
Abstract
Scalable fault diagnosis is necessary for constructing

fault tolerance mechanisms in large massively parallel mul-
tiprocessor systems. The diagnosis algorithm must operate
efficiently even if the system consists of several thousand
processors. In this paper we introduce an event-driven, dis-
tributed system-level diagnosis algorithm. It uses a small
number of messages and is based on a general diagnosis
model without the limitation of the number of simultaneous-
ly existing faults (an important requirement for massively
parallel computers). The algorithm integrates both error
detection techniques like <I’m alive> messages, and built
in hardware mechanisms. The structure of the implemented
algorithm is presented, and the essential program modules
are described. The paper also discusses the use of test re-
sults generated by error detection mechanisms for fault lo-
calization. Measurement results illustrate the effect of the
diagnosis algorithm, in particular the error detection mech-
anism by <I’m alive> messages, on the application per-
formance.

Keywords: Error detection, distributed diagnosis,
syndrome decoding, massively parallel systems

1 Introduction
The production cost of complex, highly integrated elec-

tronic components is decreasing due to the development of
manufacturing technology. As a result, massively parallel
multicomputers, capable of operating simultaneously sever-
al thousand processing elements (PEs), are gaining impor-
tance in computation-intensive scientific and technical
applications. Beside the huge processing capacity achieved
by utilizing massively parallel architectures, reliable opera-
tion over a long time period is also a crucial requirement.
The large number of processors of such systems increases

On Integrating Error Detection into a
Fault Diagnosis Algorithm for Massively Parallel Computers

Jörn Altmann‡, Tamás Bartha†, András Pataricza†

† Department of Measurement and ‡ Department of Computer Science
Instrumentation Engineering (IMMD) III

Technical University of Budapest University of Erlangen-Nürnberg
Müegyetem rkp. 9, H-1521 Budapest, Hungary Martensstr. 3, 91058 Erlangen, Germany

email: pataric@mmt.bme.hu email: jnaltman@informatik.uni-erlangen.de

the probability of faults. Thus, the aim of fault tolerance is
to ensure the specified operation in spite of faults by pre-
venting detected errors from becoming failures [11].

In design and application of massively parallel comput-
ers scalability is a significant requirement. A multiproces-
sor system is called scalable, when extending it with new
resources performance increases proportionally. Due to this
requirement, centralized devices would limit the number of
PEs. Thus, like other functions of the system, diagnosis
must be distributed as well by using the PEs themselves for
determining the system fault status: this approach is known
as distributed fault tolerance [13][14][16]. In recent years
several improvements for distributed diagnosis algorithms
were published [3][7][10].

The paper presents a distributed diagnosis algorithm
which integrates error detection mechanisms and minimiz-
es the number of diagnostic messages. The aim of the algo-
rithm is to generate a correct diagnostic image in every
fault-free processor. If the diagnosis is correct, the fault-free
processors can logically disconnect the faulty units from the
system by stopping the communication with them. Employ-
ing this method, the number of tolerable faults depends only
on the properties of the system interconnection topology.

The algorithm was developed for the Parsytec GCel1.
This computer incorporates all features of a massively par-
allel multiprocessor, like scalability, regular distributed sys-
tem structure, and a large number of PEs. Scalability is
achieved by extending the hardware in units of 16 proces-
sors (called clusters) up to 16’384 processors in its full con-
figuration [17]. The PEs (INMOS T805 transputers) are
interconnected by a two-dimensional grid (see Fig. 1).

1. Supported by the EU (European Unit) as part of the Esprit Project 6731,
Fault Tolerance for Massively Parallel Systems, and the Hungarian-Ger-
man Joint Scientific Research Project #70 with additional support from
OTKA-F007414.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SNU Open Repository and Archive

https://core.ac.uk/display/300066923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Structure of the Parsytec GCel

The following sections explain how the diagnosis algo-
rithm fulfils the requirements from a practical view. In Sec-
tion 2, we describe the diagnosis model of the algorithm.
The structure of the diagnosis algorithm and the proof of
correctness are presented in Section 3. The implementation
aspects of the algorithm are introduced in Section 4, where
the essential program modules are explained in detail. Sec-
tion 5. deals with measurements results, which illustrate the
impact of these fault tolerance techniques on application
performance.

2 Diagnosis model
The application of the developed distributed system-lev-

el diagnosis algorithm (described in Section 3) requires the
following conditions to be fulfilled:

• Individual and incomplete tests. The algorithm treats
the processing elements as “intelligent units” perform-
ing tests (of less than 100% error coverage) on units di-
rectly accessible via a communication link. Since tests
covering every possible errors in such complex compo-
nents as the modern processors are practically impossi-
ble to implement, the proposed testing mechanism only
detects:

- cpu errors by self-test,
- crashs of processors and links,
- errors (e.g., data or control structure errors) on appli-

cation level detected by application-dependant test.

Tests are independently performed on each processor.
There is no explicit request message from a tester pro-
cessor to a neighboring processor for performing a test.
Results obtained by self-tests are sent by fault-free
nodes within a predefined time-out limit to all neigh-
boring processors (<I’m alive> messages). On receiv-
ing a message, each neighbor compares the received
self-test result with the (saved or processed) local refer-

ence values. Therefore, the algorithm is prevented from
a deadlock due to lost messages and test requests [8],
and reduces the number of required tests [19].

Only the normal interconnection facilities may be used
for testing purposes. All messages are assumed to be
protected by error-correcting encodes, which serves as
an additional test for both the neighboring processor
and the communication link connecting the PE with its
neighbor. Consequently, an error in the communication
will also result in a bad test outcome, which supports
the diagnosis of the interconnection network as well.

• Symmetric test invalidation. The algorithm uses the
symmetric test invalidation model (PMC) introduced
by Preparata et al. [18]. In this model, a fault-free tester
always determines the condition of the device under
test (DUT) correctly: the result is 0 if the test passes, 1
if the test fails. A test performed by a faulty tester may
result in an arbitrary outcome. Since such test results
may not correspond to the actual fault state of the DUT,
they must be left out of consideration. Note, that the
PMC model is the most pessimistic test invalidation
model, applying the highest degree of diagnostic uncer-
tainty in the faulty case. At the same token it is the most
general one. Thus, incorporating the PMC model the
algorithm is applicable in systems of other fault models
as well.

• Diagnosability. The majority of the diagnosis algo-
rithms introduces an upper limit on the number of si-
multaneously existing faults in order to simplify the
handling of uncertainty originating from the pessimis-
tic test invalidation model. The underlying assumption
of this t-limit is that a small number of faults are more
likely to occur in a properly designed multiprocessor
system if the individual faults are independent, thus,
uncorrelated. The t-limit is the largest number of arbi-
trary located faults for which a proper diagnosis is al-
ways assured (e.g., for the two-dimensional grid the t-
limit is as low as 2). Note, that the t-limit is a worst-
case diagnostic measure, in most situations it provides
too pessimistic estimation [11][15]. For this reason, we
introduce a model which supports the diagnosis of an
arbitrary number of faulty processors.

Let us consider now the interconnection graph
G = (N, A) of the system. Its nodes ui ∈ N (i = 1…n,
where n denotes the total number of processing ele-
ments in the system) correspond to the processors. A
directed arc (ui, uj) ∈ A exists between two nodes if di-
rect communication is possible between the corre-
sponding processors in the given direction. Diagnosis
of the whole system is possible until G remains strongly
connected. However, faulty PEs or links can cut the in-

Communication linkCluster (16 transputers)

Processing element Interconnection network

Host

T805

transputer

terconnection graph into isolated subgraphs. The case
of a system with three isolated connected subgraphs is
presented in Fig. 2. If this happens, diagnosis is restrict-
ed to the group of fault-free processors located in the
same connected subgraph. Since subgraphs are isolat-
ed, the host computer can access only the PEs located
in the connected subgraph containing the host link (see
subgraph 1 in Fig. 2).

Fig. 2. Diagnostic knowledge in different subgraphs

Messages exchanged between non-neighboring nodes
are transferred via paths of processors and links. Faulty
processors or communication links cannot be included
in this path, because they would block the correct infor-
mation flow or make it unreliable. Therefore, a set of
faulty processors and links may isolate a group of fault-
free processors. In such cases the diagnostic image of
the whole system is incomplete, but a complete diag-
nostic image within connected subgraphs can be gener-
ated.

The algorithm does not require the limitation of the
number of faults, rather it includes only the nodes in the
same connected subgraph in diagnosis, classifying the
state of other processors as unknown. Each fault-free
PE diagnoses its own subgraph, as indicated in Fig. 2.
Unknown processors are identified by detecting the
isolating barriers made of faulty processors [4].

Although the host computer can access only the proces-
sors in its own subgraph, the diagnosis procedure run-
ning in other regions is also important. Due to the
distributed nature of the algorithm, every processor
maintains a consistent local diagnostic image. When a
faulty node within a barrier is repaired or replaced, two
isolated regions will be joined together. In such cases

the two different local diagnostic images can be com-
bined in order to obtain a consistent diagnostic image
of the joined subgraphs.

• Determining the real message order. The arrival of
messages at a processor will not always correspond to
the order of their creation, due to communication de-
lays. Such a situation can occur if a PE becomes faulty
during the testing process. Then, messages received in
a wrong order will cause the algorithm to generate an
incorrect diagnosis. To avoid this, logical time-stamps
related to test execution must be attached to the diag-
nostic messages, and the real order of messages must
be determined using a distributed event-ordering proce-
dure [14].

3 Structure of the diagnosis algorithm
The diagnostic process described below is almost identi-

cal for the different processors (only the inhomogeneity at
the grid borders has to be taken into account), so each pro-
cessor can use the same diagnosis algorithm. The algorithm
consists of two phases: an initial and a working phase. Two
observations motivated the splitting of the algorithm:

• Current peaks during power on/off may damage the
electronic components of the system. Hence, the major-
ity of faults occurs (or already exists) in the initial
phase. Moreover, typically the power-on tests serve as
major means for the detection of permanent faults. The
failure rate is expected to be lower during further oper-
ation.

• Processors do not have any information on the fault
state of other components in the initial phase of the di-
agnosis algorithm (i.e., communication links and other
PEs). All processors have to be tested once to generate
the initial diagnosis image. Later the system fault state
does not change significantly compared to the first di-
agnostic image due to low fault rate. For this reason, a
considerable overhead in communication and adminis-
tration can be saved by calculating and distributing
only the differences between the current (diagnosed)
fault state and the stored diagnostic image.

3.1 Initial phase
Inter-processor communication starts after the local di-

agnostic images has been generated by testing the neigh-
bouring processors, and it continues until each fault-free
processor has received diagnostic information from all the
others in the same connected subgraph. Every PE sends the
local test results to its neighbors, and further on it receives
and forwards the messages sent by other units. PEs maintain
a list of the processors from which they have not received a
diagnostic image yet, in order to evaluate the termination

diagnostic knowledge in subgraph 3.

diagnositc knowledge in subgraph 1.

diagnositic knowledge in subgraph 2.

common diagnositic knowledge

HOST

criterion of communication. For this purpose they must also
discover which nodes are accessible via a path of fault-free
processors and links.

There are processors that meet the termination condition
before others, due to the inherent inhomogeneity of the two-
dimensional grid topology (i.e., processors located on grid
edges do not have certain neighbors) and obstacles in com-
munication formed by faulty components [5]. These proces-
sors must inform their neighbors before termination,
otherwise the neighbors would possibly try to communicate
with the already terminated processor. To avoid this dead-
lock situation, the algorithm has a termination period.
Ready-to-terminate PEs send special messages to their
neighbors during this period, so the still active nodes will
not communicate with these PEs further on [4]. After the in-
formation is sent to each neighbor, processors decode the
received syndromes using the algorithm described in Sec-
tion 4.4, thus completing the initial phase.

For the transputer system, the initial phase of the diagno-
sis algorithm is integrated into the boot and loading process.

3.2 Working phase
The algorithm continues with the working phase after

finishing the initial phase. All processors have an initial,
system-level diagnostic image at this point. Let ui be an ar-
bitrary processor in the multiprocessor system which peri-
odically tests its neighboring processors uj, uk, ul, um. The
test compares the values (results of self-test programs) re-
ceived in <I’m alive> messages from the neighbors with
stored or processed local reference values. Hence, an error
is detected in four different ways:

• a <I’m alive> message does not arrive within the pre-
defined time-out interval,

• a <I’m alive> message contains incorrect error correct-
ing code,

• the value of the <I’m alive> message does not match
the local reference value.

Assume, that the current result of comparison shows that
uk, ul, um are fault-free and uj is faulty. Then the local test
result is ai,k = ai,l = ai,m = 0, but ai,j = 1. The processor ui
compares the obtained local test results to the stored local
diagnostic image during further operation. If it finds a dif-
ference indicating a new fault occurrence, it invokes excep-
tion handling. Assume, that the local test result ai,j = 1
indicates a new fault. In this case, processor ui starts to
broadcast messages containing the local test result ai,j = 1.
Now, two different cases can be distinguished regarding the
state of the tester:

i) processor ui is fault-free or

ii) processor ui is faulty.

In the first case processor ui broadcasts a correct local
test result to each neighbors indicated as fault-free in the
current local diagnostic image. If there is no other new
faulty processor except uj, these processors are really fault-
free. Because every fault-free processor diagnose their
neighbors correctly each faulty processor can be isolated;
broadcast messages are sent only between fault-free neigh-
bors. Hence, processor ui sends its local test results only to
processors uk, ul, um. The same procedure continues until all
fault-free processors within a connected subgraph receive
the local test result of processor ui.

If there are multiple new faulty processors in the system,
it may happen that the local test result becomes corrupted.
If this remains undetected by the coding of messages an in-
correct local test result is broadcasted, falsely indicating the
occurrence of a single processor fault in the system. Al-
though some of the fault-free processors now receive an in-
correct local test result, it does not result in a wrong fault
localization as it will be shown in Section 4.4. The reason is
that only changes within the system are reported by the local
test results, not the fault state of a processor.

In the second case processor ui sends either a correct or
a wrong local test result to some of its neighbors. On the one
hand, if the neighbor is faulty, the communication between
these two faulty processors has no impact on the correctness
of the diagnosis. On the other hand, if the neighbor is fault-
free and the message format from processor ui is correct, a
wrong local test result will be broadcasted. The same situa-
tion as described above in the previous paragraph.

After all, every fault-free processors within a connected
subgraph have received the message regarding the local test
result. After receiving the first message about the local test
result, the processor stops the application as soon as possi-
ble and waits for further local test results from other neigh-
bors of the faulty processor for a fixed time interval (time-
out termination criterion) [9]. Furthermore, all fault-free
neighbors will initiate further, more exact tests on the prob-
ably faulty processor and on the processor initiating the ex-
ception handling.

All processors can determine the fault state of the whole
system by processing the incoming local test results (syn-
drome decoding process), unless some faulty processors cut
the system into different isolated subgraphs (Section 4.4).

The working phase of the diagnosis algorithm is event-
driven, as both the local test result distribution and the syn-
drome decoding process are activated by the changes in the
local diagnostic image [6].

4 The implemented diagnosis algorithm
The implementation details of the initial phase of the al-

gorithm are not discussed in the paper, as the boot process

(and thus the initial phase) has no impact on the application
performance. During this phase no application is running,
so efficiency requirements do not have high priority.

The realization of the working phase can be done in dif-
ferent ways, depending on the splitting of the processing
power between the diagnostic process and the running ap-
plication. In the following the implementation of the algo-
rithm will be described. Alternative approaches to the
testing mechanism of neighboring processors, termination
rules, distribution of local test results, and processing of di-
agnostic information are presented to show that the algo-
rithm can be adapted to several systems and requirements.

The main structure of the implementation for the work-
ing phase of the algorithm is shown in Fig. 3. If no fault
event is detected, the algorithm periodically tests the neigh-
boring processors. Testing is accomplished by assigning in-
dependent modules to each tested unit [2].

If the tests detect an error in one of the neighboring pro-
cessors, exception handling is invoked by issuing an error
indication from the corresponding testing module to the lo-
cal diagnosis module. The local diagnosis module gives
control to the supervisor module, which handles the excep-
tions caused by the detected error. The supervisor module
activates the modules responsible for terminating the cur-
rent application, for distribution of the local test results, and
for processing of the diagnostic information (as described in
Section 4.4) [1].

Fig. 3. Main modules of the implemented algorithm

4.1 Test of neighboring processors
Each testing module is comprised of three threads: one

for receiving local test results from the neighboring proces-
sors, one for sending such messages (<I’m alive> message),
and one for evaluating the result (i.e., verifying whether the
responses are delayed or incorrect), respectively. If the eval-
uation indicates a faulty behavior of the neighboring proces-
sor, the thread sends an error message to the local diagnosis
module.

This <I’m alive> testing mechanism offers a possibility
to control the testing related run-time overhead. On the one

hand very precise and thoroughgoing self-tests can be used
resulting in a decreased application performance due to the
more intensive diagnosis process. Such self-tests can take
two forms: either realized in software or in hardware.

On the other hand, the use of <I’m alive> messages indi-
cating the alive or dead state of a processor reduces the re-
quirements of processing capacity to a fraction, thus
yielding more computational power to the application. Al-
though this kind of tests is easy to process, it can only detect
processor and link crashs, and more post-processing is re-
quired later.

However, since the application is quickly stopped after
error detection, there is a sufficient time remaining for more
finely granulated tests and post-processing in a subsequent
separate testing phase.

4.2 Terminating the application
The function of this module is to interrupt the execution

of the application on all the PEs as soon as possible. This is
necessary for the prevention of error dissemination and to
decrease the fault latency in the multiprocessor. If the appli-
cation is quickly suspended, the probability of error dissem-
ination is reduced, because no further communication - with
the exception of diagnostic information transfer - will take
place.

For quick termination of the application, the module ini-
tiates a fast broadcast. The broadcast messages are received
at every node by the local diagnosis module, which initiates
immediately exception handling. No specific routing mech-
anism is required for the implementation of the fast broad-
cast, as the existing routing mechanism of the Parsytec
GCel system extended with a high-level, fault-tolerant com-
munication protocol is fully sufficient. The broadcast is
based on flooding the multiprocessor with a so-called stop
message indicating the occurrence of an error. Each proces-
sor sends this message to all of its fault-free neighbors. The
neighbors forward the message to their neighbors (exclud-
ing the sender), continuing this process until the message ar-
rives at every accessible fault-free node. The advantage of
using flooding is its easy algorithm and its inherent fault-
tolerant behavior; all fault-free processors within a connect-
ed subgraph are reached.

4.3 Distribution of local test results
The module for distribution of the local test results is ac-

tivated after terminating the application. At first, only the
neighboring processors of the faulty processor start a sepa-
rate testing phase, executing fault localization tests. The as-
sumed causes are faulty links and faulty processor
components. These additional tests even assure the classifi-
cation of faults as temporary or permanent. The outcome of
these tests as well as the tests results obtained by the error

Local
Diagnosis

Test of
Neighboring

Supervisor

Termination
of Application

Processing
of Diagnostic
Information

Distribution
of Local Test

Results

Processor 2

Test of
Neighboring
Processor 1

Test of
Neighboring
Processor 4

Test of
Neighboring
Processor 3

detection mechanism constitute the local test results.

The distribution module transfers the local test results to
the supervisor module of each processor using the fault-tol-
erant flooding broadcast.

Different criteria can be used for terminating the distri-
bution phase. Our first implemented criterion was to wait
until all the local test results from each tester of the faulty
node have been received, but we found that this method is
not robust against errors during the diagnosis (e.g., lost mes-
sages due to node failure). A time-out criterion is used for
elimination of this lack of robustness [8]. The distribution
process waits for a certain time interval, in which all of the
local test results must be received. The main advantages of
this method are its safety and simplicity, but the optimal
time-out limit must be estimated in the design phase.

4.4 Fault localization
It is necessary to analyze the obtained local test results in

order to determine the fault state of each accessible unit of
the system. This task is accomplished by a syndrome decod-
ing algorithm (defined by the state diagram in Fig. 4). Syn-
drome decoding is invoked by the supervisor module on

receiving a new local test result. This way the local test re-
sult distribution and the fault localization modules are exe-
cuted alternatively. Therefore, even if the time-out limit
used in the distribution process is not optimal, the processor
will not be idle.

Fig. 4 describes the different states of the classification
process of a unit under diagnosis (UUD). Three possible
fault classifications are taken into consideration: the UUD
can be faulty, fault-free, or a link fault in the communication
link between the testing processor and the UUD may occur.
(Note, that actually there is a fourth classification for the in-
accessible PEs: unknown.) In each state (represented by
nodes in the graph) the actual classification is shown in pa-
rentheses. Transitions between states are indicated by di-
rected arcs in the graph. A transition is enabled by receiving
a local test result.

There are four possible starting states in the diagnosis of
a UUD: State 1, State 2.5, State 2.6, and State 2.7; depend-
ing on the classification created in the initial phase of the di-
agnosis algorithm. If the UUD was found to be fault-free in
the initial phase (i.e., State 1 is the starting state), this clas-
sification remains unaltered, until a message indicating a

Fig. 4. State diagram of the syndrome decoding algorithm

State 2.1
(UNKNOWN)

State 2.3
(UNKNOWN)

State 2.5
(UNKNOWN)

State 4
(ERROR)

State 2.2
(UNKNOWN)

M
A

X
N

E
IG

H
B

O
R

good
faulty

faulty

good/
faulty

inconsistency

faulty

all
faulty

some good/
some faulty

all
good

faulty

re-tested

good

no messages
were received

new test
result

good/
faulty

State 1
(FAULT-FREE)

good/
faulty

State 2.4
(UNKNOWN)

State 2.6
(LINK ERROR)

good

State 3
(REPAIR)

all
good

State 2.7
(FAULTY)

diagnosis,
distribution

fault in the UUD has been received from one of its neigh-
boring processors. Two different activities must be per-
formed after receiving a fault indication, depending on the
topological relationship between the diagnosing PE and the
UUD:

• if the PE is one of the neighbors of the UUD (i.e., it is
assigned to test it), the PE executes a new test, then it
broadcasts the local test result in the system, as well as
the received test result. This procedure assures that
each processor will receive an up-to-date test result
from all the testers of the UUD. These activities are
performed in State 2.2.

• if the PE is not one of the neighbors (State 2.1), it only
forwards the received local test result to its neighbors
and enters the next state.

Test results from the testers of the UUD are obtained and
then analyzed during the subsequent four state classes (from
State 2.1 to State 2.7, marked by gray background). The
number of these state classes (indicated as MAXNEIGHBOR in
Fig. 4) equals to the number of neighboring (testing) proces-
sors. Transitions are independent of the received test results,
as the purpose of these states is to obtain all information
from the tester processors. A time-out mechanism is used in
receiving the local test result messages. During the obtain-
ing of local test results, the classification of the UUD is set
to unknown. Decision is made when all local test results are
received, or the time-out period used in the distribution
phase expires. Local test results not received within the
time-out period due to an extremely large communication
delay are assumed to be missing.

Missing messages which generate diagnostic inconsis-
tency are taken into consideration as indications of a new er-
ror occurrence during diagnosis (State 4). In this case the
diagnosing processor broadcasts a fault indication in the
system. All processors receiving the message will begin to
test their neighbors.

If no messages are received within the time-out limit, the
UUD is inaccessible, so its classification remains unknown
(State 2.5). This classification is valid, till a new local test
result related to the UUD is received from one of its testers
later on, then the algorithm continues the diagnosis of the
unit in State 2.3.

If every tester found the UUD to be faulty, then the unit
itself is considered to be faulty (in State 2.7). A processor
crash, and the simultaneous fault in all of its communication
links are equivalent as they produce identical syndromes.
Such syndromes are represented as processor faults.

If a tester processors produces a bad test outcome for its
neighbor and vice versa, then the corresponding communi-
cation links between these testers are assumed to be faulty
(classification link fault in State 2.6).

State 3 provides the possibility of taking on-line repairs
into consideration. Here an extra diagnostic process is re-
quired to assure consistency between the diagnostic images
stored in processors belonging to different connected sub-
graphs. If faulty links or nodes - previously isolating two or
more connected subgraphs - have repaired, the subgraphs
are joined, but the diagnostic knowledge (described in Sec-
tion 2) of the processors remains potentially different. For
this reason a special broadcast procedure is performed be-
tween the nodes of previously isolated subgraphs to merge
the various diagnostic knowledge into one.

5. Measurements
As stated in Section 3, faults seldom occur during the op-

eration of the system. In a fault-free system the event-driven
diagnosis algorithm performs only error detection. Thus,
the <I’m alive> testing mechanism has the largest impact on
the application performance.We have examined the run-
time overhead related to testing. The minimal run-time
overhead can be achieved using the <I’m alive> message.
Therefore, this testing mechanism was measured.

5.1 Application run-time overhead
As the application run-time overhead is an important cri-

terion for the evaluation of a fault tolerance mechanism, we
measured the application run-time overhead by running a
benchmark-like practical application (Ising) and the diagno-
sis algorithm concurrently on each processor. The Ising ap-
plication calculates the spin of electrons in a gas at various
temperatures. In Fig. 5 the run-time overhead is displayed as
a function of the time between two consecutive <I’m alive>
messages.

Fig. 5. Run-time overhead caused by the <I’m alive> test-
ing mechanism (Ising application)

The overhead is approximately inversely proportional to
the time between two consecutive <I’m alive> messages.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 1 2 3 4 5 6 7 8 9 10

ru
n-

tim
e

ov
er

he
ad

 [%
]

time between two consecutive <I’m alive> messages [sec]

The sending of <I’m alive> messages has a very little im-
pact on the application run-time, if the interval between two
messages is longer than one second. If the <I’m alive> mes-
sages are sent in every 500 milliseconds, the overhead is
larger, but does not exceed 0,2 percent.

The reason for the coarse of the curve is the increasing
usage of computational power for receiving, sending, and
evaluating <I’m alive> messages by the <I’m alive> mech-
anism, if the time interval between the two consecutive
<I’m alive> messages decreases.

Furthermore, performance measurements were made
with various other benchmark-like applications, differing in
the intensity of communication. The shape of curves de-
scribing the overhead corresponding to the different appli-
cations are similar to the curve in Fig. 5. The collection of
these curves can be represented by the grey marked region
in Fig. 6, bounded by two curves of the application over-
head. The curve at the lower border of the marked region
represents the run-time overhead of the whetstone bench-
mark program, which does not communicate. The curve at
the upper border describes the run-time overhead of a dum-
my program which performs only communication.

Fig. 6. Run-time overhead caused by the <I’m alive>
mechanism for various applications

The reason for the difference in the run-time overhead
between the whetstone and the dummy application is the
load of the communication network.

5.2 Impact of the application on the
<I’m alive> message testing mechanism

Additionally to the influence of the <I’m alive> mecha-
nism on the application performance, the inverse effect is
another important criterion for the assessment of diagnosis
software. Since the same communication network is used
for sending the <I’m alive> messages as well as the applica-
tion messages, and since both kind of messages are sent

with the same priority on the multiprocessor Parsytec GCel,
the impact of the application messages on the <I’m alive>
message testing mechanism has to be examined.

The time between two consecutive <I’m alive> messages
has been measured. This time is composed of the
<I’m alive> time interval and the communication time
needed for sending this <I’m alive> message to the neigh-
boring processor. The <I’m alive> time interval was chosen
to be one second to have a small run-time overhead as indi-
cated in Fig. 6.

Fig. 7. Time between two consecutive <I’m alive> mes-
sages running the whetstone application

For the whetstone application (Fig. 7), the time between
two consecutive <I’m alive> messages is nearly constant,
with a variance only in the microsecond range. The average
time is 1.00180 seconds. That could be expected because
the whetstone application does not communicate. There-
fore, the average time will be used as the base for the com-
parison with the following measurements.

In a dummy application exclusively performing commu-
nication, the average time is 1.00187 seconds (Fig. 8). This
shows that the time between two consecutive <I’m alive>
messages is only a little bit larger running the dummy appli-
cation than for the whetstone benchmark program.

Fig. 8. Time between two consecutive <I’m alive> mes-
sages running an application which only communicates

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1 2 3 4 5 6 7 8 9 10

whetstone program (no communication)

time between two consecutive <I’m alive> messages [sec]

4.5

program which only performs communication

ru
n-

tim
e

ov
er

he
ad

 [%
]

1.00174

1.00176

1.00178

1.00180

1.00182

1.00184

1.00186

1.00188

1.00190

0 50 100 150 200 250 300 350 400 450
<I’m alive> message number

T
im

e
[s

ec
]

1.00170
1.00175
1.00180
1.00185
1.00190
1.00195
1.00200
1.00205
1.00210
1.00215
1.00220

0 50 100 150 200 250 300 350 400 450
<I’m alive> message number

T
im

e
[s

ec
]

Furthermore, even the measured time values vary not
much more than the values displayed in Fig. 7. They are in
the range between 1.00182 and 1.00193 seconds (see Fig.
8). Considering these results, it can be stated that the mes-
sages sent by the applications have a moderate impact on the
<I’m alive> message testing mechanism. An upper limit for
the delay of the messages can easily be found. For the ex-
ample given, the maximal delay is 0.00193 seconds which
can be recognized in Fig. 8.

5.3 Fault latency
The fault latency (Tl) in a processor is defined as the time

interval between the fault occurrence and the error detection
by a neighboring processor (tester). The latency depends on
the time (Tc) between two consecutive checks of incoming
messages (check time interval) and the <I’m alive> time in-
terval (Tia) where . The model of fault latency is
shown in Fig. 9.

Fig. 9 Model of fault latency

As the checking process in the tester processor runs
asynchronously to the <I’m alive> message generating pro-
cess in the processor under test, we assume that the remain-
ing time y from the last check to the next <I’m alive>
message is an equiprobable distributed random variable.

Additionally, as faults are assumed to be uncorrelated
with both the message sending and the checking process,
the random variable x denoting the time between the last
check and the occurrence of an error is assumed to be equal
distributed, and the distributions of x and y are independent.

Then, two cases concerning the latency Tl have to be dis-
tinguished:

i) the latency Tl is and or

ii) the latency Tl is and .

The density functions for the two cases are:

The desity functions fi(x) and fii(x) show: if x is in the
range 0 ≤ x ≤ Tia than both cases of latency are possible de-
pending on y; if x is in the range Tia ≤ x ≤ Tc than only case i)
happens.

The theoretical mean fault latency Tml can now be calcu-
lated by , where Tml1 and Tml2 are:

After completing the above integration, the following
formula results for the theoretical mean latency Tml:

Assume an <I’m alive> message period time of 1.0 sec-
ond and a check time interval of 1.1 second. Then, a mean
latency Tml of 1.15 seconds would result.

The model suggests, that the mean fault latency can be
reduced in two ways. Firstly, the <I’m alive> message inter-
val Tia must be closely equal to the check time interval Tc.
But here, the variance caused by the communication (∆T-

max) must be taken into account:

Secondly, the check time interval (and so the <I’m alive>
message interval) can be decreased. However, reducing Tc
and Tia the application run-time overhead will increase.
Therefore, the trade-off between the reduction of the check
time interval and the application run-time overhead has to
be taken into consideration determining the optimal mean
latency.

The theoretical mean latency of the <I’m alive> message
testing mechanism was computed using our model. Fault in-
jection experiments were performed to validate the result.
Permanent faults, always resulting in crash failure of a pro-
cessor, were injected. The measured latency and its mean
value (computed mean latency) for the above example are
shown in Fig. 10.

ia T c<

Tc

Tia

x

y

Tc Tc

Tia Tia Tia

t

t

check

fault occurrence

last check

Tl

check

l 2T c x–= 0 x T c≤ ≤

l T c x–= 0 x T ia≤ ≤

f i x()
x T ia> f i1 x()=1

x T ia≤ f i2 x()=
x

T ia

=

case i)

f ii x()
x T ia> f ii1 x()=0

x T ia≤ f ii2 x()=1
x

T ia
--------–

=

case ii)

ml T ml1 T ml2+=

T ml2
1

Tc
------ 2Tc x–()dx

T ia

T c

∫=

T ml1
1

T c
------ 2Tc x–() x

Tia
--------- Tc x–() 1

x
Tia
---------–

 +
 dx

0

T ia

∫=

T ml
3
2
---T c

1
2
---– T ia=

T c T ia ∆T max+≥

Fig. 10. Fault latency

The measured latency varies between 0.5 and 1.7 sec-
onds. These values are in the theoretical latency range be-
tween 0.1 and 2.2 seconds. After 39 measurements the
computed mean latency is close to its theoretical value.

5.4 Run-time of the broadcast needed for
stopping the application

A important aspect of the diagnosis, as already men-
tioned in Section 4, is the time needed for stopping the ap-
plication after the occurrence of an error. To reduce the
latency in a multiprocessor system and the probability of er-
ror propagation, the mechanism for stopping the application
has to work fast. That is achieved by a fast broadcast.

Fig. 11. Time needed for stopping the application

In Fig. 11 run-time measurements of this broadcast are
shown. The run-time depends on the grid structure and on
the location in which the broadcast is initiated after the oc-
currence of an error. Therefore, in Fig. 11 two curves of the
run-time are given, the upper one describing the maximum
run-time, the lower one describing the minimum run-time.
Considering the dependencies of the run-time, it is obvious
that the curves are nonlinear; the number of hops performed
by the broadcast does not increase linearly on increasing the
number of processors.

6 Conclusions
In this paper we introduced a new system-level diagnosis

algorithm. The algorithm is distributed, which makes it ap-
plicable in scalable systems; and event-driven, thus it pro-
cesses diagnostic information fast and efficiently, requiring
small amount of communication and computation. Addi-
tionally, we concentrated on the relation between the tests
for error detection and the tests for error localization.

The general structure of the algorithm consisting of two
separate phases has been described. A new syndrome de-
coding method, which produces the diagnosis gradually was
given. Furthermore, we presented an extended diagnosis
model, which makes possible to obtain all accessible diag-
nostic information without limiting the number of tolerated
faults within the system.

Additionally, we presented an implementation based on
the algorithm which uses different tests for error detection
and localization, using a separate testing phase after quick
termination of the running application. It executes the local
test result distribution and the syndrome decoding proce-
dures alternatively, thus creating diagnostic images gradual-
ly, taking every test outcome into consideration during
diagnosis. The implementation was examined, highlighting
the advantages and disadvantages. Furthermore, we have
proven the efficiency of our algorithm by some measure-
ment results. The measurement results show that the testing
causes only a small overhead.

References
[1] Altmann, J., “Diagnoseprotokolle in Multiprozessorsyste-

men,” Diploma Work, University of Erlangen-Nürnberg,
February 1993.

[2] Altmann, J., F. Balbach, and A. Hein, “An Approach for
Hierarchical System Level Diagnosis of Massively Parallel
Computers Combined With a Simulation-Based Method
for Dependability Analysis,” IEEE 1st European Depend-
able Computing Conference, Berlin, October 1994.

[3] Bagchi, A. and S. L. Hakimi, “An Optimal Algorithm for
Distributed System-Level Diagnosis,” IEEE Proc. 21st Int.
Symposium on Fault-Tolerant Computing, pp. 214-221,
Montreal, June 1991.

[4] Bartha, T., “Diagnostic Algorithms of Multiprocessor Sys-
tems,” Diploma Work, Tech. University of Budapest,
1993.

[5] Behr., P. M., W. K. Giloi, and W. Schröder, “Synchronous
versus Asynchronous Communication in High Perfor-
mance Multicomputer Systems,” Aspects of Computation
on Asynchronous Parallel Processors, pp. 239-247, North-
Holland, 1989.

[6] Bianchini, R. and R. Buskens, “An Adaptive Distributed
System-Level Diagnosis Algorithm and its Implementa-
tion,” IEEE Proc. 21th Int. Symposium on Fault-Tolerant
Computing, pp. 222-229, Montreal, June 1991.

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 5 10 15 20 25 30 35 40

measured latency
computed mean latency
theoretical mean latency

Number of experiments

La
te

nc
y

[s
ec

]

minimum time needed for stopping
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 2 4 6 8 10 12 14 16

maximum time needed for stopping

Number of processors

T
im

e
[s

ec
]

[7] Bianchini, R., R. Buskens, and M. Stahl, “On-Line Diagno-
sis in General Topology Networks,” Proc. IEEE Workshop
on Fault-Tolerant Parallel and Distributed Systems,
pp. 114-121, Amherst, July 1992.

[8] Ciompi, P., F. Grandoni, and L. Simoncini, “Distributed
Diagnosis in Multiprocessor System: The MuTeam ap-
proach,” IEEE Proc. 11th Int. Symposium on Fault-Toler-
ant Computing, pp. 25-29, Portland, June 1981.

[9] Cristian, F., H. Aghili, and R. Strong, “Atomic Broadcast:
From Simple Message Diffusion to Byzantine Agree-
ment,” IEEE Proc. 15th Int. Symposium on Fault-Tolerant
Computing, pp. 200-206, Ann Harbor, June 1985.

[10] Dal Cin, M. and F. Florian, “Analysis of a Fault-Tolerant
Distributed Diagnosis Algorithm,” IEEE Proc. 15th Int.
Symposium on Fault-Tolerant Computing, pp. 159-164,
Ann Harbor, June 1985.

[11] Dal Cin, M. and A. Pataricza, “Increasing Dependability in
Multiprocessors,” Proc. of the 8th Symp. on Microcomput-
er and Microprocessor App. µP‘94, pp. 55-64, Budapest,
October 1994.

[12] Kime, C. R., “System Diagnosis,” in Fault-Tolerant Com-
puting: Theory and Techniques, Prentice-Hall, New York,
pp. 577-623, 1985.

[13] Kuhl, J. G., and S. M. Reddy, “Distributed Fault-Tolerance
for Large Multiprocessor Systems,” ACM-Sigarch Newlet-
ter 8, no. 3, pp. 23-30, 1980.

[14] Kuhl, J. G., S. M. Reddy, and S. H. Hosseini, “On Self
Fault-Diagnosis of the Distributed Systems,” IEEE Proc.
15th Int. Symposium on Fault-Tolerant Computing,
pp. 30-35, Ann Harbor, June 1985.

[15] Malek, M. and Y. Maeng, “Partitioning of Large Multi-
computer Systems for Efficient Fault Diagnosis,” IEEE
Proc. 12th Intl. Symposium on Fault-Tolerant Computing,
pp. 341-348, Santa Monica, June 1982.

[16] Meyer, F.J. and G. Masson, “An Efficient Fault Diagnosis
Algorithm for Symmetric Multiprocessor Architecture,”
IEEE Transaction on Computer, vol. EC-27, pp. 1059-
1063, November 1978.

[17] Parsytec Computer GmbH., “The Parsytec GCel Technical
Summary,” Version 1.0, Aachen, 1991.

[18] Preparata, F., G. Metze, and R. Chien, “On the Connection
Assignment Problem of Diagnosable Systems,” IEEE
Transaction on Computer, vol. EC-16, no. 6, pp. 848-854,
December 1967.

[19] Rangarajan, S. and D. Fussell, “A Probabilistic Method for
Fault Diagnosis of Multiprocessor Systems,” IEEE Proc.
18th Int. Symposium on Fault-Tolerant Computing,
pp. 278-283, 1988.

