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Joint Transmit and Receive Filters Design for
Multiple-Input Multiple-Output (MIMO) Systems

Keun Chul Hwang and Kwang Bok (Ed) Lee, Member, IEEE

Abstract—Multiple transmit (Tx) and multiple receive (Rx)
antennas systems, referred to as multiple-input multiple-output
(MIMO) systems, have been proposed to achieve higher data rates
in wireless communication systems. In this paper, we investigate
joint design of transmitter and receiver for the MIMO system
when the channel information is available at both transmitter and
receiver. We discuss the problem concerning the design of Tx and
Rx filters with the aim of minimizing the bit-error probability
(BEP). We derive the optimum Tx and Rx filters when the number
of data symbols is two. For a general number of data symbols,
we derive a Tx and Rx filters design criterion referred to as
equal signal-to-noise plus interference ratio (SNIR) criterion, and
propose Tx and Rx filters based on this equal SNIR criterion.
The performance of the proposed filter is compared with that of
the conventional minimum mean-squared error (MMSE) filter.
Performance analysis shows that the proposed filter provides a
significant improvement over the MMSE filter in BEP and spectral
efficiency.

Index Terms—Beamforming, diversity, multiple-input multiple-
output (MIMO), performance, spatial filter.

I. INTRODUCTION

MULTIPLE transmit (Tx) and multiple receive (Rx)
antennas, referred to as multiple-input multiple-output

(MIMO), are known for significantly improving the capacity of
wireless communication systems [1]–[4]. Especially, it is well
known that the achievable capacity of MIMO links increases
almost linearly with the minimum number of transmit and
receive antennas in rich scattering environments. Due to this
potentially significant capacity improvement, MIMO systems
may be applied in high data rate service for the next-generation
wireless communication systems.

A MIMO system can be classified according to whether or
not the channel state information (CSI) is available at either
the transmitter or the receiver. Most existing MIMO systems
assume that the CSI is available only at the receiver. However,
MIMO systems can further enhance performance when CSI is
available at both transmitter and receiver [5]. Obviously, the
best performance can be obtained when CSI is perfectly known
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at both transmitter and receiver, which is difficult to achieve
because of an error in channel estimation or the time-varying
channel response. Consequently, performance improvement
obtained in practice depends on the accuracy of CSI. Several
methods for accurate CSI at the transmitter and receiver are
found throughout the literature. The CSI at the transmitter
can be obtained by using a feedback channel in frequency-di-
vision duplex (FDD) system, or can be estimated from the
uplink channels in time-division duplex (TDD) system. At
the receiver, CSI may be obtained by the well-known channel
estimation techniques.

When CSI is known at both transmitter and receiver, this CSI
can be used to design efficient transmit and receive filters. Sev-
eral transmit and receive filters have been proposed to improve
the performance of MIMO systems. In [6], the optimum Tx and
Rx filters that minimize the mean-squared error were derived
for a strictly band-limited system, and a more complete analysis
based on a frequency-domain analysis appeared in [7] and [8]. In
[9], the optimum Tx and Rx filters were derived using the min-
imum mean-squared error (MMSE) criterion, with which the
sum of the mean-squared errors between the input data symbols
and the estimated data symbols is minimized. In [10], the au-
thors generalized their previous work [8], and proposed the Tx
and Rx filters that minimize the weighted sum of mean-squared
errors. All the works in [6]–[10] have been conducted based on
the MMSE criterion. However, since the MMSE is not directly
related to bit-error probability (BEP), the MMSE filter does not
ensure the best BEP performance. Recently, in [11], a minimum
BEP filter for a single-input single-output (SISO) system was in-
vestigated, and has shown to yield significant performance im-
provement over the MMSE filter.

In this paper, we investigate the design of Tx and Rx filters for
the MIMO system with the purpose of minimizing the BEP in-
stead of MMSE. We derive the optimum Tx and Rx filters when
the number of data symbols is two. For a general number of data
symbols, we derive a Tx and Rx filters design criterion, referred
to as equal signal-to-noise plus interference ratio (SNIR) crite-
rion, and propose Tx and Rx filters based on this equal SNIR
criterion. The remainder of this paper is organized as follows.
Section II describes a MIMO system model. In Section III, a Tx
and Rx filters optimization problem is formulated, and the op-
timum Tx and Rx filters for two data symbols are derived. The
equal SNIR criterion and the proposed Tx and Rx filters are de-
scribed in Section IV, and the performance of the proposed filter
is presented in Section V. The spectral efficiency of the proposed
filter and practical issue are discussed in Section VI. Finally,
some conclusions are drawn in Section VII.
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Fig. 1. System model.

II. MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) SYSTEM

A MIMO system with transmit (Tx) antennas and
receive (Rx) antennas is considered. At the transmitter, mul-
tiple data symbols are constructed using the same modulation
scheme, and passed through the Tx filter. These filtered data
symbols are simultaneously transmitted through transmit
antennas, and received at receive antennas. At the receiver,
each received signal is corrupted by an additive white Gaussian
noise (AWGN), and processed with the Rx filter. A baseband
equivalent MIMO system model is shown in Fig. 1. The trans-
mitted signal may be expressed in vector form

(1)

where denotes the transmitted
signal vector, and the superscript denotes the transpose.

denotes the data symbol vector, where
denotes the number of data symbols, which is assumed to be

. Although the Tx and Rx filters can be
applied to any modulation scheme, we assume, for analytical
simplicity, that ’s are the -ary quadrature amplitude mod-
ulated ( -QAM) data symbols with , where

is the expectation operation, the superscript denotes the
conjugate transpose, and denotes the identity matrix.
In this paper, we consider an equal power transmission, and
the transmit power is assumed to be the same as for all data
symbols. Note that the total Tx power is . A Tx filter
consists of Tx weight vectors , and may be expressed as

(2)

where denotes a Tx weight vector
for the data symbol . Note that as a consequence of applying
the Tx weight vector , the transmit power may fluctuate. To
maintain consistency in the transmit power for various , we
normalize the Tx weight vector such that

(3)

We assume that the transmitted signal experiences fre-
quency-flat Rayleigh fading for all transmit–receive

antenna pairs. Each channel response is assumed to vary slowly
enough to be regarded as constant throughout the data symbol
duration. In this case, the channel responses may be integrated
in a matrix form

...
. . .

... (4)

where denotes the channel response from the th Tx antenna
to the th Rx antenna. The channel responses ’s are assumed
to be independent and identically distributed (i.i.d.) zero-mean
circular complex Gaussian random variables with unit variance.
The channel matrix is assumed to be perfectly known at
both transmitter and receiver. The received signal vector

may be expressed as

(5)

where is an AWGN vector, whose
elements are i.i.d. zero-mean circular complex Gaussian random
variables with variance of .

At the receiver, the received signals pass through the
Rx filter , which consists of Rx weight vectors:

, where is an receive weight vector
for the data symbol . We assume that the decision order is in
accordance with data index; is decided first, and then is
decided next, and so on. A successive interference cancellation
is employed to remove the interferences; when we decide ,
the interference from the previously decided symbols is
regenerated and canceled out. Generally, some of these
previously decided symbols may be erroneous. These erroneous
symbols may cause wrong cancellation, and in turn may cause
successive decision errors to occur. This phenomenon is known
as error propagation. For analytical simplicity, however, we
assume that the decisions used in cancellation are error
free. Thus, the decision variable for may be expressed as

(6)

where the first term denotes a desired signal, and the second and
third terms are the interference from the undecided symbols and
AWGN, respectively.
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III. MINIMUM BEP TRANSMIT AND RECEIVE FILTERS

OPIMIZATION

In this section, we investigate the design of optimum Tx and
Rx filters with the aim of minimizing the BEP. The Tx and Rx
filters optimization is investigated in Subsection III-A, and the
optimum Tx and Rx filters for the case of are derived in
Subsection III-B.

A. Transmit and Receive Filters Optimization

Based on the central limit theorem [12], the interference
in (6) can be approximated as a Gaussian

distributed random variable for large . Using this Gaussian
approximation, the BEP may be written as [12]

BEP BEP

SNIR

(7)

where is a Gaussian tail integral defined as

[13], and BEP and SNIR , respectively, denote the BEP and
the SNIR for the th data symbol . From (6), SNIR may be
calculated as

SNIR (8)

where denotes the noise-plus-interference power defined as

(9)

and denotes the transmit signal-to-noise ratio
(TxSNR).

It can be seen from (8) that the th receive weight vector
affects only the th SNIR SNIR . Thus, to minimize the BEP in
(7), the receive weight vector should maximize SNIR . Ac-
cording to the generalized eigenvalue problem [14], the receive
weight vector that maximizes SNIR in (8) may be expressed
as

(10)

where is an arbitrary constant that does not affect the SNIR .
For simplicity, we set for all . Substituting (10) into
(8), the SNIR may be expressed as

SNIR

(11)

where the second equality is derived using the relation (see Ap-
pendix A)

(12)

Note that SNIR in (11) is expressed in terms of the Tx weight
vectors rather than both Tx and Rx weight vectors. Accordingly,
BEP in (7) may be considered as a function of the Tx weight
vectors. Consequently, the Tx filter optimization may be accom-
plished by finding the Tx weight vectors that minimize the BEP
cost function

SNIR (13)

where the multiplying factor in
(7) is dropped since it is independent of the Tx weight vectors.
After finding the optimum ’s that minimize (13), the corre-
sponding optimum ’s may be obtained from (10). Although
it is hard to derive a general solution for optimum ’s, we can
derive the optimum ’s when the number of data symbols is
two , as shown in the next subsection.

Before going to the next subsection, let us define the eigen-
value decomposition of [15]

(14)

where is an unitary matrix,
’s are eigenvectors that form the bases for the range space of

, and is an
unitary matrix whose column vectors, ’s, form the bases for
the null space of . The matrix
is a diagonal matrix, and denotes the th largest
eigenvalue of . Note that is an
eigenvector corresponding to the eigenvalue .

B. Optimum Transmit and Receive Filters When the Number
of Data Symbols Is Two

When , two Tx weight vectors, and , need to be
optimized, and the cost function in (13) is given as

SNIR SNIR

(15)

where SNIR and SNIR may be expressed from (11) as

SNIR

(16)

SNIR (17)

Note that SNIR is a function of both and , whereas SNIR
is a function of only . Hence, for a given SNIR may be
considered as a fixed value, whereas SNIR is a function of .
Consequently, for a given , the Tx weight vector should
maximize the SNIR so as that the cost function can
be minimized. According to the eigenvalue problem [14], for a
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given , the Tx weight vector that maximizes SNIR may be
expressed as

(18)

where denotes the eigenvector associated with the
maximum eigenvalue of , and the matrix is defined as

(19)

Substituting in (16), the SNIR becomes a
function of , and may be expressed as

SNIR

where denotes the maximum eigenvalue of . As
shown in (17), the is a function of SNIR

. Thus, the optimization problem in (15) may
be simplified to find that can minimize the cost function

SNIR

SNIR (20)

As shown in Appendix B, the optimum that minimizes (20)
lies within the range space of and may be expressed as

, where is a real number within the
interval . With , the SNIR and
SNIR may be expressed as a function of in (21) and (22)
at the bottom of the page (see Appendix B) where in (21) is
given as . Since SNIR
and SNIR are expressed in terms of instead of , the cost
function in (20) may be changed as

SNIR

SNIR (23)

We can show that the derivative of may be expressed as
, where

SNIR SNIR

and

SNIR

SNIR SNIR

After some manipulations, we can show that is an in-
creasing function. In this case, since , the derivative

of becomes zero for at most one . Hence, is a
quasi-convex function [16]. To find that minimizes ,
several numerical methods, such as Golden Section search or
parabolic interpolation [18], may be used. Let the value of
that minimizes be , and then the optimum may be
obtained as

(24)

From (18), the corresponding optimum is given as

(25)

The optimum receive weight vectors are obtained from (10) by
replacing and with and , respectively

(26)

(27)

where and in and should also be replaced with
and , respectively. When the optimum Tx and Rx

filters given in (24)–(27) are applied, the corresponding SNIRs
may be obtained from (21) and (22) by replacing with
SNIR and SNIR .

IV. PROPOSED TRANSMIT AND RECEIVE FILTERS

In this section, we extend the results of Section III-B to the
case where the number of data symbols is more than two. A
Tx and Rx filters design criterion, referred to as equal SNIR cri-
terion, is derived in Section IV-A, and the proposed Tx and Rx
filters based on this equal SNIR criterion are described in Sec-
tion IV-B. The BEP performance of the proposed filter is ana-
lyzed and compared with that of MMSE filter in Section IV-C.

A. Tx and Rx Filters Design Criterion: Equal SNIR Criterion

In this subsection, we investigate the asymptotic behavior of
SNIR in (11) as TxSNR becomes high, and derive a Tx and Rx
filters design criterion. For high TxSNR, in (12) may be
approximated as

(28)

With this approximated , the SNIR in (11) may be approx-
imated as

SNIR

(29)

SNIR

(21)

SNIR (22)
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Moreover, the product of these approximated SNIR ’s may be
expressed as (see Appendix C)

SNIR (30)

where denotes the determinant of a matrix . Using the
Hadamard’s inequality [17], we can show that

where is the th diagonal element of ,
and equality holds if and only if the off-diagonal elements

, are zero. One example of that makes
for is , with which the diagonal

element becomes . Thus, it holds that

Consequently, the product of all SNIR ’s in (29) may be upper-
bounded as

SNIR (31)

In this case, the BEP cost function in (13) is
minimized when the product of SNIR ’s equals ,
and all the SNIR ’s are the same (see Appendix D). Thus, it is
desirable to design Tx and Rx filters with which the product of
SNIR ’s approaches to the value of , and all the
SNIR ’s are as close to one another as possible. We refer to this
design criterion as the equal SNIR criterion.

B. Proposed Tx and Rx Filters Based on the Equal SNIR
Criterion

In this subsection, based on the equal SNIR criterion, we pro-
pose Tx and Rx filters for an arbitrary number of data symbols

. Since the Rx filter can be obtained from (10) after finding a
Tx filter, we concentrate on designing the Tx filter. For the case
of , we can show that two optimum Tx weight vectors
given in (24) and (25) lie on the two-dimensional (2-D) range
space of . Similarly, for the general case of , if two Tx
weight vectors and are forced to lie in a 2-D range sub-
space of , then we may obtain and optimized within
the 2-D range subspace. According to the equal SNIR criterion,
the condition

SNIR

should be satisfied for high TxSNR. To satisfy this condition,
we propose that the pairs of two Tx weight vectors lie in
the nonoverlapping 2-D range subspaces of where
“nonoverlapping” means that any two 2-D range subspaces
do not share the same basis . For the case of an odd , the
remaining one Tx weight is proposed to lie in the remaining
one-dimensional range subspace of . Let us denote the
2-D range subspace of spanned by and as ,
and assume that and are forced to lie and optimized
in . Then, as shown in Section IV-C, the corresponding

SNIR and SNIR may be expressed for high TxSNR as
SNIR SNIR . Note that SNIR and SNIR
are determined by two eigenvalues and associated with

and for . Moreover, since the pairs of two Tx weight
vectors are proposed to lie in the nonoverlapping 2-D range
subspaces, the pairs of two SNIRs are determined by the
distinct pairs of two eigenvalues. Hence, the product of SNIRs
may be expressed for high TxSNR as

Note that the pair of two SNIRs become identical, but dif-
ferent pairs of SNIRs are different from each other due to the
distinct pairs of two eigenvalues. According to the equal SNIR
criterion, it is desirable to make all the SNIRs as close to one
another as possible. Thus, two eigenvalues for the pairs of two
SNIRs should be chosen in such a way that the largest eigen-
value is paired with the smallest one and the second largest
eigenvalue with the second smallest one, and so on. Hence, we
propose the use of for
the nonoverlapping 2-D range subspaces, since the th
largest eigenvalue is paired with the th smallest one
using .1 Although any pair of two Tx weights vector
may be forced to lie in , for notational simplicity, we
choose and for the pair
of two Tx weight vectors that lie in . For the case of
an odd , the remaining one Tx weight is proposed to
lie in the remaining one-dimensional range subspace of
spanned by . In this case, , and
no optimization is needed for .

Now we derive the proposed Tx and Rx filters based on the
assumption that and lie in . As shown in
Appendix E, two SNIRs corresponding to and may
be expressed as

SNIR

(32)

SNIR (33)

Moreover, since and lie in SNIR
and SNIR are further simplified to

SNIR

(34)

SNIR (35)

where is a projection of onto

(36)

1Note that sss is spanned by vvv and vvv , which are associated
with the (m+1)th largest and the (m+1)th smallest eigenvalues, respectively.
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Note that SNIR and SNIR are determined by only two
Tx weight vectors and . This indicates that the in-
terference caused by the symbols whose Tx weights vectors lie
in the different 2-D subspaces becomes zero. Consequently, the
cost function in (13) may be simplified as

where is given as

SNIR

SNIR (37)

Moreover, the minimization of the cost function
may be accomplished by separately

minimizing the cost functions ’s. Observe
the similarity between (37) and (15). Hence, following the
procedure in Section III-B, we may obtain the proposed Tx
weight vectors as

(38)

(39)

where in (38) denotes that minimizes (23) when
and in SNIR and SNIR are replaced with and

, respectively. Similarly, with in (19), in
(39) is defined as

(40)

With the proposed Tx weight vectors given in (38) and (39), the
corresponding Rx weight vectors may be obtained from (10).
Note that, when , the proposed Tx and Rx weights vec-
tors become the optimum Tx and Rx weight vectors given in
(24)–(27).

C. Performance of the Proposed Filter and Comparison With
That of the MMSE Filter

In this subsection, the BEP performance of the proposed filter
is analyzed and compared with that of MMSE filter. Similarly
to the case of , when the proposed Tx and Rx filters are
applied, the corresponding SNIRs may be obtained as shown in
(41) and (42) at the bottom of the page, where in (41)
is given as .

For an odd , the remaining SNIR SNIR may be ex-
pressed as SNIR . With these SNIRs, the
overall BEP of the proposed filter may be obtained from (7). The
average BEP (ABEP) may be obtained by averaging this BEP
over the channel matrix

ABEP BEP

SNIR

(43)

Now let us consider the performance of the MMSE filter
given in [9]. The MMSE filter decouples the MIMO channel

into parallel eigen-subchannels, and allocate the total Tx
power on these subchannels according to the inverse-
water-pouring policy [9]. The SNIRs with the MMSE filter can
be expressed as [9]

SNIR

(44)

where denotes . The ABEP of the MMSE
filter may be obtained from (43) by substituting SNIR with
SNIR in (44).

Similarly to the case of (see Appendix F), when the
proposed filter given in (41) and (42) is used, the SNIRs may be
expressed for high TxSNR as

SNIR SNIR

Whereas, from (44), the SNIRs with the MMSE filter may be
expressed as

SNIR

for high TxSNR. To compare the BEP performance of the pro-
posed filter with that of the MMSE filter, consider the following
two cases of eigenvalues:

i) all eigenvalues are equal;
ii) the smallest eigenvalue is much smaller than the

others.
The first case is observed when the number of Tx antennas is
much larger or smaller than that of Rx antennas, and the second
case when the numbers of Tx and Rx antennas are the same. In
case i), the SNIRs with the proposed filter may be expressed as
SNIR , and those with the MMSE filter may be simpli-
fied as SNIR . Note that the SNIRs with the pro-
posed filter are the same as those with the MMSE filter. Hence,
in case i), the performance of the proposed filter becomes the

SNIR

(41)

SNIR (42)



HWANG AND LEE: JOINT TRANSMIT AND RECEIVE FILTERS DESIGN FOR MIMO SYSTEMS 1641

Fig. 2. ABEP of the proposed filter for various N and N .

same as that of the MMSE filter. In case ii), the SNIRs with the
MMSE filter can be approximated as

SNIR

We can see that the smallest eigenvalue affects all the
SNIRs, and SNIR becomes much smaller than the
others. Hence, the performance of the MMSE filter is limited
by SNIR . Moreover, regardless of , the distribution
of SNIR is known to follow the chi-square
distribution with two degrees of freedom [19]. Hence, in case
ii), the diversity order of the MMSE filter becomes one regard-
less of [12]. Whereas, the proposed filter compensates the

th smallest eigenvalue with the th largest
eigenvalue . Hence, the performance of the proposed filter
may not be limited by the smallest eigenvalue.

V. NUMERICAL RESULTS

In this section, based on (43), we present the BEP perfor-
mance of the proposed filter. For comparison, we also present
the BEP performance of the MMSE filter. All the results shown
in this section are obtained analytically through Monte Carlo
integration [18] based on independent realizations of the
channel matrix . Since ABEP when is the
same as that when ,2 we consider only the
case of , in which the number of data symbols is
equal to . Moreover, we consider only 4-QAM .

Fig. 2 shows the analysis and simulation results of the
proposed filter for various and . Analysis is performed
without error propagation, whereas simulation is performed
both with and without error propagation. Comparing the sim-
ulation results with and without error propagation, we can
see that the effects of error propagation are negligible for the
proposed filter. The reason is that when the proposed filter is

2This is due to the fact that HHH HHH and HHHHHH have the same eigenvalues,
which determine the SNIRs in (41) and (42).

applied, only two symbols whose Tx weight vectors lie in the
same 2-D subspace interfere with each other. Hence, when can-
celing the previously decided symbols, at most one data symbol
affects the current symbol decision. Comparing the analysis
and simulation results without error propagation, the analysis
and simulation results show a close agreement even though the
Gaussian approximation is used for approximating interference
in analysis. This indicates that the Gaussian approximation
used in analysis is quite accurate even when is small.

Fig. 3 shows the BEP performance of the proposed and
MMSE filters when and . Note that in this case

, the performance of the proposed filter becomes the
same with that of the optimum filter. In this figure, “ABEP ”
denotes the ABEP for the th data symbol . Note that for
the MMSE filter, the ABEP is much worse than ABEP , and
dominates the ABEP. The reason is that SNIR is much
smaller than SNIR due to the smallest eigenvalue.
Unlike the MMSE filter, two SNIRs with the proposed filter
become the same for high TxSNR: SNIR SNIR (see
Appendix F). Thus, for the proposed filter, the ABEP becomes
the same as the ABEP as TxSNR increases. Consequently,
the proposed filter is observed to significantly outperform the
MMSE filter in ABEP. Fig. 4 depicts the ABEPs of the proposed
filter and the MMSE filter when and . Like in
Fig. 3, this figure shows that the proposed filter outperforms the
MMSE filter in ABEP. Note that the ABEP of the MMSE filter
is limited by ABEP , which is associated with the smallest
SNIR. Note also that since the proposed filter is optimized
in ( and ), ABEP is almost the same as
ABEP , as in ABEP and ABEP . A slight difference between
the pair ABEP , ABEP and ABEP , ABEP is due to the
inherent differences in the eigenvalues.

Figs. 5 and 6 show the effects of on the BEP performance
of the proposed and the MMSE filters when is fixed at .
Fig. 5(a) and (b), respectively, depicts the mean and variance of
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Fig. 3. ABEP of the proposed and the MMSE filters when N = 2 and N = 2(K = 2).

Fig. 4. ABP of the proposed and the MMSE filters when N = 4 and N = 4(K = 4).

SNIRdB when 10 dB where SNIRdB is defined as
SNIRdB SNIR for the MMSE filter and
SNIRdB SNIR for the proposed filter. Note that
for the MMSE filter, the means of SNIRdB and SNIRdB in-
crease to about 3 dB as doubles, and the variances decrease
and approach zero as increases. This increase in mean and
decrease in variance may be interpreted as “beamforming gain”
and “diversity gain,” respectively. Similar to the MMSE filter,
the proposed filter also provides this beamforming gain and
diversity gain. Fig. 6 depicts the ABEPs of the proposed and
MMSE filters for various . As increases, the slopes of

ABEP curves for both the proposed and MMSE filters become
steeper due to the increase in diversity gain. As doubles,
the ABEP curves for both the proposed and the MMSE filters
shift toward the left more than 3 dB due to the increases in
beamforming and diversity gains. These observations confirm
that both the proposed and the MMSE filters provide both
beamforming and diversity gains when increases for a
fixed . Note that the proposed filter provides a significant
improvement in performance over the MMSE filter when
is small, and the performance improvement decreases as
increases. For example, the proposed filter provides 6.0 dB of
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Fig. 5. Mean and variance of SNIRdB 10 log(SNIR ) for various N when � = 10 dB and N = 2(K = 2): (a) mean and (b) variance.

Fig. 6. ABEP of the proposed and the MMSE filters for various N when N = 2(K = 2).

TxSNR gain over the MMSE filter at ABEP of when
, and 1.8-dB gain when . The reason is that, as

mentioned in Section IV-C, all eigenvalues of become
the same as increases for a fixed .

Fig. 7 shows the effects of and on the BEP perfor-
mance of the proposed and the MMSE filters when .

Note that the performance of the proposed filter is significantly
improved as both and increase, whereas, the perfor-
mance improvement of the MMSE filter is not as significant as
that of the proposed filter. Especially, the slopes of ABEP curves
for the MMSE filter remain constant regardless of and .
The reason is that, as mentioned in Section IV-C, the diversity
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Fig. 7. ABEP of the proposed and the MMSE filters for various N and N when N = N (K = N ).

Fig. 8. Average SE of the proposed and the MMSE filters for various N and N when N = N (K = N ).

order of the MMSE filter becomes one when . Con-
sequently, as both and increase, the proposed filter pro-
vides a significant improvement in BEP over the MMSE filter.

VI. DISCUSSION

Along with the BEP, the spectral efficiency (SE) is another
performance measure of the MIMO system. In this section, we
discuss the SE of the MIMO system with the proposed filter.
Also, we investigate the effect of imperfect CSI at the trans-
mitter on the BEP performance.

A. Spectral Efficiency (SE)

As discussed in Section V, the interference in (6) may be ap-
proximated as a Gaussian random variable. In this case, the SE
of the MIMO system with the proposed filter may be approxi-
mated as [20]

SE SNIR (45)

In Fig. 8, the average spectral efficiency of the proposed filter,
defined as ASE SE , is shown and compared with that of
the MMSE filter. The water-filling capacity [21], also plotted
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Fig. 9. ABEP of the proposed filter for various CER when N = 2 and N = 2(K = 2).

in Fig. 8, represents an upper bound on the SE attainable with
the MIMO system. Note that the SE of the proposed filter is
higher than that of the MMSE filter, and the difference becomes
larger as the number of antennas increases. Note also that even
though the proposed filter is designed to minimize the BEP per-
formance, the SE of the proposed filter converges to the op-
timum water-filling capacity when the TxSNR increases. The
reason is that when the TxSNR increases, the SE of the pro-
posed filter may be approximated as

SE SNIR

which corresponds to the approximated water-filling capacity at
high TxSNR [21].

B. Effect of Imperfect CSI at the Transmitter

The proposed filter in Section IV assumes that the CSI at the
transmitter is perfect. In practical systems, however, the CSI
may be noisy and outdated due to the channel estimation error
and time-varying channel. In this subsection, we discuss the ef-
fect of imperfect CSI at the transmitter on the BEP performance.
We model the imperfect CSI at the transmitter as

(46)

where denotes an error matrix, whose elements are
i.i.d. zero-mean circular complex AWGN with the variance of

. We assume that the proposed Tx filter is derived with in-
stead of . Fig. 9 shows the effect of imperfect CSI at the trans-
mitter for various channel-to-error ratio (CER), which is defined
as CER . For comparison, the performances
with perfect CSI and without CSI are also plotted.3 Clearly, as
CER increases, the performance degradation due to imperfect
CSI decreases and the performance converges to that with per-
fect CSI. As CER decreases, the performance converges to that

3The performance without CSI may be obtained with TTT = [I 0] .

without CSI. The reason is that when no CSI is available at the
transmitter, any Tx filter that satisfies (3) achieves the same per-
formance [5].

VII. CONCLUSION

In this paper, we have investigated the design of transmit (Tx)
and receive (Rx) filters for the MIMO system in the sense of
minimizing the BEP. We have derived the optimum Tx and Rx
filters when the number of data symbols is two. For a general
number of data symbols, we have derived a Tx and Rx filters de-
sign criterion referred to as equal SNIR criterion, and proposed
Tx and Rx filters based on this equal SNIR criterion. The BEP
performance of the proposed filter has been compared with that
of the MMSE filter, and it was found that the proposed filter pro-
vides a significant improvement in BEP over the MMSE filter.
This performance improvement is observed to decrease as the
number of Tx antennas increases for a fixed number of Rx
antennas , or as increases for a fixed . On the other
hand, when both and increase, the BEP performance
improvement increases significantly. Along with the BEP per-
formance improvement, the proposed filter provides spectral ef-
ficiency improvement over the MMSE filter. It was found that
even though the proposed filter was designed to minimize the
BEP, the spectral efficiency of the proposed filter converges to
the optimum water-filling capacity when the TxSNR increases.

APPENDIX A

In this appendix, (12) is derived. From (9), may be ex-
pressed as

(A1)
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The matrix inversion lemma states that

(A2)

Thus, if we set , and
, then the inverse of can be expressed as

(A3)

By recursion of (A3), may be simplified as

(A5)

Finally, since may be expressed as

(A6)

APPENDIX B

In this appendix, we show that the optimum that mini-
mizes (20) lies on the range space of and may be ex-
pressed as , where is a real number
within the interval . Since is an vector, may
be expressed as the linear combination of orthogonal bases,

, and

(B1)

where , and are complex coefficients
having the following constraint:

(B2)

to satisfy . Substituting into (19), the matrix
can be expressed as

(B3)

where is given as

The maximum eigenvalue of the matrix is given

as

Thus, may be expressed as in (B4) at the bottom of the
page, where is given as .
Since is an unitary matrix, we can easily show that

is the same as . Thus, the SNIR
can be expressed as in (B5) at the bottom of the page.With
in (B1), the SNIR can be expressed as

SNIR

(B6)

Note that only the amplitudes of and affect the SNIR
and SNIR . Thus, without loss of generality, we may set
the phases of and to be zero. Hence, if we define as

, then and may be expressed as

(B7)

(B8)

where and are real values with the constraints
and . With these and , the SNIR and
SNIR may be expressed as in (B9) and (B10) at the top
of the following page, where is given as

Consider the partial derivatives of these SNIR and
SNIR with respect to (see (B11) and (B12) also at the top
of the following page). From the relations
and , it can be easily shown that SNIR
and SNIR are larger than or equal to zero for any

and . Thus, the SNIR and SNIR are
nondecreasing functions of , and their maximum values are
achieved when . Thus, the optimum may be obtained

(B4)

SNIR

(B5)
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SNIR

(B9)

SNIR (B10)

SNIR
(B11)

SNIR
(B12)

when . In this case, the coefficients and
must satisfy

(B13)

Hence, for the optimum , the coefficients and
should be . Consequently, the optimum lies

on the range space of , and may be expressed as
.

APPENDIX C

In this appendix, (30) is derived. Suppose that the ma-
trix may be written as the product of and

where is an upper
triangular matrix ( for ) and is a
lower triangular matrix ( for ). Without loss of
generality, we may set for . Then
we can obtain and through back substitution as

(C1)

(C2)

Note that in , there is the term on its left side,
and in , the term on its right side. Hence, we
may simplify and as and

where may be obtained by
solving the equation

(C3)

and may be expressed

(C4)

Note that has the same form with the approximated
given in (28). Hence, we may further simplify and as

and .
Moreover, becomes the same with the approximated
SNIR given in (29)

SNIR (C5)

With the above decomposition of
may be expressed as

SNIR (C6)

Hence, for high TxSNR, it holds that

SNIR

APPENDIX D

In this appendix, we show that if

SNIR
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then the BEP cost function in (13) is mini-
mized when

SNIR

and

SNIR SNIR SNIR

Let SNIR and . Then the minimiza-
tion of the BEP cost function in (13) may be
expressed as

subject to

(D1)

where is given as . Using the Lagrange multiplier
techniques, the Lagrangian may be expressed as

(D2)

and its partial derivatives may be expressed as

(D3)

Setting all the partial derivatives to , we have

(D4)

This implies that the condition
is a sufficient condition to minimize .
Moreover, since is a decreasing func-
tion of SNIR is minimized when

SNIR . Consequently, the BEP cost function
in (13) is minimized when

SNIR

and

SNIR SNIR SNIR

APPENDIX E

In this appendix, (32) and (33) are derived. We first show
that the term in (11) may be expressed as

using the following mathe-
matical induction.

i) For , it is true that
since .

ii) Assume that is true for
. Consider the term

when . From the relation of (12),
can be expressed as

(E1)

Note that, from the assumption, the term
in (E1) may be expressed as

Similarly, the term in (E1) can be ex-
pressed as

Hence, may be simplified as

(E2)

Note that, for and that lie in different 2-D range
subspaces of , it is true that . Note
also that three Tx weight vectors, and , cannot
lie simultaneously within the same 2-D range subspace,
since we assume that only two Tx weight vectors lie in
one 2-D range subspace. Hence, at least one of
and in (E2) becomes zero. Consequently,

may be simplified as

(E3)

Thus, it is true that
for .

From i) and ii), the term may be expressed
as . Moreover, when and
lie in different 2-D range subspaces of , then
becomes zero. Hence, from the above observations and (11),
SNIR and SNIR may be expressed as

SNIR

(E4)

SNIR (E5)

APPENDIX F

In this appendix, we show that when the optimum Tx and
Rx filters for given in (24)–(27) are applied, the corre-
sponding SNIRs may be expressed for high TxSNR as SNIR
SNIR . Note that the SNIRs with the proposed
filter may be obtained from (21) and (22) by replacing with

SNIR and SNIR . For high TxSNR,
in (21) may be approximated as ,
with which, the SNIR in (21) may be approximated as

SNIR (F1)
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From (F1) and (22), the product of SNIR and SNIR is
found as

SNIR SNIR (F2)

Observe that the product of SNIR and SNIR does
not depend on , and may be considered as a constant value.
In this case, from Appendix D, the cost function in
(23) is minimized when SNIR SNIR . Hence, for
high TxSNR, the optimum may be obtained by solving
SINR SINR as follows:

(F3)

Substituting (F3) into (F1) and (22), SNIR and
SNIR may be obtained as

SNIR (F4)

SNIR (F5)

This indicates that when the optimum Tx and Rx filters for
are applied, the corresponding SNIRs may be expressed for

high TxSNR as SNIR SNIR .
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