
Algorithm�based Fault�tolerant Programming

in Scienti�c Computation on Multiprocessors

J� Altmann� A� B�ohm

University of Erlangen�N�urnberg

IMMD III� Martensstr��� ��	
� Erlangen� Germany

jnaltman�informatik�unierlangen�de

Abstract

E�cient parallel algorithms proposed to solve many
fundamental problems in scienti�c computation are
sensitive to processor failures� Because of its low costs�
algorithm�based fault tolerance is an interesting con�
cept for introducing fault tolerance into existing multi�
processors� To facilitate fault�tolerant programming in
scienti�c computation� we have modi�ed and developed
further an existing parallel run�time environment� In
this paper the aspect of tuning known error process�
ing techniques to the algorithm�based approach is pri�
marily examined� Design issues for implementation
and execution time overhead of a fault�tolerant ap�
plication in our run�time environment are studied� In
contrast to many other environments for parallel fault�
tolerant programming� which use the master�slave pro�
gramming model� our environment enables one to add
fault tolerance to existing parallel applications in sci�
enti�c computation�

� Introduction

Over the last several years� a lot of methods for
algorithm�based error detection have been proposed�
Simple and e�ective mechanisms for error detection
are available for many applications� These methods
allow the detection of hardware faults at the applica�
tion software level with a run�time overhead of about
�� 	� Because of the low costs� algorithm�based error
detection is interesting for introducing fault tolerance
to existing multiprocessors�

After closely studying algorithm�based fault toler�
ance methods on multiprocessors� we noticed that it
is easy to implement error detection but di
cult to
do error processing� Algorithm�based error detection
assumes the existence of standard techniques for er�
ror processing� These could be part of the system

software but are not yet provided on existing multi�
processors� Therefore� it was necessary to choose� im�
plement� and tune known error processing techniques
to the algorithm�based approach�

To get a simple but e
cient system which can be
used on several multiprocessors� we choose an explicit
fault�tolerant programming scheme instead of a trans�
parent scheme� In order to re�use implemented fault
tolerance techniques and to facilitate the program�
ming e�ort� these techniques were integrated into an
existing environment for parallel programming� Our
environment for fault�tolerant parallel programming
was installed on two multiprocessors� a Meiko T���
Transputer system and a German vector�processor
Suprenum� Then the provided services were re�ned
by implementing and testing several algorithms with
algorithm�based error detection�

In this paper it is shown how fault tolerance based
on algorithm�based error detection is integrated into
parallel applications making use of our run�time en�
vironment� Our environment enables one to add fault
tolerance to existing parallel applications in scien�
ti�c computation� For a general algorithm�based ap�
proach� services for fault�tolerant programming� such
as checkpointing� recovery� diagnosis� and recon�gura�
tion� are provided in a fault tolerance layer between
the application and the operating system�

This paper is organized as follows� In Section
the background of fault�tolerant computation on ex�
isting multiprocessors is described� The software im�
plemented fault tolerance techniques of our run�time
environment are pointed out in Section �� Error de�
tection� fault diagnosis� and recovery mechanisms are
discussed in particular� Based on the results of Sec�
tions and �� an example of a fault�tolerant applica�
tion is given in Section �� Run�time overhead of the
fault�tolerant application and loads in the event of an
error are shown�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SNU Open Repository and Archive

https://core.ac.uk/display/300066924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

� Fault�tolerant computation

Multiprocessors o�er a cost e�ective approach to
super�computing by connecting together a large num�
ber of general purpose and cheap processors� An im�
portant issue for the utilization of multiprocessors is
reliability for long running computations� The num�
ber of failures caused by hardware faults increases
for these applications� In response to this problem�
fault tolerance is introduced in multiprocessor systems
through hardware and software redundancy�

In this paper we study software techniques to work
around hardware faults� Software techniques could
be integrated into existing multiprocessors� instead of
hardware techniques that are only suitable during new
system design� Most of the proposed software tech�
niques in parallel architectures focus on mainly one
aspect of fault tolerance� For example� rollback recov�
ery techniques only assume that an error detection fa�
cility and o��line diagnosis exist� The assumptions of
error detection and error localization are not treated
adequately by the rollback recovery software� From
the other side� system level diagnosis does not take
into account requirements of rollback recovery� Lit�
tle interaction occurs between error detection� error
localization� and the rest of error processing�

Therefore� we propose an integrated fault tolerance
scheme based upon algorithm�based error detection
integrated into parallel applications� The algorithm�
based error detection has been studied for many ap�
plications� such as matrix operations ���� solving of
partial di�erential equations ���� Fast Fourier Trans�
forms ���� and solving of systems of linear equations ����
All further services for fault�tolerant programming
are tuned to the requirements of a general algorithm�
based approach� This is in contrast to existing fault
tolerance schemes that are based on the system�s point
of view� Fault tolerance at the system level is dedi�
cated to one machine� whereas algorithm�based fault
tolerance is portable� Nevertheless some assumptions
about the hardware �machine model� and application
software �programming model� have to be made�

��� Machine Model

We implemented our applications on MIMD com�
puters �machine model� with distributed memory�
There are no shared variables for communication be�
tween concurrent processes� These machines have one
desirable characteristic� a faulty processor can only
corrupt data in other processors via messages� This
means that fast error detection and processing pre�
vent error propagation�

physical topologyabstract topology

P� P� P� P�

P� P� P�

P� P� P	

P�

P�

P�

P�

P�

P�

P�

P	

processor PiPi
router communication link

Figure �� Abstract and physical machine

We chose a message passing machine with full con�
nection as our topology for abstracting as far as pos�
sible from the target machine �s� Fig� ��� This ab�
straction is justi�ed because new multiprocessors have
hardware routers to speed up message passing� The
physical topology of the multiprocessor is transparent
to the user� Furthermore� the user can realize a fully
connected topology using our run�time environment�
The topology of an abstract message passing machine
is useful for our run�time environment� We de�ne
an abstract�physical machine relation which can be
changed by recon�guration�

��� Programming Model

Processes on MIMD computers with distributed
memory normally communicate by message passing�
In order to meet the requirements of long running
applications in the area of scienti�c computation� we
chose the programming model of communicating se�
quential processes �CSP� ���� This is in contrast to
fault�tolerant applications based often on the mas�
ter�slave programming model� Many other environ�
ments for parallel fault�tolerant programming use the
master�slave programming model to introduce fault
tolerance by replication and voting� Our environment
enables one to add fault tolerance to existing parallel
applications in scienti�c computation� Because of it
high costs� replication and voting is not suitable for
scienti�c computations�

Scienti�c programs for solving of engineering or
physics problems usually contain the following three
phase�

Initialization phase� This phase starts the applica�
tion and the fault tolerance services� It is not
necessary to protect this phase against errors� be�
cause the initialization is short�

Working phase� Solving a speci�c problem� this is
the phase where most of the time is spent� The
working phase is subdivided into processing and
communication phases� Within our programming
model� the node processes may communicatewith
each other during parallel computation� The
whole working phase should be fault�tolerant�
which means that checkpoints have to be written
at regular intervals�

Output phase� The output of a calculation is per�
formed in most cases by writing to a �le� Usually�
this phase begins near the end of a program� but
some programs frequently switch between work�
ing phases and output phases�

In our programming model� program loading� distri�
bution of data to node processors� and collection of
the results are performed by a host program� The
host program is not involved in the parallel comput�
ing� There is no redundancy in the host program� To
introduce fault tolerance into the host program� con�
ventional techniques� e�g� replication and voting� could
be used� This aspect is not addressed in this paper�

��� Fault Model

The fault model� which describes the considered
system errors� comes from structural and functional
analysis of the system� Due to the algorithm�based
approach� the fault model is determined by the ma�
chine model and the programming model� As men�
tioned above� we use the machine model of an abstract
message passing machine and the programmingmodel
of CSP� Considering possible errors at this high level�
it was noted that a node process must handle the fol�
lowing situations�

�� Timeout during communication

� Exception occurrence

�� Errors detected by algorithm�based checks

Fault�tolerant behavior is achieved by detecting
these errors and working around them with support of
the run�time environment� In order to support long
running applications� it is not our task to �nd the
fault which causes the error� For example� a timeout
can happen during communication if one of the pro�
cesses has control �ow errors or if faults in the com�
munication network occur� What is important is that
the communication error is detected� determining the
fault is beyond the scope of our fault tolerance scheme�

Multiple faults can also result in an exception� An
exception is the reaction of the operating system to

an error� the operating system attempts to avoid the
system failure�

Error detection by computational checks is charac�
teristic for the algorithm�based approach� The pro�
grammer has to design and implement these checks
during implementation� Errors detected by these
checks can be caused by temporary or permanent
hardware faults� A run�time environment has to sup�
port this�

� Environment for Fault�tolerant Pro�
gramming

Many software implemented techniques are known
for achieving fault tolerance� We have chosen and
modi�ed several mechanisms to meet the require�
ments of the algorithm�based approach� These ser�
vices �s� Fig� � are provided in a run�time environ�
ment� called Portable Instrumented Communication
Library for Fault Tolerant Programming �PICLFT�� It
is a modi�ed and further developed version of PICL ����
PICLFT is comprised of modules such as checkpoint�
ing� error detection� diagnosis� recovery� recon�gura�
tion and rollback�

fault
tolerance

level

recovery diagnosisrecon�guration

checkpointing error detectionrollback

application

application level

system level

Figure � Mechanisms of fault tolerance in PICLFT

An example is given� to present the services of our
run�time environment� Interdependencies of the dif�
ferent modules and the interaction of the user are
indicated� Algorithm � shows the typical structure
of a fault�tolerant application in PICLFT� At �rst�
the application and the run�time environment are
initialized� This means that an error handler is in�
stalled �ft error handler����� the data for the �rst
checkpoint is speci�ed �ft add memblock������ and a
checkpoint is written �ft take cp����� As mentioned
above� the computation is divided up into processing
phases and communication phases� which are enclosed

by a loop� Within the communication phase� all pro�
cessors check whether or not an error message can be
received� This is done in the statement for receiv�
ing messages �ft recv����� If no error occurs� the
next checkpoint is written� Please note that the user
have not to be concerned with error processing� This
is done by the run�time environment� Only initial�
ization of the run�time environment and algorithm�
based checks for error detection have to be installed
by the user�

void main��

f �� initialization phase ��

ft setarc����

ft error handler����

switch �setjmp��� f

case �� �� rollback recovery ��

			

default� �� set up checkpointing ��

ft add memblock����

ft take cp����

g

for �� f

�� processing phase ��

�� communication phase ��

ft send���� ft recv����

�� checks ��

if �error� ft error����

ft take cp����

g

g

Algorithm �� A fault�tolerant application in PICLFT

��� Error Detection

One issue that is often neglected in the design of
parallel architectures is the mechanism for detecting
faulty processors� Algorithm�based error detection is
a good choice� because it works concurrently with the
application� It detects errors which are caused by per�
manent and temporary faults� Error detection by o��
line testing can only detect errors caused by perma�
nent faults�

Algorithm�based error detection� which has been
studied for a lot of applications� is very much akin
to error detection in the recovery block scheme ����
However� the aim is completely di�erent� algorithm�
based error detection has to detect hardware faults�
whereas checks in the recovery block scheme has to

recognize software faults� Nevertheless� algorithm�
based techniques and recovery block scheme use sim�
ilar techniques for error detection� These techniques
for error detection can be adopted to each algorithm�
but it is not based on a general test method� In�
stead� there are a number of distinct checks� re�
versal checks� coding checks� reasonable checks� and
structural checks� In the case of errors� detected by
algorithm�based checks� error processing is initiated
by a call to ft error��� �s� Alg� ���

Furthermore� error detection is done on�line by
watchdog timers for communication and operating
system �system exceptions�� In the case of error oc�
currence� detected by watchdog timers and system ex�
ceptions� the error handler is automatically started�
First� the detecting processor broadcasts an error mes�
sage� On receiving an error message� the application
is stopped� and the error processing �diagnosis� re�
con�guration� rollback� is started� In order to avoid
error propagation� the error processing has to start
fast� Therefore� the error messages are immediately
distributed by a fault�tolerant broadcast ����

��� Recovery

In contrast to error detection� which has to be
programmed by the user� our run�time environment
PICLFT provides a simple and e�ective strategy for
error processing� It is the task of error recovery to
choose a convenient technique� The strategy of the
recovery in PICLFT is shown in Algorithm �

In order to recover from faults� it is necessary to
write checkpoints� If an algorithm�based check fails
once� we assume a transient error� A rollback of the
application to the last checkpoint is carried out which
is su
cient to recover from transient faults� Should
rollback or the algorithm�based check fail after an�
other computation� diagnosis is started� If the diag�
nosis detects permanent faulty units� a recon�guration
is performed� Finally� if the system crashes more than
twice for the same reason� the application is termi�
nated�

��� Checkpointing

Checkpoints are written to stable memory to be
available for a restart after the system breaks down�
This means that the nodes write checkpoints to the �le
system of nodes in the multiprocessor or to the �le sys�
tem of the host� The checkpointing is organized by the
user and supported by our environment� With respect
to the structure of applications in scienti�c computa�
tion� the user creates checkpoints after a communica�

write checkpoint� count��

Z
Z
ZZ

count�

�

computation

�

rollback

computation

�

diagnosis

recon�guration

rollback

computation

ELSE

exit

algorithm	based check� count

algorithm	based check successful

Algorithm � Strategy of recovery in PICLFT

tion phase and by a call to ft take cp��� �s� Alg� ���
It is the task of the user to specify the time of the
checkpoint and data �ft add memblock���� which is
stored� On calling ft take cp���� each node writes
its local checkpoint� Using the two phase commit pro�
tocol ��� global checkpoints are achieved�

��� Rollback

A rollback is initiated �s� Alg� �� if an error has
occurred� On rollback� the values of the variables
which were stored at the last checkpoint are loaded
�rst� Then� the application is started execution from
a prede�ned statement in the program �s� Alg� ��
setjmp���� Rollback requires no interaction with the
user� If the rollback fails� the diagnosis will be started
without repeating the computation�

��� Diagnosis

If the error occurred more than once� diagnosis will
be started to locate the error by additional o��line
tests� Furthermore� the diagnosis has to classify the
error as permanent or intermittent� Because diagnosis
works distributedly� a loosely synchronized application
is necessary� The structure of scienti�c applications
meets this requirement� All processors are loosely syn�
chronized during the communication phase� There�
fore� �I	m alive� messages are not needed to achieve

loose synchronization� This approach shows that we
use the structure of the application for an e
cient di�
agnosis�

Important details for the diagnosis are obtained
by considering an error from the application point of
view� The user agrees to rollback of an application af�
ter recon�guration� if and only if the parallel program
can process e
ciently on a degraded system� Besides
this� the number of processors for e
cient processing
is �xed for many scienti�c applications� Therefore�
the user is usually not interested in how many proces�
sors are really faulty� Only the number of connected
fault�free processors is important� The diagnosis has
to process the fault�free processors remaining in op�
eration and not the faulty processors�

Additionally� there is no reason for localizing the
physical sources of such errors� In a self�diagnosing
system� two processors should determine whether or
not they can communicate� But processors are not
capable of repairing the faulty components� For these
reasons� the diagnosis algorithm has to diagnose only
fault�free processors and not the faulty components�
Faulty communication links and router hardware are
detected only by disconnecting processors�

Taking this into consideration� we can permit all
kinds of faulty components and any number of faulty
components in our diagnosis model� Our diagnosis
algorithm does not assume a t�diagnosibility of the
multiprocessor structure� It diagnoses the connected
fault�free processors� This diagnosis goal does not
cause any problems� if we consider again the diagno�
sis from the application point of view� For example�
even if the multiprocessor is divided into two sets of
connected processors� the recovery decides whether a
recon�guration of the application on the connected
fault�free processors can be carried out� The crite�
ria for this decision are the number of fault�free pro�
cessors� the number of spare processors� and whether
there is a connection between the host and the sets of
connected fault�free processors�

��� Recon	guration

Permanent processor faults necessitate recon�gur�
ing the processors� Because graceful degradation is
not possible for all applications and dynamic alloca�
tion of processors is not yet supported by existing
multiprocessors� we chose a more general approach�
At the start of the application� we reserve some pro�
cessors as spares� This means that an application
which runs on p processors is loaded on p�s processor
for a fault�tolerant computation� After loading p� s
processes� only p processors are working while s pro�

cesses are blocked in the initialization phase �s� Alg� ��
ft setarc����� When required� up to s spare pro�
cesses are unblocked for recon�guration�

Such recon�guration can be easily carried out on
an abstract message passing machine� At �rst� the
faulty processors are isolated by stopping communica�
tion with these processors� Then spare processors are
activated and integrated into the application� Since
we hide the physical machine from the user� we can
easily change the relation between the abstract and
the physical machine� The computational tasks of the
faulty processors are moved to the spare processors�
Therefore� recon�guration is transparent to the user�

� Experimental Results

To demonstrate the use of our run�time environ�
ment� an example is given� In this section we show how
the Conjugate Gradient
CG� algorithm can be im�
plemented in a fault�tolerant way using our run�time
environment for fault�tolerant applications �PICLFT��
A concurrent error detecting CG algorithm �CEDCG�
was proposed in ���� but no experimental results in
terms of speed�up and error coverage are given� As
in all known algorithm�based fault tolerance schemes�
the main focus is on error detection� error processing
is neglected� Supported by PICLFT� error detection
is achieved by checking algorithm speci�c properties
at the end of each iteration� For error processing�
services from our run�time environment are available�
This means that we can o�er services for fault tolerant
programming in a more general way without concen�
trating on a single application�

In the area of scienti�c computation� the user is
interested in availability and performance of a multi�
processor� Therefore� the quality of a fault�tolerant
application is measured by the error coverage and the
run�time� Within our example� we examine the run�
time overhead� the error coverage� and the additional
load in an error event�

��� CG Algorithm

The Conjugate Gradient
CG� method is popular
for solving large� sparse� linear systems of equations
of the form Ax � b with x� b � Rn and A � Rn�n

on parallel architectures� The solution of the linear
system of equations is encountered in many scienti�c
problems� Especially in Finite Element Applications
�FEM�� such a matrix equation is repeatedly formed
and solved� The sequential CG algorithm is presented
in Algorithm ��

x� � �� �� � �� p� � r� � b� Ax�
for k � �� �� � � � �

qk � Apk
�k �

�rk�rk�

�pk�qk�

rk�� � rk � �kqk
xk�� � xk � �kpk
�k � �rk���rk���

�rk�rk�

pk�� � rk � �kpk

Algorithm �� Sequential CG algorithm

All basic operations of the CG algorithm� such as
matrix vector multiplication� dot�product ������ and
vector addition� can be performed concurrently by dis�
tributing the rows of A and the corresponding ele�
ments of the vectors b� xk� rk� qk and pk among the
processors� This means that each processor has to
compute n�p elements of a vector� if n is the number
of unknowns and p is the number of processors�

In our example we use the reversal checks� which
are proposed in ���� It is shown that it is necessary
to compute four extra dot�products �� pi� Api�� ��
� ri� ri�� �� � b� pi�� �� � xi� Api�� �� per CG
iteration for performing the checks� These checks can
detect the presence of an error�

��� Run
Time Overhead

Let k be the number of non�zeroes per row in ma�
trix A� n the number of unknowns� and p the num�
ber of processors� Furthermore� let tcalc be the time
of one �oating point operation� tsu the start up time
of communication� and ttrans the transmission time
of a double precision �oating point number ��� bit��
The time complexity of the CG algorithm can then be
modeled by�

tcg � �k � ��
n

p
tcalc � �ld�p��tsu � ttrans� � Lc

The �rst term describes the computation complex�
ity� It is made up of two dot�products O��n�p�� three
vector additions with scalar multiplication O��n�p��
and one matrix vector multiplicationO�kn�p�� Com�
munication complexity is modeled by the remaining
terms� The two dot�products are considered sepa�
rately in the second term� The factor ld�p� consists
of the number of communications for collecting and
distributing provisional results through a hypercube
topology� The rest of the communication complexity
is hidden in the term Lc�

Processors Meiko Suprenum

� ���� ����

� ���� ����

� ���� ����

� ���� ����

�� ���� ����

�� ��� ���

�� ��� ���

Table �� Overhead of CEDCG algorithm on FEM
problem with ����� unknowns

As mentioned above� the CEDCG algorithm needs
four additional dot�products� So the time redundancy
of the CEDCG algorithm can be modeled by�

tred � �
n

p
tcalc � �ld�p�ttrans

Note� that no additional communication is neces�
sary by including the additional data into the existing
messages� Hence� communication redundancy can be
neglected� The overhead tover is only determined by
the computational redundancy which is processed by�

tov �
tred

tcg � tred
�

�

k � �

For a system of linear equations arising from a
two�dimensional FEM problem with triangle as ba�
sic elements� the number of non�zeroes per matrix
row is k � ��� This means that the overhead will
be estimated ���� 	� Experimentally� we measured
an overhead of only ���� 	 for a sequential program
�s� Tab� ���

Due to the high cost of index computation in our
sparse matrix representation� the real overhead is
much lower than estimated� We observe that the
overhead will be reduced� if a �xed problem is solved
on an increasing number of processors� In this case�
the additional computation can be carried out during
idle times �s� Tab� ��� The overhead is measured on
a Meiko Transputersystem �T���� and the German
vector�processor Suprenum� The scaled speed�up is
nearly linear� which is not presented in the graph�

The additional operations of checking increase the
work load on each processor� while the communication
load remains constant� Therefore� the scaled and the
normal speed�up �s� Fig� �� are comparable or even
better than those for the non�error detecting CG al�
gorithm� The error detecting CG algorithm can be
used with high e
ciency on Suprenum and Meiko�

Meiko
Suprenum

Linear speed�up

Processors

S
p
ee
d
�u
p

�����������

��

��

��

��

��

�

��

�

Figure �� Speed�Up for CEDCG algorithm on FEM
problem with ����� unknowns

��� Error Coverage

The error coverage of the CEDCG algorithm is
studied by error injection� Errors are injected by ran�
domly �ipping bits of the vectors pk� qk� rk and xk
which are computed during each iteration� For each
injection� we select one �oating point value out of one
of the vectors and �ip one bit� This is not a realistic
fault model� but it is the smallest possible impact of a
fault� It is shown that this slight modi�cation can be
readily detected� Results from the error injection are
independent of the multiprocessor� Both machines use
the same representation of �oating point values �IEEE
Standard ����������

In spite of the high level approach� we have to take
the �oating point representation into account� Thus�
we can not check for equality� We have to choose a
tolerance� The tolerance depends on the problem and
causes false alarms if it is not suitably chosen� Because
it is not possible to give a rate for the error coverage in
general� we chose a test problem from a FEM package�
where we normalized the solution vector x in such a
way� that the elements of x are in the interval ����������
Results from ������ error injections are analyzed in
the graph presented�

Figure � shows the error coverage by injecting bit
errors into the solution vector x� The coverage is stud�
ied by varying the problem size and the iteration num�
ber where the error is injected� We recognized two ef�
fects� Firstly� if we increase the number of unknowns�
we have to choose a larger tolerance to avoid false
alarms caused by higher roundo� errors during checks�
Secondly� if the error is not injected during the �rst

Apk

pk
rk
xk

Iteration

P
er
ce
n
ta
ge
of
d
et
ec
te
d
er
ro
rs

���������

���

��

��

��

��

��

��

��

Figure �� Error coverage of bit errors in all data struc�
tures for the CEDCG algorithm

iteration� the coverage rate decreases� This e�ect is
caused by the dot�products� we use for computational
checks� During the iteration� the solution vector be�
comes more and more exact� Only if a modi�cation
causes a huge change� is the error detected�

In addition to this� an error could happen during
the computation of one of the other vectors� The e�ect
of injecting errors into the other data structures� i�e�
pk� qk� and rk �k is the number of the iteration� is
described in Figure �� Injecting errors into vector qk
shows the same tendency as in xk� In contrast to this�
the error coverage is higher for errors injected into rk
and pk�

In the presence of �nite precision arithmetic� any
high level encoding de�ned on the data will have in�
complete coverage� However� this technique detects
all errors which could cause a failure� This is an easy
way to achieve error detection in an existing multipro�
cessor without having any hardware support�

��� Computational load in an error event

In this subsection we give the computational load
of the fault tolerance services in an error event� We
investigate in the load of diagnosis and neglect rollback
recovery load� because rollback recovery load depends
on the checkpointing interval and amount of data to
be stored�

To illustrate the load of the diagnosis in details� the
structure chart of the diagnosis algorithm is shown in
Algorithm �� Within it� three parts can be distin�
guished� the generation of input values for the com�
parison� the distribution of the input values� and the
analyzes of the comparison results�

processor Pi generates input values by a self	test

Z
Z
ZZY

error is detected by the self	test�
�
�
��

N

Pi

stops
further
actions

broadcast of input values� start timer

waiting until timeout is exceeded

receiving input values of the other
processors

comparing input values of Pi with the
values of the other processors

classi�cation of faults as permanent or
intermittent

Algorithm �� Diagnosis algorithm

In the �rst part of the algorithm� the processors
generate input values for the comparison� The input
values can be processed by di�erent methods� such as
by a hardware self�test program or by reading state
information of the processor� In our algorithm� a hard�
ware self�test program is used� whereas input values
of a faulty processor are arbitrary� The input values
are generated by self�test programs by each processor
only once ���� ���

In the second part of the algorithm� the generated
input values are distributed to all other processors�
For distribution� a fault�tolerant broadcast is used
which ful�lls the following assumptions� no messages
may be lost or falsi�ed� if there is a communication
path between fault�free processors� it will be found�
Furthermore� the time for the broadcast is limited by
a timeout which is equal to the duration of the pro�
cessing phase in the scienti�c application ���� At the
end of the second part of the algorithm� all fault�free
processors have received the input values from all con�
nected fault�free processors and some messages from
the faulty processors�

The last part of the algorithm analyzes the input
values� Firstly� the received input values are compared
with the input values of processor Pi� Depending on
the comparison� the fault vector is determined�

Considering our algorithm� it is obvious that the
load of the diagnosis is mainly determined by the num�
ber of messages� Measurements of the load on the mul�
tiprocessors Suprenum and Meiko are shown in Fig�
ure �� Self�test and analysis of the input values do not

Meiko� self�test and analysis

Meiko� communication

Suprenum� self�test and analysis

Suprenum� communication

Number of processors

T
im
e
�m
s�

�	
�
��
�	�

��

��

�	

��

	

�

�	

�

Figure �� Load of the diagnosis algorithm

cause large computational load� The load of the self�
test is �xed� whereas the load for the analysis grows
with the number of processors� Further� the load of
self�tests and analysis is considerably less than of com�
munication� since number of messages increases by a
power of two� Other o��line diagnosis algorithms gen�
erate the same number of messages� These algorithms
cause much more overhead by tests and diagnosis pro�
tocols for distributing the diagnosis information� We
see in Figure � that communication on the Suprenum
has more load than on the Meiko�

Finally it has to be noted that a great number of
messages has to be sent in large multiprocessors� But
the number can be reduced by partitioning the mul�
tiprocessor ����� Due to the strategy of the presented
diagnosis algorithm� an e
cient scheme working on
partitions was developed�

� Conclusion

We presented a scheme for developing fault�
tolerant applications on arbitrary multiprocessors�
Our run�time environment for fault�tolerant program�
ming �PICLFT� was studied on two multiprocessors�
All fault tolerance services of PICLFT meet the re�
quirements of the algorithm�based approach� Further�
more� interactions between algorithm�based error de�
tection� fault diagnosis� and the rest of the error pro�
cessing were considered in detail from the application
point of view�

As a result� we obtained an e
cient fault diagnosis�
which determine all connected fault�free processors�
E
ciency of the diagnosis was shown by measure�

ments� Furthermore� e�ectiveness of error detection
was validated by measurements of run�time overhead
and error coverage on the example of a concurrent er�
ror detecting CG algorithm� The presented scheme is
an e
cient way to program a fault�tolerant applica�
tion on a multiprocessor without any fault tolerance
mechanisms in hardware�

References

��� C� Aykanat and F� Ozguner� A Concurrent Error De�
tecting Conjugate Gradient Algorithm on a Hyper�
cube Multiprocessor� IEEE Transactions on Comput�

ers� pages ���	���� �����

��� S� Ceri and G� Pelagatti� Distributed Databases � Prin�

ciples and Systems� McGraw	Hill� �����

��� P� Ciompi� F� Grandoni� and L� Simoncini� Distributed
Diagnosis in Multiprocessor System� The MuTeam
Approach� In FTCS ��� pages ��	��� IEEE Computer
society press� �����

��� F� Cristian� H� Aghili� R� Strong� and D� Dolev� Atomic
Broadcast� From Simple Message Di�usion to Byzan�
tine Agreement� In FTCS ��� pages ���	���� �����

��� G� Geist� M� Heath� B� Peyton� and P� Worley�
A Portable Instrumented Communication Library� C
Reference Manual� Technical Report ORNL�TM	
������ Oak Ridge National Laboratory� �����

��� C� Hoare� Communicating Sequential Processes� Com�

munications of ACM� pages ���	���� �����

��� K� Huang and J� Abraham� Algorithm	Based Fault
Tolerance for Matrix Operations� IEEE Transactions

on Computers� pages ���	���� �����

��� J� Jou and J� Abraham� Fault�Tolerant FFT Net�
works� IEEE Transactions on Computers� pages ���	
���� �����

��� L� Laranjeira� M� Malek� and R� Jenevein� On Toler�
anting Faults in Naturally Redundant Algorithms� In
Proc� Tenth Symposium on Reliable Distributed Sys�

tems� pages ���	���� �����

���� J� Maeng and M� Malek� Partitioning of Large Mul�
ticomputer Systems for E�cient Fault�Diagnosis� In
FTCS ��� pages ����	����� IEEE Computer Society
Press� �����

���� S� Rangarajan and D� Fussell� A Probabilistic Method
for Fault Diagnosis of Multiprocessor Systems� In
FTCS ��� pages ���	���� IEEE Computer Society
Press� �����

���� S� Shrivastava� Reliable Computer Systems� Springer�
�����

