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Statistical Multimode Transmit Antenna Selection for
Limited Feedback MIMO Systems
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Abstract—In a wireless multiple-input multiple-output on the long-term channel statistics. However, the feedback

(MIMO) system, transmit antenna selection is an effective
means of achieving good performance with low complexity. We
consider spatial multiplexing with linear receivers, and equal
power and equal rate allocation over different selected transmit
antennas in order to reduce feedback overhead. Under these
constraints, we address the problem of statistical multimode
transmit antenna subset selection to improve the capacity
of spatially correlated MIMO fading channels. In particular,
we first derive an analytical closed-form expression for the
expectation of the lower bound on the capacity using the
smallest eigenvalue distribution of a Wishart matrix. Then,
we propose a transmit antenna subset selection criterion of
maximizing this average lower-bound capacity.

Index Terms—Antenna selection, limited feedback systems,
linear receiver, MIMO systems.

I. INTRODUCTION

ECENT information-theoretic results have shown that

multiple-input multiple-output (MIMO) systems, which
employ multiple antennas at both the transmitter and receiver,
provide considerable capacity enhancement of wireless chan-
nels [1], [2]. In practical systems, however, hardware cost
of RF chains for multiple antennas may limit the number of
antennas. In order to overcome this limitation while achieving
satisfactory MIMO gain, various (receive or transmit) antenna
selection techniques have been investigated in [3]-[8], where
the antenna subset is adapted to the instantaneous channel
conditions. While the number of selected antennas is assumed
to be fixed in [3]-[7], that of the transmitter is varied in
[8], and the increased degrees of freedom in the number
of transmitted substreams have been shown to improve the
performance. However, the transmit antenna selection based
on the instantaneous channel conditions may cause the per-
formance degradation due to the limited feedback channel
bandwidth, limiting its application to practical systems over
fast fading channels. Furthermore, it requires the channel
estimation process for all transmit antennas at every transmis-
sion time interval. In [9]-[12], the transmit antenna selection
is based not on the instantaneous channel conditions but
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overhead for different rates for all selected transmit antennas
still remains and the number of selected antennas is not
variable in [9]. The works in [10] and [11], respectively,
use the selection criteria of maximizing the minimum signal-
to-noise ratio (SNR) margin and of minimizing the average
probability of error, and those still leave the need to investigate
the antenna selection for capacity improvement. The optimal
antenna selection based on capacity maximization is proposed
for the optimal (not linear) detector in [12], where the number
of selected antennas is assumed to be fixed.

In this paper, we address the problem of statistical (not
instantaneous) multimode transmit antenna subset selection
to improve the capacity (not error-rate performance) of spa-
tially correlated MIMO fading channels with small feedback
overhead. Multimode antenna selection allows all possible
numbers of transmitted antennas to be selected, as in [8] and
[10]. While our work investigates multimode selection based
on the long-term channel statistics, the work in [8] investigates
that based on the instantaneous channel conditions, and it is
extended to a more general case using quantized precoding
in [16]. The number of transmit antennas in [10] is selected
to maximize the minimum SNR margin, while we select it to
improve the capacity. In other works in [17]-[19], spatial mode
selection techniques have been studied to adjust the number
of substreams for transmission. The switching architecture
in [17] presents the selection between space-time coding
and spatial multiplexing based on the instantaneous channel
conditions. The work in [18] proposes spatial mode selection
using the joint transmit and receive minimum mean square
error (MMSE) design, however, it assumes full knowledge
of channel conditions at the transmitter, while we assumes a
limited feedback scenario. The adaptive transmission in [19]
statistically switches between several spatial modes, although
those modes are not transmit antenna subset selection.

We consider the linear receiver with low complexity which
uses the zero-forcing (ZF) or MMSE detection scheme. In
order to reduce feedback overhead and system complexity,
we allocate equal power and equal rate to all selected trans-
mit antennas, from which independent data substreams are
transmitted. To solve the problem, we first derive an analytical
closed-form expression for the expectation of the lower bound
on the capacity using the smallest eigenvalue distribution of
a Wishart matrix. Then, we propose a selection criterion of
maximizing this average lower-bound capacity.

II. SYSTEM AND CHANNEL MODELS

A point-to-point MIMO system with V; transmit antennas
and N, receive antennas is considered. When the number
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of selected transmit antennas is denoted by M;, M, can be
taken from 1 to min(Ng, N,) and it is a “variable” to be
selected. The subset, which consists of indices for selected
transmit antennas, is denoted by S. For example, when all
available transmit antennas are selected, we obtain M; =
N; and S = {1,2,..., N;}. At the receiver, all N, receive
antennas are assumed to be used to detect the transmitted data
signals. Throughout this paper, the superscripts [-]7 and [ -]
denote the transpose and conjugate transpose, respectively.
Moreover, [A]; ; denotes the element in the ith row and jth
column of a matrix A, and F]-] represents the expectation

operator.
The N, x N; channel matrix is modeled as [13]
H = R;’H, Ry (1)
where Ry, = RfZ(Ri{)Y and Ry, = (RY2)TRY

are the N, x N, receive and N; x N; transmit correlation
matrices, respectively. The elements of Hy, in (1) are assumed
to be independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian random variables with zero
mean and unit variance. The N, x M; channel matrix for
transmit antenna subset S may be written as

H(S) = RY/2H, (S)RY2(S) )

where Ry (S) is an M; x M; principal submatrix of Ry,
and I:IW(S) is an N, x M,; matrix whose elements have the
same distributions as those of Hy,. It is assumed that Ry ()
has full rank. Here, note that ﬁW(S ) may not be a submatrix
of H,,, which is contrary to the case of R, (S) and R.p,.
I:IW(S ) is obtained by choosing columns of H corresponding
to the selected transmit antennas, and then multiplying it by
the inverse matrices of R%{/Xz and f{;/f(S ). Correspondingly,
the received signal vector for a given S may be expressed as

y =H(S)x+n 3)

where x is an My x 1 transmit symbol vector. The covariance
matrix of x is given by E[xx"] = (E,/M;)I,y,, where E,
is the total average transmit energy and I,;, is the M; x M,
identity matrix. This implies that independent data symbols
are transmitted from all selected transmit antennas. The vector
n denotes an N, x 1 circularly symmetric complex Gaussian
noise vector with zero mean and covariance matrix F[nn’!]| =
g 2I N,.-

We assume that the receiver has perfect knowledge of the
instantaneous and statistical channel state information (CSI).
Based on the statistical CSI, such as the correlation matrices
and average SNR, the transmit antenna subset is selected at
the receiver and its information is fed back to the transmitter.
This feedback information is not necessary to adapt to the
varying channel conditions, if the channel statistics are not
changed. Only a single information for equal rate adaptation
based on the instantaneous CSI is fed back to the transmitter
every channel instance. Here, we assume that the instantaneous
rate adaptation is performed every channel instance to achieve
the instantaneous (not ergodic) capacity with short-term (not
long-term) delay constraint.

The ergodic capacity requires long-term delay constraint
since we construct codewords long enough to cover all chan-
nel states according to the channel’s statistical distribution.
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In practical systems, however, it may be more feasible to
construct codewords according to the given instantaneous
channel condition and change the data rate every channel
instance. In this case, the instantaneous channel capacity can
be achieved every channel instance and it may be treated as a
random variable. We consider this case and the information for
instantaneous rate should be fed back to the transmitter every
time the instantaneous channel state changes. Therefore, if
different rates are allocated to different transmit antennas, the
feedback overhead is proportional to the number of selected
transmit antennas. As a result, compared to the different
rate allocation, the equal rate allocation reduces the feedback
overhead by a factor of M,;. As an example, in the case of a
practical system using 5 bits for representing different coding
rates and modulation levels, only 5 bits are required for equal
rate allocation while 20 bits are required for different rate
allocation for M; = 4.

ITI. STATISTICAL TRANSMIT ANTENNA SUBSET
SELECTION

In order to reduce feedback overhead and system complex-
ity, we allocate equal rate across all selected transmit antennas.
This equal rate should be the capacity value computed using
the minimum SNR, since the data signal can be sent reliably
with an arbitrarily small probability of error when the rate is
smaller than the capacity value [14]. Thus, the instantaneous
overall capacity for equal rate allocation for a given S is
calculated as

CEr(S) = M;logs (1 + SNRwin(S)) 4)

where SNRp,in(S) is the minimum among the SNR val-
ues for the linear receiver, for example, SNRyin(S) =

 Jnin B /(Mo [(H(S)TH(S)) g ) for ZF receiver [3].

Now, we propose a criterion for selecting transmit antenna
subset based on the long-term statistics of MIMO fading chan-
nels. The distribution of SNR i, (S) in (4) should be derived
to find the analytical expectation of Cgg(S) with respect to
random fading channels. However, the exact solution of that
problem is difficult to find. Thus, we use a lower bound on
SNRin(S) (for both ZF and MMSE receivers), which is
given as [10]

Ey o
W Amin (RRX)AmiH (RTX (S))

X Amin (Hy (S)TH, (S)) (5)

SNRmin (S) >

where Apnin(A) denotes the smallest (real) eigenvalue of a
Hermitian matrix A. Correspondingly, the Cgr(S) in (4) is
lower bounded as

Cer(S) > Cgr,LB(S) (6)
with the lower bound Cgr 1.5(S) given as

FE ~
Cer.LB(S) = M, log, (1 + WAmin(RRx)Amin(RTx(S))
t

xAmin(fIw(S)Hf{W(S))). )
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Then, the expectation of Cggr,1g(S) with respect to random
fading channels is expressed as

E[Corn(S)] = M / logo (1 + p(S)NFMO (X (8)
0

where p(S) = (ES/(MtUQ))Amin(RRx)Amin(RTx(S)) and
/(\Aftn)()\) denotes the probability density function (pdf) of
Aumin = Aumin(FLy (8) 7L, (S)). _ )

Note that an M; x M; random matrix Hy, (S)#H,(9) is
called a complex Wishart matrix and Ay, is its smallest
eigenvalue. Using the results in [15] and considering that the
elements of Hy (S) have unit variance, the pdf of A, can
be given as

M)\ BN,
7 (3) = —Mt —

/R (zi — ;)

1<z<g<Mﬁ1

—Jsz/\ANr My

X H :1022(96z —&—)\)NT_Mte_””dxi 9)

~1
where Ky, N, (Hf&l (N, —i)(M; — z)') and R =
{(z1,22,...,2r,—1) | z; > 0} is the integration region. From
(9), it can be easily shown that f, (Mt (M) is expressed as [15]

D
) _ efMt)\ chwt)An
n=0

where D = M;(N, — M) is the degree of the polynomial part
f f/(\J:f;)(A) and ¢ is the constant coefficient of A" for a
given M. In [15], the polynomial part in (10) still remains

(M)(}\

A (10)

unclosed except for the very simple case of M; = N,. The
closed-form expressions for f ,(\Jl\itn) (A), and thus M) in (10)

are derived in Appendix A. In this Appendix, the solutions
for My =1, 2, 3, and 4 with arbitrary [V, are derived,! since
M; seems to be seldom more than four in practical systems.
Particularly, we provide the exact pdf results for M; = 2, 3,
4, and N, < 6 in Table I. To the best of authors’ knowledge,
these simple and explicit expressions in Appendix A, which
do not require complicated integration and consist of a single
exponential function multiplied by a polynomial of degree D,
have not been found in the previous works.2 Furthermore, the
expression of (10) can lead to the derivation of a closed-form
average lower-bound capacity as described in the following.
Using (10), E[Cgr,LB(S)] in (8) is given as

E[Cgr,1B(9)]
D

o0

= M, chMﬂ/ logy (14 p(S)MA e Mrdx. (11)
n=0 0

lAlthough it is assumed that N, > M; in Appendix A, the results of
f (Mt)( A) in Appendix A can be easily extended to arbitrary N, (for M; =
1, , and 4), since the statistical distribution of the nonzero eigenvalues of
HW(S) H.,,(S) and Hy (S)H,, (S)™ are identical.

2In [21], a similar expression has been derived for the pdf of the largest
(not smallest) eigenvalue, which is a finite linear combination of elementary
gamma pdf’s and those coefficients are computed by using a software tool
for some values of M; and N,. The work in [22] approximated the pdf of
the smallest eigenvalue to that of a scaled gamma random variable.
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TABLE I

PDF OF THE SMALLEST EIGENVALUE FOR M =2, 3,4, AND N, < 6

Ny =2 | 2722
N, =3 | e722(A2 4 3))
Me=2 | Np=4 | e”22(0* +6X3 +12)02)/6
N, = e (A8 + 92 + 360 4 60A3) /72
Ny =6 | e 22(AB4+120\7+7226 +240)° +360A*) /1440
Ny = 3e™3A
M, = 3 Ny =4 | e 33(A3 4822 +12))/2
N, = e73M(AG £ 16A° 4+ 9621 4 240)3 + 240)2) /48
Ny =6 | e 3MA% +24)8 + 25277 + 14401 + 4680)\° +
8640A* + 720013) /2880
Ny =4 | de
My =4 | N, = e~ (A 4 1573 4 602 + 60))/6
Ny =6 | e *}(A8+30A7 436075 +2160A° + 6840A* +
108003 + 720022) /720

The integral term in (11) is derived in Appendix B. Using this
result, E[Cgr. 15 (S5)] is found as

E[Crr.LB(S)] = (Me)

x Zn: ((—1)’6(?1?
k=0

C

(_1)n6#(s)
{(hl 2)p(S)"

i

1 ST, u(S
S)kg(ﬂ(

>>>1 12

where u(S) = M;/p(S) and T(a,z) 2 [
denotes the incomplete gamma function [23].
Now, we propose the selection criterion, which is to select
the transmit antenna subset S* that maximizes the closed-form
average lower-bound capacity in (12). The straightforward

ettt

min(Ny,Ny) 7 pr
application of this criterion requires at most > ( ]\4t )
M;=1 t

(i.e., the number of all possible S’s) computations of
E[Cgrr,e(5)] in (12). From (11), however, it can be seen
that more p(S) (depending on Ain(Ryy(S))) leads to more

E[Cgr,B(S)] when a particular value of M, is given. This
implies that a simple comparison of p(S)’s can provide the
best transmit antenna subset for a “particular” M; with-
out computation of E[Cgr,1p(S)]. Thus, we first choose
min(Ng, N,.) transmit antenna subsets, each one of which is
the subset corresponding to maximum p(S) for each M; and
is denoted by S*(M;) (M; = 1,2,...,min(N, N,.)). Then,
we select the one subset S* among S*(M;)’s that maximizes
(12). This two-step selection procedure is described as follows.

Step 1) Select S*(M,)’s for My = 1,2,...,min(NVy, N,) as

S*(M;) = S
(M) 8 s scro iy, 1s1=m )
= Amin f{ X S )
args Sc{1,2, Nt} |S|=M: ( T ( ))
My =1,2,... ,min(Ng, N,.) (13)

where |S| denotes the number of elements of a set S.
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Step 2) Select S* among S*(M;)’s obtained from Step 1 as
E[Cer.L(5)]

max
S: S=S*(My,),

1< M;<min(Ny,N,)

S* =arg

max
S: S=S* (M), 0
1< M, <min(N¢,N,) *=

D
—1)ner(S)
g [

m m2)ps)

k

- n! 1 (i, u(S
Z<(_1)k(n—i~:)! WS 2 : Z( L) aw

k=0 =0

(M),

where ¢;, ’’s are given by (A.11).

As shown in (13), the selection of S*(M;) in Step 1 for
a given M, is dependent on the smallest eigenvalue of the
corresponding transmit “correlation submatrix”. On the other
hand, the selection of S* (and thus “M,”, i.e., the number of
independent data substreams) in Step 2 is dependent on the
“average SNR” ranges, which will be shown in the following
section. It should be noted that this two-step procedure pro-
vides the same result as the exhaustive comparison of (12) for
all possible transmit antenna subsets, as described previously.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed antenna se-
lection is provided. The average SNR is defined to be E/o?.
The average capacity F[Cggr(5™)] is calculated by averaging
the capacity Cgr(S*) in (4), where S* is selected by the
criterion in (13) and (14), over 10,000 independently gener-
ated channel realizations (i.e., by Monte Carlo simulations).
For performance comparisons, we also provide E[Cggr(S)]
obtained by Monte Carlo simulations for the transmissions
with fixed S, which is called the non-adaptive technique in this
section. Furthermore, we assume no fading correlation among
receive antennas (i.e., Rz, = In,), and the ZF detection is
assumed to be used.

Prior to the performance comparisons, we first compare
E[Cgr(5)] and its lower bound E[Cgr 15 (5)] for fixed S’s
in Fig. 1, when Ny = N, = 3 and R, = Iy, (e, iid.
fading channels). The values of E[Cggr,p(S)] are illustrated
using (12), and can be shown to be equal to the values
obtained by Monte Carlo simulations, although those are not
included in Fig. 1. The lower bound is observed to become
tighter for smaller M (note that E[Crgr,Lp(S)] becomes equal
to E[Cgr(S)] in the case of M; = 1). Fig. 1 also shows
that the performance for smaller M, tends to be superior
to that for larger M,; at low SNR range, while the reverse
trend is observed at high SNR range. This may be explained
by using the property of SNR (in “linear” receiver), which
tends to increase with M, decreasing,® and the property
of log function, which increases logarithmically with SNR
increasing. Although the SNR can grow by decreasing My, the
effect of increased SNR on the capacity may be negligible at
“high” SNR range due to the property of log function. Thus,
in order to increase the overall capacity in (7), it may be
more effective to increase M; (rather than to decrease M)
at high SNR range. On the contrary, at low SNR range, the

3This can be shown by using (5) and pdf of Ay, in Table L.
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Fig. 1. Comparison of E[CgR(S)] and its lower bound E[Cgr,1.B(S)] for
fixed transmit antenna subsets S’s, when Ny = N, = 3 and fading channels
are i.i.d.

25 T T T T T T T T T T T T
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-
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Average Capacity (bits/s/Hz)
>
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-5 0 5 10 15 20 25 30
Average SNR (dB)

Fig. 2. Performance comparison for i.i.d. fading channels, when N; = 6 and
N, =4.

log function increases more rapidly with the SNR,* and thus,
the effect of increased SNR on the capacity becomes great.
Hence, the opposite behavior may be observed at low SNR
range.

Fig. 2 compares the average capacity performance, when
Ny =6, N, =4, and R, = Iy,. Note that all fixed S’s
for a given M, provide the same performance in this case
of i.i.d. fading channels. Thus, the statistical selection of S
may be performed by only Step 2 in (14) (among arbitrary
S*(M;)’s) without passing through Step 1 in (13). It can be
seen that the proposed technique outperforms the non-adaptive
techniques over almost all the SNR ranges. Slight performance
degradation is observed in the SNR range close to the crossing
point of capacity curves for fixed S = {1, 2} and {1, 2, 3}.
This is caused by the difference between Cggr(S) in (4) and
Cgr,1.B(S) in (7), as shown in Fig 1. Fig. 2 also shows that, in
the proposed algorithm, the statistically selected M; increases
with average SNR increasing, as expected from the results of
Fig. 1.

Fig. 3 shows the average capacity of the proposed technique

4 Approximately, the log function grows linearly with the SNR at low SNR
range, i.e., logy(1 + z) = xzlogy e for 0 < z < 1.
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Fig. 3. Performance comparison with the worst cases of fixed S’s for each
M in the presence of transmit antenna correlation, when Ny = 6 and N, =

in the presence of transmit antenna correlation, when Ny
= 6 and N, = 4. We also provide the performance for
the worst cases of fixed S’s, each one of which shows
the worst performance for each given M;. Using the fading
correlation model in [13], the correlation matrix for transmit
antennas spaced equally along an axis is given by [Rry]; ; =
Jo(0(27 /M) |i — jldrx), where Jo(-) is the zeroth order
Bessel function of the first kind, 6 is the angle spread, Ay, is
the wavelength, and dry denotes the distance between adjacent
transmit antennas. It is assumed that € = 3° and drx = 3)\y.
The proposed technique is observed to outperform the non-
adaptive techniques over all the SNR ranges. The SNR gain
of the proposed scheme is about 3.5 dB over the non-adaptive
scheme of fixed S = {1, 2}, 9.4 dB over that of S = {1}, and
11 dB over that of S = {1, 2, 3}, at average capacity of 10
bps/Hz.

Fig. 4 compares the average capacity of the proposed
technique with that of the non-adaptive techniques for the
best cases of fixed S’s for each M;. Note that these best
cases show the best performance when each particular value
of M, is fixed regardless of SNR ranges. The simulation
configurations are the same as those in Fig. 3. We first
observe that the proposed algorithm selects the best S*(M3)’s
for any given value of M, (by the procedure of Step 1 in
(13)), although it does not hold necessarily. Next, although
the proposed technique outperforms the non-adaptive
techniques over almost all the SNR ranges, it may not select
best S* among S*(M;)’s for all M; (by the procedure
of Step 2 in (14)) at some values of average SNR. This
is caused by the difference between Cggr(S) in (4) and
Cer,L(S) in (7), as in Fig. 2. This difference may increase
in a correlated fading environment, which results in more
performance degradation compared to that of i.i.d. fading
channels in Fig. 2. In order to see the performance loss
resulting from the statistical antenna selection and equal
rate allocation, we also present the performance of the
transmit antenna selection based on the instantaneous channel
conditions for different rate allocat~ion (i.e~., selection of
argmasx S0 loga(1 -+ B/ (Mo [(BL(S) THL(S)) i)
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Fig. 4. Performance comparison with the best cases of fixed S’s for each
M and other antenna selection algorithms in the presence of transmit antenna
correlation, when Ny = 6 and N, = 4.
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Fig. 5.  Performance comparison with the previous works on adaptive
transmission in the presence of transmit antenna correlation, when Ny = N,
=4.

Fig. 4 also provides the performance comparison with the
antenna selection proposed in [12]. This technique uses the
optimal detector (not linear detector) with high complexity.
For the same number of selected transmit antennas, it shows
better performance than the non-adaptive technique using
the linear receiver. Furthermore, it shows better performance
for larger number of selected transmit antennas over almost
all the SNR ranges, unlike the case of the linear receiver.
Therefore, it seems that the technique in [12] using “optimal”
detector does not need multimode antenna selection.

The performance comparisons with the adaptive transmis-
sion in [19] and the optimal statistical transmission strategy
in [20] are provided in Fig. 5, when N, = N, = 4, 6§ = 10°,
and drx = 10\, for the same correlation model in Fig. 3.
The technique in [19] statistically switches between three
different transmission modes, shown in Fig. 5, and achieves
the capacity improvement, although those modes are not to
select transmit antenna subset. While [19] performs slightly
better than the proposed approach, it is harder to extend
to N; = N, > 4 due to the absence of good space-time
codes for the moderate operating regimes. The technique in
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[20] shows the best performance among the methods in Fig.
5, however, it requires high computational complexity. In
addition, note that the approaches in [19] and [20] require the
statistical feedback information of correlation matrices (not
simple transmit antenna indices as in our work).

V. CONCLUSIONS

We have derived a low complexity statistical multimode
transmit antenna selection algorithm to improve the capacity
of a limited feedback MIMO system with linear receivers.
We have considered the equal power and equal rate data
transmission, which reduces feedback overhead. The proposed
technique has been shown to outperform the non-adaptive
techniques over almost all the SNR ranges in the presence
of transmit antenna correlation. Furthermore, the performance
comparisons with other adaptive techniques have also been
provided.

APPENDIX A
PDF OF THE SMALLEST EIGENVALUE

In this Appendix, the pdf of the smallest eigenvalue of a
complex Wishart matrix in (9) is simplified to a closed-form
expression of (10), when M; = 1, 2, 3, and 4. It is assumed
that N, > M,.

For M; = 1, it can be easily shown that f(M‘ (A) in (9)

becomes N
/(\min (>\) =e

where a(()l) = ((N,, — 1)!)~L. Prior to the derivation of results
for M; > 2, we define and obtain the following integral as

AN (0 (A.1)

I,(m)= /0 2™ (x+ \)"e dx

:i (Z) (m+n — k)N

where the binomial theorem is used. Then, fy (M‘ (A) for M,
= 2 can be calculated as

IO (V) =Kan,e

(A2)

—2)\>\NT—2INT_2(2)
N,.—2

min

— o2 )N 2 Z a/(f))\k A3)
k=0
where
(2) 1 N, —2
Y% T (N, — DN, —2)! ( k ) (N, = k). (A4

4437

Next, using the symmetry in the integral evaluation,
/(\j:ii])()\) for M; = 3 can be calculated as

—3/\)\NT—3

e
f/(\?:m()‘): 2(N, — )I(N, — 2)I(N,
X [In,—3(4)In,-3(2) —

—3/\ANT—3

= 3)!

(In,-3(3))?]

Nr 1)'(Nr )'(Nr - 3)!
N,—3

[ Z (Nrk_ 3) (N, —k+ 1)!)\k>
k=0
CTZ_;S (Nrk_ 3) Ny =k = 1)!)\k>

_ (Eg(NTk_:S)(NT—k)!)\k)Q L (AS)

k=0

2

Then, calculating the product and sum of polynomials in (A.5)
yields

2(N,—3)
Doy =e PN N PN (Al
k=0
where
(3) _ 1
TN, — DN, —2)I(N, —3)
min(k,N,—3)
SO0
. %
i k—1
i=max(0,k—N,+3)
(N — )Ny — (k — i) = D)I(k — 2i + 1)]. (A7)
In (A6), the equality > ppA > gp)F =
k=0 E=0
o2n min(k,n)
> > Piqi—i \¥ is used. For M, = 4, after

k=0 i=max(0,k—n)

some manipulations, f /(\An:[tn) (M) can be calculated as

(1) 674)\>\NT74
Ao N = TN SN, — 20N, — 3N, = 1)1
[N, —a(6)In,—a(4)IN,-a(2)—

IN,—a(6)(In,-a(3))* +
21N, —4(B) N, —4(4)IN, —4(3) —
(In,—4(5))*In,~a(2) = (In,-a(4))’] .

Then, after some tedious calculations of the polynomial part
in (A.8), (A.8) can be simplified to

(A.8)

3(N,.—4)
A ) = et 3T gz (A.9)
k=0
where
) = L X
kT 12(N, — DI(N, — 2)/(N, — 3)I(N, — 4)!

min(k,2(N,.—4))

(N’” _-4> (N — & +j)!
k—J
j=max(0,k—N,+4)

min(j,N,—4)

. Z (NTZ-_ 4) (]\]fr_—;l)

i=max(0,j—N,+4)
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X(Ny — i — DNy — (G — i) — 2)1A(¢,j,k,Nr)}

(A.10)

(Ny =) (Np—j+i—1) ] (j=2i+1) — (Ny+1—k+5) (N, -
Thus, for M; =1, 2, 3, and 4, we obtain

(M)
M) — ) Op (N~ M)
" 0, otherwise.

(A.11)

APPENDIX B
DERIVATION OF INTEGRAL TERM IN (11)

In this Appendix, we derive the integral term in (11). By
using the substitution ¢ = 1 4 p(S)A, this integral can be

calculated as

/ logs (1 4 p(S)N) A e MAdA
0

er(S) oo
- _ 1\ —u(S)t
e /1 (t = 1)"(Int)e= St gt

er(S)

~ (m2)p(S)"+t n+1z< )

where p(S) =
result of (B.1) is derived as

Xké/ t*(Int)e P)tay
1

1 /Oo k=1 _—u(S k < ke -
= — th=le=n(Sitgy 4~ L (nt)e 1t qt
1 w ), T

1(S)
1

= Wr(k7ﬂ(5)) +

k
(S) k-

where the integration by parts formula is used and T'(«, 2) = 2
[.° e~'t*~1dt denotes the incomplete gamma function [23].
(8)71r(0, 4(S)), it can

Expanding (B.2) and using Xy =
be shown that

k
1 k!
Xy =
S 2 T

Thus, by substituting (B.3) into (B.1), we get

/ log, (1 +
0

XZ

k— i, u(S)).

(_1)n6u(5)
(In2)p (S)”+1

MZ L

p(S)NN e MAg\ =

i —k+2)+

for NT — Mt S n S Mt(NT — Mt)

)i k/ tk(lnt)e_“(s)tdt
1
(B.1)

M, /p(S). Next, the integral term of the last
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