Mapping a group of jobs in the error recovery of the Grid-based
workflow within SLA context

Dang Minh Quan
International University in Germany
School of Information Technology
Bruchsal 76646, Germany
quandm@upb.de

Abstract

The error recovery mechanism receives an important
position in the system supporting Service Level Agree-
ments (SLAs) for the Grid-based workflow. If one sub-job
of the workflow s late, a group of directly affected sub-jobs
should be re-mapped in a way that does not affect the start
time of other sub-jobs in the workflow and is as inexpen-
siwe as possible. With the distinguished workload and re-
source characteristics as well as the goal of the problem,
this problem needs new method to be solved. This paper
presents a mapping algorithm, which can cope with the
problem. Performance measurements deliver good evalu-
ation results on the quality and efficiency of the method.

1. Introduction

Service Level Agreements (SLAs) [13] are currently
one of the major research topics in Grid Computing, as
they serve as a foundation for a reliable and predictable
job execution at remote Grid sites. We have developed
the system supporting SLA for the Grid-based work-
flow [8, 10, 9]. The scenario of running a Grid-based
workflow is presented in Figure 1.

Like many popular systems handling Grid-based
workflows [3, 14, 6], our proposed workflow system is
of the Directed Acyclic Graph (DAG) form. It is noted
that a sub-job of the workflow can be either a sequen-
tial program or a parallel program and that the data
to be transferred among sub-jobs can be enormous.

In each Grid site, the resources are managed by
the software called local Resource Management Sys-
tem (RMS). Each RMS has its own unique resource
configuration. To ensure that the sub-job can be exe-
cuted within a dedicated time period, the RMS must
support advance resource reservation such as CCS [5].

Jorn Altmann
International University in Germany
School of Information Technology
Bruchsal 76646, Germany
jorn.altmann@acm.org

SLA workflow broker

Figure 1. A sample running Grid-based workflow
scenario

If two sequential sub-jobs are executed in the same
RMS, it is not necessary to do data transfer and the
time used for this work equals zero. Otherwise, data
transfer tasks between the RMS’s must be performed.
To make sure that a specific amount of data will be
transferred within a specific period of time, a band-
width must also be reserved. The mechanism to re-
serve the bandwidth is described in [11, 12].

During the sub-job running process, an error inside
an RMS may happen at any time and can damage the
whole workflow. The error can be node scratch, hard-
ware failure, network cable break. In this case, the RMS
will restart the sub-job from the checkpointing image.
The time overhead to detect the error and the time
to rerun the sub-job from the checkpointing image will
make the finished time of the sub-job later than the
pre-determined deadline. When one sub-job is late, its
output data transfer to the next sub-jobs cannot be
done. Therefore, those next sub-jobs cannot run in the
right way because of lacking input data and the whole
wokflow is damaged. For example, if sub-job 0 is late
1 time slot, sub-job 1, 2, 3 and 4 are also affected be-
cause of having no input data.



] Subjob 1 ]
] Subjob 2 ]
1 Subjob 3 I

Subjob 4

Figure 2. Affected sub-jobs and data transfers

Therefore, we have to try to re-map the directly af-
fected sub-jobs in a way that does not affect the start
time of other remaining sub-jobs in the workflow. When
we re-map the directly affected sub-jobs, we also have
to re-map their related data transfers. With the exam-
ple in Figure 1, if sub-job 0 is late, the affected sub-jobs
and data transfers are described in Figure 2. This task
can be feasible because of many reasons.

e The latency period is very small, only 1 or 2 time
slots.

e The Grid may have others solutions that the data
transfers will be shorter because the links have
broader bandwidth.

e The Grid may have RMSs with higher CPU power,
which can execute the sub-jobs in shorter time.

The formal specification of the described problem in-
cludes following elements:

e Let R be the set of Grid RMSs. This set includes
a finite number of RMSs, which provide static in-
formation about controlled resources and the cur-
rent reservations/assignments.

e Let S be the set of sub-jobs in the given workflow.

e Let Sa be the set of all directly affected sub-jobs
with the resource and runtime requirements.

e Let E be the set of data transfer in the given work-
flow.

e Let Ei be the set of input data transfers of S.
e Let Fo be the set of input data transfers of S.

e Let K; be the set of resource candidates of sub-
job s;. This set includes all RMSs, which can run
sub-job s;, K; C R, s; € Sa.

Based on the given input, a feasible and possibly
optimal solution is sought, which allows the most effi-
cient mapping of those sub-jobs in a Grid environment
with respect to the given deadlines. The required solu-
tion is a set defined as Formula 1.

M = {(s;,rj, start_slot)|s; € Sa,r; € K;} (1)

If the solution does not have start_slot for each s;,
it become a configuration as defined in Formula 2.

a = {(si,rj|s; € Sa,r; € K;} (2)
A feasible solution must satisfy following conditions:

e Criterial: All K; # (). There is at least one RMS
in the candidate set of each sub-job.

e Criteria2: The start time of each input data
transfer ei;, must later than the sub-job it de-
pends on, ei;, € Fi. The stop time of each out-
put data transfer eor must earlier than the next
sub-job which depends on it, eo;, € Fo.

e Criteria3: Each RMS provides a profile of cur-
rently available resources and can run many sub-
jobs both sequentially and parallel. Those sub-
jobs, which run on the same RMS, form a profile of
resource requirement. With each RMS r; running
sub-jobs of Sa, with each time slot in the profile of
available resources and profile of resource require-
ments, the number of available resources must be
larger than the resource requirement.

e Criteria4: The data transmission task ey; from
sub-job s to sub-job s; must not overlap other re-
served data transmission task on the link between
RMS running sub-job s; to RMS running sub-job
Si, ex; € iU Fo, si, s; € Sa.

In the next phase the feasible solution with the low-
est cost is sought. The cost C of a Grid workflow is
defined in formula 3, 4 and 5. It is a sum of four fac-
tors: the cost of (1) using the CPU, (2) storage, (3)
expert knowledge, and (4) data transfer between re-
sources.

n

C, = E 8171 % (8. Ne*Tj Do+ Si Mg T Ds + 8;.Ne ¥T . De)
i=1
(3)

Cy = Z ki -Nd * T'§.Dd (4)

C=C1+Cy (5)

with s;.7¢, $;.n¢, S;.1s, S;.Ne are the runtime, num-
ber CPU, number storage, number expert of sub-job s;
respectively. 7;.p¢, 7j.Ds, T'j.Pe, Tj.Da are the price of us-
ing CPU, storage, expert, data transmission of RMS r;
respectively. eg;.ng is the number of data to be trans-
ferred from sub-job si to sub-job s;.

If two sequential sub-jobs run on the same RMS,
the cost of transferring data from the previous sub-job



to the later sub-job is neglected. It can be shown eas-
ily that the optimal mapping of those sub-jobs to Grid
RMSs with cost optimizing is a NP hard problem.
This paper presents a mapping algorithm called G-
map to handle this problem. It is the next progress in
a series of efforts, [8, 10, 9, 7, 11, 12], to build a full
system supporting SLAs for Grid-based workflows.

2. Related work

Our problem can be defined as a special case of the
mapping a bag of independent tasks to resources prob-
lem [15, 4, 1]. In the literature, most of the efforts
[15, 4, 1] solve this problem with time optimization.
It is the major difference to our work because we con-
centrate to find out a solution which meets the dead-
line and optimizes the cost.

The most closed work to our problem is the work
from [2]. In [2], the authors present the method to
schedule parameter sweep applications on global Grids.
The original deadline and budget constrained (DBC)
costtime optimization algorithm builds on the cost-
optimization and time-optimization scheduling algo-
rithms. This is accomplished by applying the time-
optimization algorithm to schedule task-farming appli-
cation jobs on distributed resources having the same
processing cost. The authors assume that all tasks are
sequential programs and identical to each other. It is
clear that our problem is distinguished from parame-
ter sweep applications scheduling problem as the sub-
jobs in our problem are parallel programs with various
differences in configurations as well as in constraints.
However, the primary idea of DBC algorithm can also
be applied to our problem as presented in Figure 3.

For each sub-job in the set {

Sort the candidate RMSs according to cost order. If 2 or
more RMSs have the same cost, the more powerful RMS
will stay first
For each RMS in the sorted candidate list {

calculate the execution time of that sub-job on the
RMS. If it meet the deadline then assigned the sub-
job to the RMS

}

Figure 3. Application of DBC algorithm to the prob-
lem

In [12], we present an algorithm called H-Map to
map heavy communication workflow to the Grid re-

sources. The character of resources and workload are
similar to this problem. Therefore, we can easily adapt
H-Map to the problem as described in Figure 4. The
main idea of H-Map algorithm is that a set of initial
configuration distributed over the search space accord-
ing to cost factor will be further refined to find the best
solution.

Create set of reference configurations distributed over the
search space according to cost factor
for each sub-job in the set {
for each RMS in the candidate list {
if cheaper then put (sjid, RMS id, improve_value)
to a list }}
sort the list according to improve_value
from the begin of the list{
Compute time table to get the finished time
If finished time < limit
break
}

Store the result

Figure 4. Application of H-Map algorithm to our
problem

As the number of affected sub-jobs is not always big
we can apply the searching all cases algorithm (SAC).
In the case of having small number of affected sub-
jobs, the runtime of the algorithm is sufferable. The
solution result of this algorithm can be a good refer-
ence source to evaluate the quality of other algorithms.
The searching all cases algorithm is presented in Fig-
ure 5.

min_cost=1000000
With each possible configuration a {
determine the scheduling order
check the feasibility of a
if feasible {
compute the cost m_cost of a
if(m_cost<min_cost){
min_cost=m_cost
store a

}}}

Figure 5. Searching all cases algorithm




3. G-map algorithm

G-Map algorithm maps a group of sub-jobs on to the
Grid resources with G stands for Group. In the G-Map
algorithm, we try to compress the solution space in a
way that the ability to have feasible solutions is higher.
After that, a set of initial configuration is constructed.
This set will be improved by local search until it can-
not be improved any more. Finally, we pick the best
solution from the final set. The architecture of the al-
gorithm is presented in Figure 6.

. Determine
Refine the Construct set Check
solution | of initial the L feasible
configuration assigning .
space Co solution

Improve the
Output the psex of No
bestin C* y . 3
configuration

Ci
é Output: Cannot
find solution

Figure 6. G-Map algorithm

3.1. Refining the solution space

The set of candidate RMSs for each sub-job can be
continuously refined by following observation: An RMS
will be valid with a sub-job only if the sub-job assigned
to that RMS satisfies the start time of the next sequen-
tial sub-jobs. The algorithm to refine the solution space
is presented in Figure 7.

With each separate sub-job, we determine the sched-
ule time of the input data transfers, the sub-job and
output data transfer. From the algorithm in Figure 7,
we can see that the resource reservation profile is not
updated. We call this the ideal assignment. If the stop
time of the output data transfer does not earlier than
the start time of the next sequential sub-job then we re-
move the RMS out of the candidate set.

3.2. Constructing the set of initial configu-
rations

The goal of the algorithm is finding out a feasible so-
lution, which satisfies all required criteria and is as in-
expensive as possible. Therefore, the set of initial con-
figurations should satisfy two criteria.

for each sub-job k in the set {
for each RMS r in the candidate list of k{

for each link to k in assigned sequence{
min_st_tran=end_time of source sub-job
search reservation profile of link the
start_tran > min_st_tran
end_tran = start_tran+num_data/bandwidth
update reservation profile

}

min_st_sj=max (end_tran)

search in reservation profile of r the

start_job > min_st_sj

end_job= start_job + runtime

for each link from k in assigned sequence{
min_st_tran=end_job
search reservation profile of link the
start_tran > min_st_tran
end_tran = start_tran+num_data/bandwidth
update reservation profile
if end_tran>=end_time of destination sub-job

remove r out of the candidate list

M

Figure 7. Refining the solution space procedure

e The configurations in the set must differ from each
other as far as possible. This criterion will ensure
that the set of initial configuration will distribute
widely over the search space.

e The RMS running sub-job in each configuration
should differ from each other. This criterion will
ensure that each sub-job will be assigned in ideal
condition, thus the ability to become a feasible so-
lution will increase.

The procedure to create the set of initial configura-
tion is as following.

Stepl: Sorting the candidate set according to
the cost factor. With each sub-job, we compute the
cost of running the sub-job by each RMS in the candi-
date set and then sort the RMSs according to the cost.
With the case of our example, we could have a sorted
solution space as presented in Figure 8.

Step2: Forming the first configuration. The
procedure to form the first configuration in the set is
presented in Figure 9. We form the first solution hav-
ing as small cost as possible. With each unassigned
sub-job, we compute the m_delta = cost running in
the first feasible RMS minus cost running in the sec-
ond feasible RMS in the sorted candidate list. The sub-
job having the smallest m_delta will be assigned to the
first feasible RMS. The purpose of this action is to en-



Subjob1 | 2 |« [ 1 ]| s |
Subjob 2 | 1 I 2 I 3 I 4 |
Subjob3 | 4 | 2 [ 1 ] s |
Subjob 4 I 1 I 3 I 4 I 2 I

Figure 8. A sample sorted solution space

sure that the sub-job having higher ability to increase
the cost will be assigned first. After that, we will up-
date the reservation profile and check if the assigned
RMS is still available for other sub-jobs. If not we will
mark it as unavailable. The process is repeated until all
sub-jobs are assigned. The selection of which sub-job to
be assigned is effective when there are many sub-jobs
having the same RMS as the first feasible solution.

While the set of unassigned sub-jobs is not empty {

Foreach sub-job s in the set of unassigned sub-jobs {
m_delta=cost in first feasible RMS- cost in second
feasible RMS
put (s, RMS, m_delta) in a list

}

Sort the list to get the minimum m_delta

Assign s to the RMS

Drop s out of the set of unassigned sub-jobs

Update the reservation profile of the RMS

Check if the RMS is still feasible with other unassigned

sub-jobs

if not, mark the RMS is infeasible

Figure 9. The algorithm to form the first configura-
tion

Step3: Forming the other configurations. The
procedure to form other initial configurations is de-
scribed in Figure 10. To satisfy two criteria as described
above, we use assign_number to keep track of num-
ber of the assignment RMS to a sub-job and l_ass to
keep track of the appearance frequency of RMS within
a configuration. RMS having smaller assign_number
and small appearance frequency in [_ass will be se-
lected. Applying this algorithm to the example, start-
ing from the first configuration in Step 2, the process of
forming other initial configurations is described in Fig-
ure 11.

assign_number of each candidate RMS =0
While number of configuration < max_sol {
clear list of assigned RMS |_ass
for each sub-job in the set {

find in the candidate list RMS r having the
smallest number of appearance in |_ass

and the smallest assign_number
Putrtol_ass
assign_number++

Figure 10. Procedure to create the initial configu-
ration set

1

N
21|2
4 | s
2|

4

RN ER
| o [ |
N
[« [+ |

Figure 11. The sample initial configuration set

3

3.3. Determining the assigning order

When the RMS executing each sub-job and the
bandwidths among sub-jobs were determined, the next
task is determining time slot to run a sub-job in the
specific RMS. At this time, the order of determining
scheduled time for sub-jobs becomes important. The
sequence of determining runtime for sub-jobs in RMS
can also affect the Criteria 2 especially in the case of
having many sub-jobs in the same RMS. In this algo-
rithm, we use the policy like in [12]. Thus, the input
data transfer having the earliest start time smaller will
be scheduled earlier. The output data transfer having
the latest stop time smaller will be scheduled earlier.
The sub-job having earlier deadline should be sched-
uled earlier.

3.4. Checking the feasibility of a solution

To check the feasibility of a solution we have to de-
termine the timetable to execute sub-jobs and their re-
lated data transfer. In the error recovery phase, finding
a solution that meet the Criteria 2 is very important.
Therefore, we do not simply use the provided runtime
of each sub-job but modify it according to the perfor-
mance of each RMS. Let pk;, pk; is the performance of
a CPU in RMS r;, r; respectively and pk; > pk;. Sup-
pose that a sub-job has the provided runtime rt; with
the resource requirement equals to r;. Thus, the run-



time rt; of the sub-job in r; is determined as in For-
mula 6.

’f‘lfi
pki+(pk; —pk;)+k (6)
pki

T‘tj =

Parameter k£ presents the affection of the sub-job’s
communication character and the RMS’s communica-
tion infrastructure. For example, if pk; equals to 2*pk;
and rt; is 10 hours, rt; will be 5 hours if k£ equals to
1. However, k=1 only when there are no communica-
tion among parallel tasks of the sub-job. Otherwise, k
will be less than 1. Parameter k, is an average value,
which is determined by the user through many exper-
iments and is provided as the input for the algorithm.
In the reality environment, k& may fluctuate around the
average value depending on the network infrastructure
of the system. For example, suppose that k, equals to
0.8. If the cluster has good network communication, the
real value of k may increase to 0.9. If the cluster has
not so good network communication, the real value of
k may decrease to 0.7. Nowadays, with the very good
network technology in High Performance Computing
Centers, the fluctuation of k is not so much. To over-
come the fluctuation problem , we use the pessimistic
value k, instead of k in the Formula 6 to determine the
new runtime of the sub-job as following.

o If k, > 0.8, for example with the rare communica-
tion sub-job, k, = 0.5.

e If 0.8 > k, > 0.5, for example with normal com-
munication sub-job, k, = 0.25.

o If k, < 0.5, for example with heavy communica-
tion sub-job, k, = 0.

The pessimistic policy will ensure that the sub-job
can be finished within the new determined runtime pe-
riod. With those assumption, the procedure to deter-
mine the timetable is presented in Figure 12.

After determining the timetable, the stop time of the
output data transfer will be compared with the start
time of the next sequential sub-jobs. If having a viola-
tion, this solution is determined infeasible.

3.5. Improving solution quality algorithm

If the initial configuration set Cy # (), the set will
gradually be refined to have better quality solutions.
The refining process stops when the solutions in the
set cannot be improved any more and we have the fi-
nal set Cx. The best solution in Cx will be output as
the result of the algorithm. More detail about this pro-
cedure can be found in [12].

for each sub-job k in the set {

for each link to k in assigned sequence{
min_st_tran=end_time of source sub-job
search reservation profile of link the
start_tran > min_st_tran
end_tran = start_tran+num_data/bandwidth
update link reservation profile

}

min_st_sj=max (end_tran)

search in reservation profile of RMS running

k the start_job > min_st_sj

end_job= start_job + runtime

update resource reservation profile

for each link from k in assigned sequence{
min_st_tran=end_job
search reservation profile of link the
start_tran > min_st_tran
end_tran = start_tran+num_data/bandwidth
update link reservation profile

i

Figure 12. Procedure to determine the timetable

4. Performance experiment

Performance experiment is done with simulation to
check for the quality of the G-Map algorithm. The goal
of the experiment is comparing the quality of G-Map
algorithm with other algorithms in different workloads
and resource contexts. The quality of an algorithm is
evaluated by several factors: the ability of finding fea-
sible solution, the cost of the found solution, the ex-
ecution time. The hardware and software used in the
experiments are rather standard and simple (Pentium
D 2,8Ghz, 1GB RAM, Fedora Core 5, MySQL). The
total simulation program includes about 5000 lines of
C/C++ code.

To compare the quality of all described algorithms
above, we generated 8 different workflows which have
different topologies, different sub-job specifications, dif-
ferent amount of data transfers, different the maximum
number of the potential directly affected sub-jobs, from
1 to 10.

As the difference in the static factors of an RMS
such as OS, CPU speed and so on can be easily filter
by SQL query, we use 20 RMSs with the resource con-
figuration equal or even better than the requirement
of sub-jobs. Those RMSs have already had some ini-
tial workload in their resource reservation profiles and
bandwidth reservation profiles. Those 8 workflows are
mapped to 20 RMSs. We select the late sub-job in each
workflow in a way that the number of the directly af-



fected sub-jobs equals the maximum number of the po-
tential directly affected sub-jobs of that workflow. The
late period is 1 time slot. With each group of the af-
fected sub-jobs, we change the power configuration of

SAC H-Map DBC G-Map

Sjs | Cost | Rt Cost Rt Cost | Rt Cost | Rt

Resource configuration 90-10-0 and Workload configuration 0-10-90

RMS and the k value of affected sub-jobs. Those con- 3 | 503 1 503 | 05 | 503 | 05 | 503 | 05
figurations are presented in Table 1. For example, with 4 | 620 59 62.0 ! 62.0 ! 62.0 !
the first row in the Table 1, the resource configura- 5 | 8.7 | 1211 | 877 ! 87.7 ! 87.7 !
tion 90-0-10 means that there is 90% number of RMS 6 - 784 | 1 | 815 | 1 | 785 L
having CPU performance like requirement, 0% num- 7 - 951 | 1 | 1023 | 1 | 95.1 1
ber of RMS having CPU performance 25% more power 8 - 1135 | 1 | 1135 ] 1 | 1135 1
than requirement, 10% number of RMS having CPU 9 - 110.7 | 1 | 1197 | 1 | 110.7 1
performance 50% more power than requirement. The 10 - - 1446 | 1 | 1506 | 1 | 142.8 1
workload Conﬁguration 90-0-10 means that 90% num- Resource configuration 60-30-0 and Workload configuration 30-60-0
ber of affected sub-jobs having k = 0.5, 0% number of 3 | 50.3 4 50.3 | 0.5 | 50.3 | 0.5 | 50.3 | 0.5
affected sub-jobs having k = 0.25, 10% number of af- 4 | N/S | 60 N/S 1 N/S 1 N/S 1
fected sub-jobs having k = 0. 5 | 87.7 | 1217 | 87.7 | 0.5 | 87.7 1 87.7 1
6 - 81.5 1 92 | 05 | 815 1
Resource configuration | Workload configuration 7 ‘ 95.1 toj1o2s | 1 95.1 0.5
0% | 25% 50% k=0.5 | k=0.25 | k=0 8 - | N/S ] 05 1185 | 05 | 1185 | 1
2 0 10 90 0 10 9 - N/S 1| N/s 1 | N/S 0.5
90 10 0 90 10 0 10 - - N/S | 05| 166.2 | 1 | 153.6 1
60 30 10 60 30 10 Resource configuration 0-10-90 and Workload configuration 90-10-0
60 10 30 60 10 30 3 | 50.3 4 503 | 0.5 | 50.3 | 0.5 | 50.3 | 0.5
30 60 10 30 60 10 4 | NS | 7 N/S 1 N/S | 1 | N/S 1
30 10 60 30 10 60 5 | 877 | 1205 | 87.7 |05 | 87.7 | 1 | 87.7 1
10 30 60 10 30 60 6 - 81.5 1 92 | 05 | 815 1
10 60 30 10 60 30 7 - 95.1 1| 1023 | 1 | 951 1
10 0 90 10 0 90 8 - N/S | 05| N/S | 05| N/S 1
10 | 90 0 10 90 0 9 - NS L NS L NS
0 10 90 0 10 90 10 - - N/S | 05| 166.2 | 1 | 153.6 1
0 90 10 0 90 10

Table 1. Resource configuration scenario and
workload configuration scenario

With each affected sub-job group, with each power
resource configuration scenario, with each workload
configuration scenario, we do mapping with 4 algo-
rithms: G-Map, DBC, H-Map, search all cases. Thus,
with each algorithm, we have total 8¥12*12=1152 run-
ning instances. With each running instance we record
the runtime of the algorithm and the cost of the solu-
tion if it is feasible.

Table 2 presents the detail cost and runtime of each
algorithm for different group of affected sub-jobs in
three extreme experimental scenario. Among 4 algo-
rithms, only the SAC algorithm have great runtime
when the size of the problem increase. The runtime
of this algorithm becomes exponent when number of
affected sub-job greater than or equal 6. Other algo-
rithms have very small runtime. In all cases, the run-

Table 2. Performance result in three extreme
experimental scenario

time of H-Map, DBC, G-Map is not greater than 1 sec-
ond.

From the data in the table, we can see clearly a trend
that if the Grid has a lot of more powerful RMSs than
requirement and the group of affected sub-jobs has a lot
of computing intensive jobs (big k), the chance to have
a feasible solution will be higher and vice versa. Be-
cause of having the greatest runtime, the search all
cases algorithm can find out solution within an ac-
ceptable period when the size of the problem is small.
Therefore, it has the smallest ability to find a feasi-
ble solution. H-Map algorithm also has limited ability
to find a feasible solution. The reason is that H-Map is
designed for mapping the whole workflow but not the
special case like this problem. Thus, there are a lot of
infeasible solutions in the initial configuration set. G-
Map and DBC algorithm have the same ability to find




a feasible solution. Figure 13 presents the total num-
ber of finding out feasible solution in the whole exper-
iment co-relative with each algorithm.

w
=
=

@
=1
&

§ o
g 600
% 1. Search all case

00 —
5 i 2. H-Map
5 /—
2 i 3. DBC
g o 4. G-Map
= 200

100 1 —

]

1 2 3 4
Algorithms

Figure 13. Total number of feasible found solution
by algorithms

From the data of the experiment, we can see the
domination of local search approach to the quality of
the solution. If H-Map or G-Map algorithm can find
a feasible solution, it is high quality solution with low
cost. As search all case and H-Map have smaller abil-
ity to find a feasible solution. We only compare the
quality of the solution between G_Map and DBC algo-
rithms. The experimental data shows that G-Map find
lower cost solution than DBC. The average cost in rel-
ative value between G-Map and DBC is 1 versus 1.05.

5. Conclusion

This paper has presented a method, which performs
an efficient and precise assignment of a group of sub-
jobs in the error recovery of the Grid-based workflow
within SLA context with respect to ensure the start
time of other sub-jobs and cost optimization. In our
work, the distinguished character is that those sub-jobs
of the workflow can be a sequential or parallel program
and a Grid service can handle many sub-jobs at a time.
The performance evaluation showed that the proposed
algorithm creates solution of equal or better quality
than most existed applicable algorithms within a very
short time period. Short execution time and high qual-
ity solution are the decisive factor for the applicability
of the method in real environments, because the er-
ror recovery can be performed efficiently.

References

[1] T.Braun et al. A comparison of eleven static heuristics
for mapping a class of independent tasks onto heteroge-
neous distributed computing systems. Journal of Paral-
lel and Distributed Computing, 61(6):810 — 837, 2001.

[2] R.Buyyaetal. Scheduling parameter sweep applications
on global grids: A deadline and budget constrained cost-
time optimisation algorithm. Software: Practice and Ex-
perience (SPE), Wiley Press, 35(5):491 — 512, 2005.

[3] E.Deelman. Mapping abstract complex workflows onto
grid environments. Journal of Grid Computing, 1(1):25—
39, 2003.

[4] Y. Gao et al. Adaptive grid job scheduling with genetic
algorithms. Future Gener. Comput. Syst., 21(1):151 —
161, 2005.

[5] M. Hovestadt. Scheduling in hpc resource management
systems:queuing vs. planning. Proc. 9th Workshop on
JSSPP at GGF8, LNCS, pages 1-20, 2003.

[6] R. Lovas et al. Support for complex grid applications:
Integrated and portal solutions. Proc. 2nd Furopean
Across Grids Conference, May 2004.

[7] D. Quan et al. Mapping grid job flows to grid resources
within sla context. Proceedings of the European Grid
Conference, (EGC 2005), 3470:1107-1116, 2005.

[8] D.Quanet al. On architecture for an sla-aware job flows
in grid environments. Journal of Interconnection Net-
works, World scientific computing, pages 245—264, 2005.

[9] D.Quanet al. On architecture for an sla-aware job flows
in grid environments. Proceedings of the 19th IEEE In-
ternational Conference on Advanced Information Net-
working and Applications (AINA 2005) , IEEE Press,
pages 287-292, 2005.

[10] D. Quan et al. Sla negotiation protocol for grid-based
workflows. Proceedings of the International Conference
on High Performance Computing and Communications
(HPPC-05), LNCS 3726, pages 505-510, 2005.

[11] D. Quan et al. Error recovery mechanism for grid-based
workflow within sla context. Accepted by International
Journal of High Performance Computing and Network-
ing (IJHPCN), 2006.

[12] D.Quanetal. Mappingheavy communication workflows
onto grid resources within sla context. Proceedings of the
International Conference of High Performance Comput-
ing and Communication (HPCCO06), 2006.

[13] A. Sahai. Automated sla monitoring for web services.
DSOM 2002, LNCS, 2506:28-41, 2002.

[14] D.P.Spooner et al. Local grid scheduling techniques us-
ing performance prediction. IEEE Proc. Computers and
Digital Techniques, pages 87-96, May 2003.

[15] A. Sulistio et al. A time optimization algorithm for
scheduling bag-of-task applications in auction-based
proportional share systems. Proceedings of the 17th In-
ternational Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD 2005, IEEE
CS Press), 2005.



