, the variancegpfi = 90190 (1= lpd?) ’ C bo=—1

andZe —1 are different in our problem, as shown in (8) and (9)rhis equation indicates that the decision variable associated

Hence, the results in [7] cannot be applied. with by = +1 is constructed as the weighted sum of squares
Tofind the joint pdf ofR,, ; andR,, _,, the complex Gaussian of R, ; for all ¢, and the decision variable associated with

random variablesZ, ; and Z,, 1 are expressed in terms ofs; — _1 is constructed in a similar manner. These two variable

in-phase and quadrature components values are compared to estimate a transmit symbol. Note that

_ v : _ v : the combining rule in (16) is different from the combining rule

Ze1 =KoY Ze1=Xe i+ ¥ (12) in [5], which is developed for static channels. In (16), it can be

where X¢ 1, X¢ _1, Ye,1, and Y, _; are zero-mean jointly shown that the/th weighting factor depends on the variances

Gaussian random variables. The joint pdf &f 1, X, _1, and the correlation coefficient of correlator outputs for £t

Y. 1, andY,, _; conditioned orby = +1 can be calculated as diversity receptiono? , is composed of signal and noise com-

in (13), shown at the bottom of the page, wheke and oy, ponents, and? _, interference and noise components. The

are, respectively, the real and imaginary components of th@meratow? , — o7 _, represents a difference between signal

complex correlation coefficient, defined in (10). The pdf in power and interference power, since the noise powetsin

(13) is expressed in terms of rectangular coordinate elemergﬁdaé _, arethe samer[ . 0[2 _, is the same for af, when

A transformation may be made from the rectangular coordingtg transmit power is the same and fading process is i.i.d. for

onto the polar coordinate via the change of variables each diversity channel. The denominatdr, o2 _, (1 — |p¢|?)
- 5 represents that the weighting factor should 7be small when the
Re;=/X?,+Y2, X . . .
’t ’t noise power is large. The reason is that as the noise power
Wy =tan™t (Ve i/ Xe ), i=1, —1. (14) increasesy7 , ando; _, increase anfp,| decreases.
1
Pxe, v (@e 1, T, —1, Yo, 1, Yo, —1 [bo = +1) = N
(2m202 102 _ (1= o))
r 2 2 2 2 2 2
T 1 (975, 1+ yz,l) T (975, 1Ty 71)
-exp | — 5
L 2052,1052,71 (1 — |pel )
exp per (e, 120, —1 + Yo, 1Ye, —1) + pei (-Té,Qlyé, —1— Tg,—1Ye,1) (13)
I e, 104, —1 (1 — |pel )
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To compare the performance of FFH and MCFH systems amtrough the use of a conformal transformation fromhpane
to evaluate the effects of diversity order in typical frequency-s& thew plane via the change in variable= — (v /v2) - [(v —
lective fading channels, the PSB, of background noise for juvs)/(v + juv1)], and the binomial series expansion of a term,

each diversity reception is assumed to be the sameNe~

Ny, where Ny is the one-sided PSD of thermal noise. From
this assumption, the variances and correlation coefficient of the
correlator outputs, given in (8)—(10), are the same for/all

05271 = 0%,02_1 =02 ,andp, = pfort € {0, 1, ..., L—1}.

With this assumption, the optimum combining rule in (16) be-
comes square-law equal-gain combining, which is the same r
sult as in [7], where orthogonality between BFSK signals ?’%

maintained.

C. Probability of Error

Based on (16) and the above assumption, the probability of
error for the optimally combined signal may be expressed as

p(D|bg = +1)dD a7)

0
r- |
where D is the decision variable defined &% = Efz_ol Dy,
andD; = R} | — R} _,.p(DJbo = +1) is the conditional
pdf of D, givenb, = +1. The conditional pdp(D|by = +1)

may be found using (11) and (15) with appropriate transforma-
tions of random variables. However, this work is unnecessarily

(18) may be expressed as

1 Qil oL — 1
R A
VIR NN S S

2mj Jr w1~ w)
eﬁerel“ is a circular contour of radius less than unity that en-

P =
du (22)

closes the origin, and is defined as

2
o — o2, + /(03 +02,)" — dlo]oto?,
v 2 )
Log2) ot (07 +02,)" — dlpPPoio?,
(23)

For/ > L, the contour integral is zero by Cauchy’s theorem
[10], since the integrantl/«”—*(1 — «) is an analytic function

in I". However, for0 < ¢ < L — 1, the contour integral should
be calculated using Residue theorem [10]. Thus, the probability
of error expression in (22) may be simplified to

/”(}2

(1L

v

involved and the solution is not concise. It can be shown that _ = _ _
the decision variabl® in (17) may be viewed as a special caswhich may be expressed in an alternative form

of the general quadratic form investigated in [9, Appendix B],
where the characteristic function-based approach is presented
to obtain a simple closed-form expression for the probability of

L—1
2L —1 ~¢
P, = —_ 24
I G e
L—-1
L+/4-1 7t
P, = —_—. 25
> (U o @

error. Equation (17) may be rewritten in terms of the charactefpq equivalence of (24) and (25) can be shown by repeatedly

istic function of D, which is denoted b, (jv), as

TR "
p-t / / ®p(jv)e 9P dudD
27(- — o — o

1 < dp(y
- / @n(jv) du.
M )V

Since D is the sum of L ii.d. random variablesD,
(¢ = 0,1,..., L — 1), the characteristic function ab is
simply theLth power of that ofD,, or, ®p (jv) = [®p, (jv)]*.
The characteristic function db, is given as [9]

(I)Dz(jv) =

(18)

v1U2
(v + jv)(v — jua)
wherev; andw, are defined as

(19)

o 2 of — o2y
1= -

dofo? (1 |pl?)

03—02_1 2 1
+ 2 2 2 t 123 2
4010—1(1_|P| ) 4010—1(1_ |P| )
(20)
A 0%—031

Vg =

40302, (1~ [o?)

(= —
10202 (1= pP)) " do3a (1= [o]?)
(21)

applying a basic formul’) = (*1*) —(,"*,) to (25). It should
be noted that whep = 0, (25) becomes the probability of error
equation developed for frequency-nonselective slow Rayleigh

fading channels [7].

IV. PERFORMANCE EVALUATION

The BER performance of FFH and MCFH systems is evalu-
ated in this section using (23) and (24). The variances and cor-
relation coefficient in (8)—(10) are required for (23), and calcu-
lated by Monte Carlo integration technique [11]. The autocor-
relation function of a fading channel in (4) is assumed to be de-
scribed by an exponential multipath intensity profile and Jakes’
fading model [12]

(1/T) (e 17/ T — 1)

1—(14 pe+
wherey is a decaying factor and setQd in this letter,f is the
maximum Doppler spread, anf§(-) is the zeroth-order Bessel
function of the first kind. Orthogonal signaling (= 1.0) is
implied, unless explicitly specified.

Fig. 4 shows the performance of FFH and MCFH systems for
several values of maximum delay spreads, when the normal-
ized maximum Doppler spreafy; " = 0.01. Diversity order
L is set to 3. The performance of FHSS systems is found to
be significantly degraded in frequency-selective fading environ-
ments with delay spread. The performance degradation due to
delay spread is found much more severe in FFH systems than in

R.(At;7T) =

Jo(2nfpAt)  (26)
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Fig. 4. BER performance of FFH and MCFH systems for various delay spréagsy, fpoT' = 0.01).

4x10° ——————

Solid Line: FFH system
Dotted Line: MCFH system

5x1 O-s H HE H H H H HE
5x10° 107 fT 10"
D

Fig. 5. BER performance of FFH and MCFH systems for various Doppler spréags3, 7., = 0, 0.05T, E, /Ny = 25 dB).

MCFH systems. This can be explained as follows. The proba-Fig. 5 depicts how the BER performance varies with the nor-
bility of error may be proved to be a monotonically decreasingalized Doppler spreafi, T’ for two delay spread values, when
function of v by differentiating (23) with respect t9. From L =3 andE;, /Ny = 25 dB. Itis found that MCFH systems are
(8)—(10), and (23})y is observed to be related to the ratidlof more sensitive to the normalized Doppler spréad’ than FFH
to T}, which is defined as an effective delay spread in this lettesystems. In other words, the performance degradation due to an
It can be shown that decreases with the effective delay spreadjcrease of p 7" is more severe for MCFH systems than for FFH
due to an increase in?, and a decrease in} and|p|. Thus, systems. The reason is that the hop duration of MCFH systems
the value ofy is smaller for an FFH system than for an MCFHSs L times larger than that of FFH systems. Energy loss is larger
system, for a given delay spread, since the effective delay spréadlarger hop duration in the correlator, when fading process
for an FFH system id. times larger than that of an MCFH varies rapidly during hop duration in Rayleigh fading environ-
system. ments. Hence, FFH systems dréimes robust to an increase of

To investigate the effects of correlation between two corr®oppler spread than MCFH systems. It is shown in Fig. 5 that
lator outputs, the performance of FFH and MCFH systems withe BER performance of FFH systems fo57" = 0.1 is almost
the correlation ignored arif,, = 0.157" are obtained by set- the same as that of MCFH systems f/7" = 0.033 (= 0.1/L),
ting p = 0 in (23) and plotted in Fig. 4. The large differencesvhen?,, = 0. The combined effects of the delay spread and
between the correlation ignored and not-ignored cases indicBi@ppler spread can be seen by comparing the BER performance
that the correlation should not be ignored. of the two systems in Fig. 5, whéh,, /T = 0.05. MCFH sys-
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Fig. 6. BER performance of FFH and MCFH systems for varibis(7,, = 0.17, fpT = 0.01).
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Fig. 7. BER performance of MCFH system for various (L = 3, fp7 = 0.01, E;/N, = 20 dB).

tems are shown to outperform FFH systemsffigfl” < 0.063; nels, however, delay spread and channel variation also affect
the opposite is true fofp, T > 0.063. the optimumf. Thus, the optimum value varies with channel
The effects of diversity order on the BER performance of FFebndition. Fig. 7 shows the BER performance of an MCFH
and MCFH systems are shown in Fig. 6. It is found that an isystem for various values éf ranging between 0.4-1.6, when
crease in diversity ordek from 1 to 3 improves the BER per- L = 3, fpT = 0.01, and E, /Ny = 20 dB. For a given prac-
formance of FFH systems to a small extent, and that of MCRital range off. and delay spread, the optimuinis found to
systems to a large extent. For MCFH systems, the effective delagrease with delay spread. This can be explained as follows.
spread does not change with diversity order, since the hop dugiace the desired signal power in (8) is not affectedi byis op-
tion does not change with diversity order. For FFH systems, ttimal when the interference power in (9) is minimized. It can be
effective delay spread increases with diversity order. Hence, stgown that: which minimizes the interference power increases
performance improvement due to the increase in diversity ordeith delay spread.
is smaller for FFH systems than that for MCFH systems.
Itis well known that in static channels, the optimdérfor cor-
relator-based noncoherent detection of BFSK signals are integer
values to satisfy the orthogonality condition, if the multiple-ac- The BER performance of FFH and MCFH systems in
cess interference is not considered [3], [9]. In multiple-accefgquency-selective Rayleigh fading channels is presented and
environments, the optimuria depends on the number of usergeompared in this letter. The optimum diversity combining rule
in the network and the signal-to-noise ratio [3]. In fading chafased on the maximum-likelihood criterion is developed. It is

V. CONCLUSIONS
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found that the optimum combining is the weighted sum of the [2] B. Solaiman, A. Glavieux, and A. Hillion, “Error probability of fast fre-

squares of noncoherent detector outputs. A weighting factor is
shown to depend on the variances and correlation coefficient
of correlator outputs for each diversity reception. Based on the[3]
developed optimum diversity combining rule, the expressions
for the probability of error are derived and evaluated for 4]
various channel conditions. It is found that frequency-selective
Rayleigh fading severely degrades the performance of FHSS
systems. MCFH systems are found to outperform FFH systems
in frequency-selective fading environments. On the other hand|s]
it is found that FFH systems are superior to MCFH systems
in fast fading environments. Although diversity improves the 6
performance of both MCFH and FFH systems, the diversity
gain is found to be greater for MCFH systems than for FFH
systems. Itis also shown that the optimum frequency deviationg]

of transmit FSK signals increase with delay spread.
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