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There is an increasing demand for high throughput 

(HTP) methods for gene analysis on a genome-wide 

scale. However, the current repertoire of HTP detection 

methodologies allows only a limited range of cellular 

phenotypes to be studied. We have constructed two 

HTP-optimized expression vectors generated from the 

red fluorescent reporter protein (RFP) gene. These vec-

tors produce RFP-tagged target proteins in a multiple 

expression system using gateway cloning technology 

(GCT). The RFP tag was fused with the cloned genes, 

thereby allowing us localize the expressed proteins in 

mammalian cells. The effectiveness of the vectors was 

evaluated using an HTP-screening system. Sixty repre-

sentative human C2 domains were tagged with RFP and 

overexpressed in HiB5 neuronal progenitor cells, and 

we studied in detail two C2 domains that promoted the 

neuronal differentiation of HiB5 cells. Our results show 

that the two vectors developed in this study are useful 

for functional gene analysis using an HTP-screening 

system on a genome-wide scale. 
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Introduction 
 
Over the last decade rapid progress in genome sequencing 

has led to the identification of great numbers of genes, and 

has made it possible to create and apply repositories of de-

fined functional elements to perform high throughput 

(HTP) genome-wide analyses (Gibbs et al., 2004; Wa-

terston et al., 2002). However, most gene products pre-

dicted from the currently available genome sequences re-

main functionally uncharacterized. One essential step in the 

development of genome-wide analyses is the systematic 

mapping of macromolecular interactions and biochemical 

reactions using reverse proteomics approaches (Walhout 

and Vidal, 2001). Reverse proteomics projects, in turn, re-

quire the cloning and manipulation of large numbers of pro-

tein-encoding sequences, or open reading frames (ORFs). 

Recently, cloning systems employing in vitro recombi-

nation have been developed, and are amenable to HTP 

cloning (Hartley et al., 2000; Siegel et al., 2004). Gate-

way cloning technology (GCT) is one such system, which 

uses in vitro site-specific recombination to clone and sub-

sequently transfer DNA segments between vector back-

bones (Hartley et al., 2000). In this system, a fragment 

carrying attB1 and attB2 recombination sites at its ends is 

prepared by the polymerase chain reaction (PCR), and is 

introduced into a donor vector carrying attP1 and attP2 

recombination sites by an in vitro recombination reaction 

driven by BP clonase. In turn, master vectors (so-called 

‘entry clones’) are produced, which contain the fragment 

of interest carrying attL1 and attL2 recombination sites. 

 

Abbreviations: GCT, gateway cloning technology; HTP, high 

throughput; ORF, open reading frames; RFP, red fluorescent protein. 
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This system has been used to generate several large clone 

collections, such as those for Xenopus (http://xgc.nci.hih. 

gov) and zebrafish (http://zgc.nci.nih.gov), as well as 

many human, mouse, and rat genes (http://mgc.nci.nih. 

gov). Some full-length clones have also been used to es-

tablish entry clones through GCT. Furthermore, an initial 

version of the human ORFeome, comprising 8,076 human 

ORFs, was recently generated using GCT (Rual et al., 

2004). 

Although the GCT is a powerful tool for multi-gene 

cloning, few practical expression vectors for tagging with 

fluorescent proteins are commercially available. In this 

work we generated novel vectors that express red fluores-

cent protein (RFP)-tagged proteins using GCT. These vec-

tors can be used with any entry clones and can produce 

any protein of interest fused to RFP in mammalian cell 

lines. In addition, we tested whether the RFP-tagging vec-

tors could be used in HTP analysis to obtain cellular im-

ages of 60 representative human C2 domains. 

 

 

Materials and Methods 

 

Construction of gateway destination vectors pDsRed-Monomer- 

N1 (Clontech) was used as a backbone vector for pDEST-N-RFP 

(Fig. 1A). The suicide ccdB box, which contains the ccdB gene 

(Bernard and Couturier 1992), the chloramphenicol (CM) cat 

gene, and attR sites, was amplified with pDEST 15 (Invitrogen) 

as template, and with a BamHI site in the upper primer and a 

BglII site in the lower primer (5′-GGGGGATCCCCACAAGT-

TTGTACAAAAAAGC-3′ and 5′-GGGTGATCAACCACTTT-

GTACAAGAAAGC-3′, respectively). The PCR product was 

partially digested with the same enzymes, and cloned into the 

BamHI site of pDsRed-Monomer N1. For pDEST-RFP-C, we 

used pEGFP-C1 (Clontech) as a backbone vector (Fig. 1B). The 

DsRed-Monomer gene was amplified from pDsRed-Monomer 

N1 vector, with the upper and lower primers containing AgeI 

and BamHI sites, respectively (5′-GGGACCGGTCGCCACC-

ATGGACAACACCGAGG-3′ and 5′-GGGGGATCCGGACT-

GGGAGCCGGAGTGGCG-3′). The suicide ccdB box was also 

amplified from the above-mentioned pDEST15 vector, with 

upper and lower primers containing BglII and BamHI sites, re-

spectively (5′-GGGAGATCTAACAAGTTTGTACAAAAAAGC- 

3′ and 5′-GGGGGATCCTCAAACCACTTTGTACAAGAAA-

GC-3′). A stop codon (underlined in bold) was added to the 

lower primer to prevent tagging unnecessary amino acids. The 

two products were partially digested with the same enzymes and 

were cloned into the AgeI and BamHI sites of pEGFP-C1 vector.  

 

Construction of expression vectors for RFP-fused C2 do-

mains Entry clones of human C2 domains were constructed as 

follows. We initially identified 175 published C2 domains with 

conserved regions from 250 proteins listed in the Pfam (www. 

sanger.ac.uk/Software/Pfam) and NCBI (www.ncbi.nlm.nih.gov) 

databases. In order to obtain human C2 domains, reverse tran- 

scription (RT)-PCR was performed using total RNAs isolated 

from human brain, placental tissues and HeLa cells. Human C2 

domains were PCR amplified from the pooled complementary 

DNAs (cDNAs) using target sequence-specific attB1/attB2 

primers. The upper primer (5′-GGGGACAAGTTTGTACAAA-

AAAGCAGGCTCCACCATG-[gene specific 20−25 sequences]- 

3′) and the attB1 sequences (underlined) followed by a Kozak 

sequence and start codon sequences (bold), were introduced. 

The lower primer was 5′-GGGGACCACTTTGTACAAGAAA-

GCTGGGTTTTA-(gene specific 20−25 sequences)-3′. The attB2 

sequence (underlined) was introduced immediately after the last 

stop codon (bold). The PCR products were cloned into the 

pDONR207 donor vector (Invitrogen), and their sequences con-

firmed (Macrogen Inc.). 150 human C2-domain entry clones 

were obtained by GCT. From these, we selected 60 entry clones 

at random and introduced them into the pDEST-RFP-C destina-

tion vector via the LR reaction of GCT. 

 

Cell culture, HTP transfection, and adenovirus infection 

Immortalized HiB5 cells were cultured at 33°C and 5% CO2 in 

Dulbecco’s modified Eagle’s medium (DMEM) with 0.11 mg/ml 

sodium pyruvate, 3.7 mg/ml NaHCO3, 50 U/ml penicillin, 50 

μg/ml streptomycin, and 10% fetal bovine serum (FBS). For 

differentiation as previously reported (Kwon, 1997; Sung et al., 

2001), cells were shifted to the chemically defined N2 medium 

containing 5 μg/ml insulin, 100 μg/ml transferrin, 20 nM pro-

gesterone, 30 nM selenium, 60 μM putrescine, 0.11 mg/ml so-

dium pyruvate, and 2 mM glutamine at 39°C for 2 d. 

The expression-ready subset of human C2 domains was trans-

fected into cultured HiB5 cells at 33°C in 96-well plates. In a 

semi-automated process, each expression vector (200 ng) was 

incubated with a liposomal transfection reagent (lipofectamin 

2000; Invitrogen) and introduced into a well containing ~10,000 

HiB5 hippocampal progenitor cells. After further incubating for 

48 h, cell images were acquired using an In Cell Analyzer 1000 

automated high-content imaging system (Amersham Biosci-

ences). Finally, we screened for human C2 domains that induced 

neurite outgrowth of HiB5 cells. We also constructed two repli-

cation-defective adenoviruses (rAd5) containing GFP-tagged 

CPNE9-C2 and PKCδ-C2, respectively (Neurogenex Co., Ko-

rea). HiB5 cells were infected at the 90% level at a multiplicity 

of infection (MOI) of 50. 

 

Imaging analysis and immunocytochemistry The screened C2 

domains were re-analyzed by the RFP fluorescence-detection 

method with a confocal microscope (Olympus Fluoview FV 

1000) mounted on an inverted microscope (Olympus BX81) and 

fitted with a 60× objective. The excitation light source was the 

543-nm line of a green HeNe laser. The emitted fluorescence 

was passed through a 580-nm (40-nm bandwidth) primary bar-

rier filter before it reached the photo-multiplier tube. The laser 

intensity was minimized to prevent dye bleaching. The digital 

image output was 512 × 512 pixels with a 32-bit resolution. For 

the imaging analysis the cells were plated onto glass coverslips 

at 4 × 104 cells/ml. After 2 days they were washed twice with 
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Fig. 1. Schematic of the new RFP-tagging expression vectors. The 

two destination vectors, pDEST-N-RFP (A) and pDEST-RFP-C 

(B) are depicted. These vectors contain the suicide ccdB box 

(attB1 site, ccdB gene, chloramphenicol cat gene (CM R), and 

attR2 site). The cyan boxes indicate the attR1/ attR2 recombina-

tion sites. The red and yellow arrows show the locations and ori-

entation of several ORFs and the cytomegalovirus immediate-

early promoter (CMV), respectively. Restriction enzyme sites are 

also shown. Kana/Neo R, Kanamycin/Neomycin resistance gene. 

 

 

DMEM and monitored with the confocal microscope. The immu-

nocytochemisty protocol was modified from Choi et al. (2005). 

Briefly, HiB5 cells grown on coverslips (4 × 104 cells) were fixed 

in 4% paraformaldehyde and permeabilized in cold methanol for 

5 min. They were then incubated with primary pan-neuronal neu-

rofilament marker monoclonal antibody (SMI 311, Covance Re-

search Products) against neurofilamment (NF; 1:500) overnight at 

4°C. The following day the cells were washed and treated with 

fluorescein isothiocyanate (FITC)-conjugated secondary antibody 

(HTP transfection) or Cy3-conjugated secondary antibody (rAd 

infection) for 1 h at the room temperature. All images were cap-

tured on the same confocal microscope. 

 

 

Results and Discussion 

 

A new set of RFP-tagging expression vectors for HTP 

We decided to base our new RFP-tagging expression vec-

tors on recombination-based cloning using the GCT series 

of plasmids (Invitrogen). GCT uses a site-specific recom-

bination reaction whereby a gene of interest is cloned into 

a so-called entry vector (pENTR) that is then recombined 

with a so-called destination vector (pDEST) to produce 

the desired expression vector. This cloning system permits 

the easy assembly of a variety of expression vectors in 

one step. In our case we designed the destination vectors 

to contain RFP flanked by a suicide ccdB box. 

The destination vectors we developed are essentially 

modifications of the existing pDsRed-Monomer-N1 and 

pDsRed-Monomer-C1, which encode the DsRed-Monomer 

protein (Fig. 1A). This reporter protein is a monomeric 

mutant derived from the tetrameric Discosoma sp. RFP 

DsRed (Matz et al., 1999). By performing the gateway re-

combination reaction with pENTR containing a gene of 

interest, new destination vectors are produced that express 

RFP-tagging proteins under the control of the cytomega-

lovirus immediate-early promoter (CMV).  

 

HTP screening of the putative roles of C2 domains in 

neuronal differentiation of HiB5 cells Our destination 

vectors were designed for the HTP screening of gene 

functions on a genome-wide scale and the effectiveness of 

these destination vectors for HTP screening was evaluated 

using C2 domains. The C2 domain, a conserved protein 

module of ~120 amino acids, was originally defined as 

homologous to the C2 regulatory region of protein kinase 

C (reviewed in Newton and Johnson, 1998). It is now 

known to be present in numerous eukaryotic signaling 

proteins, including kinases, GTPase-activating proteins, 

ubiquitination enzymes and proteins involved in vesicular 

trafficking. In addition, Benes et al. (2005) recently 

showed that the C2 domain of PKCδ can directly bind 

phosphotyrosine. 

To screen for C2 domains involved in neuronal differ-

entiation we selected 60 entry clones of human C2 do-

mains at random and converted them into pDEST-RFP-C 

expression vectors by the LR reaction of GCT (Fig. 2A 

and Table 1). The RFP-tagging expression vectors were 

transiently transfected into HiB5 hippocampal progenitor 

cells in 96-well plates. After 48h incubation, cellular im-

ages were captured, and the effects of the C2 domains on 

neurite outgrowth were assessed (Fig. 2B). 

HiB5 cells comprise a multipotent hippocampal stem 

cell line isolated from the embryonic day 16 rat hippo-

campus, in which precursors of pyramidal cells initiate 

proliferation (Renfranz et al., 1991). They are immortal-

ized by the temperature-sensitive SV40 large T antigen, 

grow at a permissive temperature of 33°C, and express 

the stem-cell marker nestin. When incubated in N2 me-

dium at the non-permissive temperature of 39°C, they 

stop growing and many die. However, 30−40% of the 

cells survive, and less than 30% of the surviving cells 

differentiate into cells with neurite-like structures. We 
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Table 1. Human genes containing C2 domains used in this study. The listed genes are identified by arrows and numbers matched with 

the images shown in Fig. 2B. 

Gene name 
Accession 

NO. 

Nucleotide 

region 
Gene name

Accession 

NO. 

Nucleotide

region 
Gene name 

Accession 

NO. 

Nucleotide

region 

PIK3C2A NM_002645 4720-4986 ABR U01147    1516-1785 RGS3 NM_017790 118-381 

UNC13B NM_006377  4318-4590 doc2 D31897  316-585 PIK3C2B NM_002646 4555-4824 

RIMS1 NM_014989  2317-2592 doc2 β NM_003585 427-696 UNC13C XM_930037 1462-1734 

SYT7 NM_004200 451-714 RASA3 NM_007368 40-288 MCTP2 NM_018349 295-537 

dysferlin NM_003494 4012-4263 PLCL1 NM_006226 1873-2145 DKFZP586P0123 NM_015531 1186-1461 

GAP1 like BC014420  403-648 RASA2 NM_006506 517-819 PLCH2 NM_014638 2493-2890 

PLA2G4B NM_005090  727-981 PLCB1 NM_015192 1-240 SYTL2 NM_032943 259-528 

PKCγ NM_002739 517-780 SYT11 NM_152280 520-786 SYTL2 NM_206930  706-969 

PKCβ NM_002738 517-780 SYT11 NM_152280 922-1191 RPGRIP1 NM_020366 2339-2730 

BCR NM_004327 2737-3006 CPNE9 NM_153635 229-492 NEDD4L NM_015277  64-327 

PKCδ NM_006254. 1-375 PLCB3 NM_000932 2053-2301 B/K protein NM_016524  601-882 

PKCα NM_002737 517-780 SYT3 NM_032298 946-1206 WWP1 NM_007013 508-774 

SYT1 NM_005639 868-1134 SYT2 NM_177402 466-726 FLJ12548 AK022610  556-834 

PLCD1 NM_006225  1891-2160 SYTL4 NM_080737 1582-1851 PLCE1 NM_016341 556-834 

cadps2 AF401638  1096-1338 MTAC2D1 NM_152332 1102-1368 RIMS1 NM_014989 4550-4980 

PLCG2 NM_002661 3187-3456 PLC ε AF170071 5611-5835 NEDD4LUL1 AB048365  556-843 

myoferlin NM_013451 4-255 myoferlin NM_013451 1078-1374 myoferlin NM_013451 3907-4179 

DAB2IP NM_032552 64-306 C21orf25 NM_199050 793-1038 FAM62B NM_020728 718-987 

SYT13 NM_020826 949-1221 KIAA1301 AB037722  586-873 kiaa1228 NM_020728  1378-1617 

PKCε NM_005400  22-297 KIAA0941 AB023158  43-306 rabphilin-3a NM_014954 1225-1494 

 

 

measured the effects of the C2 domains on the formation 

of these neurite-like structures at 33°C. Based on the re-

sults, we screened six C2 domains that appeared to pro-

mote the formation of neurite-like structures and settled 

on the C2 domains of PKCδ (PKCδ-C2) and of copine9 

(CPNE9-C2) for further study.  

 

The selected C2 domains promote the neuronal differ-

entiation of HiB5 cells In order to confirm that neurite 

outgrowth was induced by PKCδ-C2 and CPNE9-C2, 

each RFP-tagged C2 domain was transfected into HiB5 

cells and their ability to induce morphological changes 

was monitored with a confocal microscope. Since PKCδ-

C2 and CPNE9-C2 were fused to RFP it was very easy to 

detect the transfected cells, which were examined for the 

presence of neurites, defined as processes longer than the 

length of two cell bodies. As shown in Fig. 3A, the cells 

expressing PKCδ-C2 and CPNE9-C2 had well-defined 

neurite-like structures. In addition, neuronal differentia-

tion was checked by immunocytochemistry for neuro-

filament (NF), a differentiation marker for neuronal cells; 

overexpression of PKCδ-C2 or CPNE9-C2 led to an in-

crease in the number of transfected cells bearing neurites 

at the permissive temperature (Fig. 3B). 

Since only 30−40% of the HiB5 cells survive in N2 

medium at the non-permissive temperature of 39°C, and 

transfection efficiency is very low in this condition, it was 

difficult to assess the activity of the transfected genes. 

Therefore we constructed recombinant adenoviruses con-

taining GFP-tagged CPNE9-C2 and PKCδ-C2, to over-

come the low efficiency of transfection and measure the 

effect of the two selected C2 domains on neuronal differ-

entiation at 39°C. As shown in Fig. 3C, PKCδ-C2 and 

CPNE9-C2 clearly increased the number of cells bearing 

neurites at 39°C. 

In accord with our result it has been reported that PKCδ 

is involved in the nerve growth factor signaling that elicits 

neuronal differentiation of PC12 cells (O’Driscoll et al., 

1995) and in neurogenic fibroblast growth factor signaling 

in both PC12 cells and hippocampal cells (Corbit et al., 

1999). Moreover the regulatory domain of PKCδ (RD-

PKCδ) enhances neurite outgrowth of HiB5 cells inde-

pendent of the catalytic activity of the protein (Ling et al., 

2004; Trollér and Larsson, 2006). Since the regulatory 

domain contains C1 and C2 domains (reviewed in New-

ton and Johnson, 1998), the PKCδ-C2 -induced neurite 

outgrowth described above implies that the C2 domain of 

PKCδ plays an important role in RD- PKCδ-induced neu- 
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Fig. 2. Gene mining of C2 domains using GCT, and their ex-

pression images. A. C2 domains were amplified by RT-PCR 

with primers containing attB1/attB2 sites, and cloned into 

pDONR207 by the BP reaction. The C2 domains in pENTR-C2 

were converted to pDEST-RFP-C destination vectors by the LR 

reaction. B. pDEST-RFP-C2 expression vectors were transfected 

into HiB5 cells in 96-well plates. Images were captured using  

a HTP imaging system (In Cell Analyzer 1000). The captured 

images are identified by arrows and numbers. Gen, Gentamycin 

resistance gene; Kana, Kanamycin resistance gene. 

 

 

rite outgrowth. 

Copine 9 (CPNE9) belongs to the copine family, a 

novel family of ubiquitous Ca2+-dependent phospholipid-

binding proteins (reviewed in Tomsig and Creutz, 2002) 

and was recently cloned (Xie et al., 2004). Its role in neu-

ral differentiation has not yet been elucidated. Although 

further studies will be required, our results strongly sug-

gest that the two genes containing these C2 domains play 

pivotal roles in neuronal differentiation of HiB5 cells. 

In conclusion, our novel destination vectors can be suc-

cessfully applied to HTP screening of cellular image data. 

In addition, the two vectors allow simultaneous examina-

tion of two or more proteins of interest by com- bining 

them with the EGFP-tagging system, since the fluores- 
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Fig. 3. Images of the screened C2 domains, and C2 domain-

induced neuronal differentiation. A. Two C2 domains selected 

from the initial screening were reexamined in HiB5 cells with a 

confocal microscope, and their ability to induce neurite out-

growth was confirmed by immunoreactivity for neurofilamment 

(NF). B−C. Quantification of the number of RFP or GFP-

positive HiB5 cells with neuritis (NF-positive) longer than two 

cell bodies expressing RFP- or GFP-tagged CPNE9-C2 and 

PKCδ-C2. Data are means ± SEM of three separate experiments 

(*** P < 0.001 or * P < 0.05, by one-way ANOVA). 

 

 

cence of RFP can be readily differentiated from that of 

EGFP. 
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