
A Pricing Information Service for Grid Computing

Alexandru Caracas
∗

IBM Research Labs Zürich
Säumerstrasse 4, 8803
Rüschlikon, Switzerland
xan@zurich.ibm.com

Jörn Altmann
†

International University
Campus 3, 76646

Bruchsal, Germany
jorn.altmann@acm.org

ABSTRACT
This paper addresses two shortcomings that exist in the area
of pricing Grid services in an economic Grid environment.
The first shortcoming is that there are no standards for pric-
ing schemes, caused by a large difference in the units that
are traded (e.g. CPU cycles or virtual clusters) in Grid com-
puting. The second shortcoming is the lack of a model for
managing the pricing of informational elements (e.g. soft-
ware applications) and computational elements (e.g. virtual
machines, which comprise resources such as CPU, memory,
disk space, network bandwidth). This paper presents a pric-
ing service for Grid computing services, which resolves the
shortcomings by introducing a general pricing scheme for in-
formational and computational elements. We describe the
functional requirements, architecture, and the interfaces of
the pricing service. The pricing service allows expressing
the proposed general pricing scheme as an XML document,
which can be linked to service level agreements. Contrary
to other proposals on pricing, the pricing service is sepa-
rated from the functionality of metering, accounting, and
payment. To validate the concept of a pricing information
service, we portray two Utility Computing scenarios.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services—Web-based services; K.4.4 [Computers
and Society]: Electronic Commerce—Payment schemes

General Terms
Management, Architecture

∗This work is based on Alexandru Caracas’ Master Thesis
work at the International University in Germany.
†Jörn Altmann is also affiliated with TEMEP, Seoul Na-
tional University, San56-1, Sillim-Dong, Gwanak-Gu, Seoul
151-742, South Korea.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MGC ’07, November 26, 2007 Newport Beach - CA, USA
Copyright 2007 ACM 1-XXXXX-XXX-X/07/11 ...$5.00.

Keywords
Grid Utility Computing, Pricing Schemes, Pricing Informa-
tion Service, Service Level Agreements

1. INTRODUCTION
Grid computing is an established field, which solves is-

sues related to connecting and using distributed computing
resources. The technology to manage, share, and use com-
puting resources is called Grid middleware. The middleware
offers all the necessary functions such as security [24], data
transfer, communication, and scheduling. There are sev-
eral Grid middleware available such as Globus [17], Grid-
bus [21], UNICORE [29], gLite [16]. The role of managing
and scheduling jobs on computing resources (e.g. computer
clusters and individual PCs) is taken by so-called resource
management systems (RMSs).

Grid economics is a relatively young field that analyzes
the economic principles needed to enable markets of Grid
services [3, 10, 11]. One of the main concerns is to define
the appropriate support needed from the Grid technology or
middleware to perform economic tasks such as accounting,
pricing, economically efficient brokering of various sorts, and
capacity planning. The vision is that the Grid would evolve
towards a new world-wide business platform, which offers
services on-demand and creates new market opportunities[1,
2, 25]. Providers such as Amazon [5] and SUN [27], who
currently have commercial offerings of Grid resources on-
demand, took already the first step to bring the economic
Grid vision closer.

One of the foremost concerns in Grid economics is the unit
being traded and the respective pricing. Currently, Grid
middleware provide no standard units of trade or pricing
scheme and there is a lack of support for managing advanced
pricing information. This paper looks at the next generation
economic Grid and analyzes the units of trade in such an
environment. Based on the analysis, this paper introduces a
general pricing scheme for Grid services and an architecture
for a pricing information service.

This paper is structured as follows. The next section
describes the state of the art in Grid middleware, focus-
ing on economic-related services, especially pricing services.
The units of trade and their respective pricing schemes in
an economic-enhanced Grid environment are introduced in
Section 3. The design and architecture and prototype im-
plementation of the proposed pricing service are discussed in
Section 4. Section 5 illustrates the suitability of the pricing
information service using two Utility Computing scenarios.
The last section concludes with a summary of our work.

2. STATE-OF-THE-ART ECONOMIC GRIDS
This section describes Grid middleware and respective

Grid projects that deal with pricing services. Grid middle-
ware can be roughly classified according to the functionality
provided in terms of economic-related services.

2.1 GRIA
GRIA is a lightweight economic middleware, which en-

ables businesses to use the Grid in a secure, inter-operable,
and flexible manner based on Web Services and SLAs [19].

The GRIA SLA management service accounts for the use
of the following default resources: CPU, current activities,
disk space, and jobs. There is also the possibility to de-
fine customized resource types. However, resources in GRIA
have a single dimension and prices are statically defined in
an SLA. Moreover, there is no dynamic pricing concept and
no history of resource prices [28].

2.2 Globus
Globus Toolkit offers a mature basic Grid middleware

based on open standards and components [17]. The cur-
rent version of the Globus Toolkit (GT4) is used to manage,
share, and use computational resources across corporate, in-
stitutional, and geographic boundaries without sacrificing
local autonomy. The GT4 can be used to build further ser-
vices and high-level Grid frameworks such as Gridbus.

In addition to the basic functionality provided by GT4,
there are 3rd party solutions, e.g. the Swedish Grid Ac-
counting System (SGAS) that provides accounting function-
ality. However, even with the SGAS add-on, the GT4 lacks
economic-aware components such as a proper billing stack
with pricing, charging, and accounting for complex services.
Different brokering components are missing as well as trust,
risk, and SLA management.

2.3 Gridbus
The Gridbus project aims at producing a set of economic

Grid middleware services to support e-science and e-business
applications using the computational Grid service architec-
ture, described in [12].

One of the components of the Gridbus middleware is the
Grid Bank, which provides the infrastructure for Grid ac-
counting and payment [7]. It uses SOAP over Globus Toolkit’s
sockets. The GridBank service lacks support for pricing
schemes that support reservations or dynamic prices. More-
over, computational resources can have only a single dimen-
sion (e.g. CPU cycles).

2.4 EGEE
The EGEE project focuses on maintaining the gLite mid-

dleware and on operating a large computing infrastructure
for the benefit of a vast and diverse research community. The
gLite middleware is a solution that provides a basic frame-
work for building Grid application that leverage distributed
computing and storage resources across the Internet.

With respect to pricing, the EGEE project leverages the
Distributed Grid Accounting System (DGAS) [13], which
provides a Price Authority (PA) that assigns prices to the
subset of Grid resources within its administrative domain
[14]. The prices are kept in a historic database and are as-
signed either manually or using different pricing algorithms.
The default dynamic pricing algorithm increases the price
for jobs with lower waiting times. Moreover, the PA allows

for custom implementations of dynamic pricing algorithms.
The main difference between our pricing service and the

PA is that our approach provides a uniform way to express
bundles of resources. Moreover, our approach allows defin-
ing pricing schemes without the need to write and compile
custom source code. Another difference is that the design of
our pricing service enables the computation of prices based
on historic prices or resource utilization.

2.5 Amazon EC2
Amazon Elastic Compute Cloud (Amazon EC2) is a Web

service that provides resizable compute capacity, designed
to make Web-scale computing easier for developers, while
the related Amazon Simple Storage Service (Amazon S3)
provides storage on demand[4]. The core infrastructure uses
the Xen Linux virtual machine [6].

Amazon EC2 offers on-demand computing resources in the
form of a virtual machine that is accessible via the Internet.
The user has full control of virtual machines equivalent to a
1.7GHz Xeon CPU, 1.75GB RAM, 160GB HDD, 250Mb/s
network at a price of $0.10 per instance-hour (or part hour)
[4]. The pricing scheme offered by Amazon is simplistic but
inflexible, e.g. it is not possible to apply dynamic prices
or to differentiate prices according to virtual machine per-
formance. Moreover, reserving computational power is not
possible as well.

2.6 Sun Grid Compute Utility
Sun offers on-demand Grid services. The Sun Grid Com-

pute Utility enables customers to purchase computing and
storage power as they need it [23]. The Sun Grid follows the
utility computing model offering computing resources at the
price of $1 per CPU hour using the infrastructure of Sun
Grid Engine (SGE) [9].

As in the case of Amazon EC2, the pricing scheme of-
fered is not flexible. There is no price differentiation and
no possibility to make reservations. Moreover, the pricing is
only uni-dimensional and considers only CPU cycles, with
no memory or network traffic specifications.

2.7 Comparison of Grid middleware
Table 1 summarizes the pricing schemes and services avail-

able in the previously described Grid technologies. The table
also illustrates the maturity level of the technologies and the
degree to which they address economics aspects.

Grid Pricing Technology Degree of

Middleware Service Scheme Maturity Economics

GRIA no resource-usage ripe high
SUN Grid no CPU-usage mature low

EC2 no VM-usage novel low
GT4 no none mature none

Gridbus no resource-usage mature high
EGEE yes custom ripe high

Table 1: Grid middleware technologies comparison

The comparison shows that, although SUN Grid Utility
and Amazon EC2 are commercial produces, GRIA and Grid-
bus are the most advanced Grid middleware with respect to
economics functionality. In particular, from the analyzed
Grid Middleware, only EGEE provides a pricing service.

3. PRICING SCHEMES FOR GRID COM-
PUTING

Pricing schemes represent the business interface between
the provider and the customer. They are used to achieve
different objectives such as maximizing profit, maximizing
social welfare, or defining certain schemes of fairness. A pric-
ing scheme presents the unit of trade in a specified time pe-
riod with a certain quality of service for a class of users. The
following subsections describe an approach that can handle
arbitrary pricing functions for Grid resources.

3.1 Units of Trade
Grid services can be information services or hardware ser-

vices. Information services provide access to software and
data, whereas hardware services provide access to hardware
resources. One example of a hardware service is the Amazon
EC2 described in Section 2. An example of data information
services is Google Maps [18] and of software information ser-
vices is Salesforce.com [26]. An information service provider
acquires resources from a hardware service provider to exe-
cute its software offers. The hardware service provider also
sells its services to end-users directly, who want to execute
their private software.

Both services, information and hardware, operate with
different units of trade according to Figure 1. On the one
hand, the information service requires an information ele-
ment (IE), which can range from software, via geographical
coordinates, to maps. On the other hand, the hardware ser-
vice requires a computational element (CE), which can be
any hardware resource (e.g. CPU). Since a client of a hard-
ware service requires not only CPU cycles but also main
memory, network traffic, and persistent storage, it makes
sense to trade a bundle of these resources. A bundle can con-
sist of a set of CPUs, main memory, persistent storage, and
network capacity. These bundles of resources will also be
referred to as computational elements (CE). The advantage
of using this bundles (i.e. high-level CEs) is that they can be
understood easier by clients of hardware service providers,
since CEs resemble a product familiar to the client (e.g. a
virtual machine comprising a 1.3GHz P4 PC with 1GB main
memory). Therefore, a CE represents a level of abstraction
from the actual resources. The next natural abstraction level
for a CE would comprise an entire cluster of servers, which
is build using virtualization software [15]. This extra level
of abstraction aims to improve the management and user
friendliness of large systems.

3.2 General Pricing Scheme
A general pricing scheme is a quadruple (Q, T, C, U) of the

quantity Q, the time T , the quality class C, and the user pro-
file U . The quantity Q represents a tuple QL, QM , where
QL specifies a limit for the quantity. QM is the quantity
consumed above the limit QL. The quantity is the number
of units of trade (i.e. either CE or IE), e.g. the number
of transactions performed (e.g. per-transaction pricing), the
number of resources consumed (e.g. per-byte pricing), or
the duration of access to a unit of trade (e.g. per-time pric-
ing). The time T is used for controlling reservations and
is also expressed as a vector variable composed of: current
time tc, start time ts, and duration td. The quality class C
of services allows to specify different quality types. The last
variable, the user profile U , represents history information
of the user’s consumption, the valuation of the user’s im-

Figure 1: Markets for units of trade

portance to the business, or special promotions. To create
a pricing scheme, one specifies the unit of trade and the pa-
rameters that determine the price variation. For example, a
unit of trade for a hardware service could be defined as one
PC (i.e. CE), which can be accessed Now at Gold quality
for users belonging to the group Consulting.

The general pricing scheme allows service providers to de-
fine pricing variations as functions for any IEs and/or CEs,
where an IE or CE can be a bundle of individual resources.

3.3 Example of Existing Pricing Schemes
In the following, we present a few examples of pricing

schemes, which can be found in literature about Grid eco-
nomics or in existing Grid market offers.

Usage-based pricing: Under usage-based pricing, the
fee is based on the actual resource consumption of a CE
or IE. For example, the fee for using a CPU (i.e. CE) is
calculated by multiplying the price per compute cycle with
the number of compute cycles that the CE has been used.
Expressed in the general pricing scheme, it means that QL

is zero and QM is the actual quantity consumed. If the
considered quantity unit is time-based with a time period of
a month or longer, the pricing is called “flat-rate pricing”.

Amazon EC2 (Elastic Compute Cloud), which offers a
CE equivalent to a server with 1.7GHz Xeon CPU, 1.75GB
RAM, 160GB HDD, 250Mb/s network, is priced at 0.10$ per
instance-hour [5]. A similar approach is taken by the SUN
Grid, which offers compute cycles at 1$ / per CPU-hour. In
contrast to Amazon, SUN does not specify the equivalent of
the hardware resources they provide.

The usage-based pricing plan is also applied to software
applications. In this case, the time spent working with the
application or the number of transactions performed with
the application is considered.

Progressive Co-design: Seller and buyer try to convene
on a pricing plan. The seller announces a price pair (p1,
p2), where p1 < p2. Subsequently, the buyer commits a
consumption level QL for a fixed fee p1QL and might buy
additional units QM at p2 if needed. The buyer chooses QL

to maximize his surplus [8]. In this pricing scheme, the user
specifies the tuple Q of the general pricing scheme.

Waiting-time-based pricing: The resource provider
charges higher prices p per computer cycle for lower job
queue waiting times . The goal of this pricing scheme is to

minimize queue waiting time through economic scheduling.
This pricing is used within EGEE Price Authority [14]. The
unit of trade is differentiated via quality parameter C within
the Quadruple (Q, T, C, U) of the general pricing scheme.

4. DESIGN AND ARCHITECTURE OF A
PRICING INFORMATION SERVICE

The design and architecture of a pricing service are based
on the knowledge described within the previous two sections.
The two main design goals are to manage informational and
computational elements, and to manage the general pricing
scheme described above, while keeping track of price history.
The proposed pricing service is part of the general economic-
enhanced Grid architecture developed within the GridEcon
project [22].

(a) (b)

Figure 2: Price variance: quantity(a) and time(b).

We use two pricing functions to illustrate how the general
pricing scheme is handled by the pricing service (see Fig-
ure 2). Figure 2(a) illustrates a pricing function where the
price of the offered CE starts at 9 Euro and increases linearly
to 10 Euro for the first 10 units consumed. Subsequently,
the price per unit remains constant at 11 Euro for additional
units consumed. Figure 2(b) shows a pricing function where
the price of the CE increases asymptotically over time until
it reaches 11 Euro.

Figure 3 shows the elaborate version of the general pricing
scheme together with those two pricing functions. The pric-
ing scheme is encoded using XML. The elaborated version
includes constraints for hardware resource and price varia-
tion with respect to users and quality of service class. The
example shows that the price for the user with an ID of 123
will get a price reduction of 2 Euro. The quality of service
class Gold will cost 15 percent extra.

4.1 Functional Requirements
The pricing service provides the following main functions:

• Manage pricing schemes: create, edit, delete pricing
schemes, and provide default schemes for commonly
used bundles of resources (e.g. virtual machines).

• Set prices for CEs or IEs. It calculates the market
price for a particular resource based on monitoring in-
formation (how many resources are utilized/free), past
accounting information, and past prices. One example
of price setting is a negotiation process.

• Keep price history of CEs and IEs. The history can be
used to analyze trends. It may also serve as additional
input to the price setting module.

Figure 3: Price scheme editor screenshoot

• Answer queries. E.g.: What CE contains resource A
and B? What pricing schemes fulfill certain minimum
individual resource constraints?

• Merge pricing schemes for several CEs or IEs into a
common pricing scheme.

4.2 Architecture
Figure 4 shows the architecture of the pricing service,

which has the following five main functional components:
Pricing Scheme Manager, History Keeper, Price Setter, Query
Processor and Merger. The pricing service interacts with
the following general Grid services: Resource Provider (Re-
source Broker), Market, Billing and Charging, Monitoring,
Accounting, and SLA Service. The Resource Provider could
also be directly represented through an RMS.

The Pricing Scheme Manager acts as the gatekeeper
for the interface with the other services and also as an event
handler for the communication among the price service mod-
ules. The manager supports the creation, modification and
deletion of of pricing schemes. Actual price values and func-
tions in the scheme can be set manually, or dynamically
through the Price Setter module.

The Price Setter takes input from various sources such
as availability and current usage of CEs to compute and set
the actual prices for CEs.

The History Keeper keeps track of prices for CEs. This
component records resource utilization. The price and re-
source utilization history is feed back into the Price Setter
module.

The Query Processor answers queries related to pricing
schemes and resources.

The Merger is able to unify several pricing schemes for
several CEs or IEs into a single pricing scheme with a new
respective pricing scheme.

The interfaces to interact with the pricing service are
the following. We assume that individual resources can be
uniquely identified through an URI:

• addPricingScheme(PricingScheme obj). It is used by the ser-
vice administrator to add a new pricing scheme for a resource.
The action is performed by the Pricing Scheme Manager.

• deletePricingScheme(PricingScheme obj). It is used by the

Figure 4: Pricing information service architecture

service administrator to delete an existing pricing scheme. The
action is performed by the Pricing Scheme Manager.

• getPricingScheme(String sqlLikeQuery). It retrieves an exist-
ing pricing scheme based on given selection criteria. The action
is performed by the Query Processor. This action can be used
by any service (i.e. a client or the administrator of the service).

• setCurrentPrice(String resourceUri, String, sourceUri, dou-
ble priceValue). It stores a price value for a current resource.
The action is performed by the History Keeper. The function
is called by a Market or Resource Broker service.

• getCurrentPrice(String resourceUri). This function can be
called by the client, service administrator or any other service
and is performed by the Query Processor with data from the
History Keeper.

• setCurrentUtilization(String resourceUri, Utilization util). The
function is called by the Monitoring service and is performed
by the History Keeper.

• getPriceHistory(String resourceUri, DateTime from, Date-
Time to). The function can be called by the client, service ad-
ministrator or any other service and is performed by the Query
Processor with data from the History Keeper.

• getUtilizationHistory(String resourceUri, DateTime from, Date-
Time to). This function can be called by the client, service ad-
ministrator or any other service and is performed by the Query
Processor with data from the History Keeper.

• mergePricingSchemes(PricingScheme[] objs). It merges sev-
eral pricing scheme into a unified pricing scheme. The function
is called by the service administrator and is performed by the
Merger.

4.3 Design
The pricing service is integrated as a prototype into the

GRIA middleware. The service is implemented in Java and
deployed as a Web Service in Tomcat using the framework
provided by the GRIA middleware. The pricing service pro-
vides the price values for CEs and IEs to the SLA service in
GRIA, which then charges the user account.

Figure 5 denotes the integration of the pricing service
within the GRIA middleware together with the occurring
interactions. The picture is an extension of the one provided
in [20]. In step 0, the administrator of the service provider
site designs and publishes pricing schemes and SLAs. To
use a service, the client will have to: 1, obtain a trading
account and 2, obtain an SLA. When the client wants to
obtain an SLA for a given resource, the SLA service will
query the pricing service to obtain a list of pricing schemes

Figure 5: Pricing information service for GRIA

for that particular CE or IE. The client signs an SLA for the
respective CE or IE, which contains a link to an appropriate
pricing scheme. The price values in the pricing schemes are
set by the pricing service on the provider side.

The pricing information service decouples the functional-
ity of setting prices and defining pricing schemes from the
process of defining and signing SLAs. This feature allows
to dynamically set prices for CEs and IEs based on market
inputs and other factors in a rapid changing business envi-
ronment, while keeping the existing SLA. The service offers
a comprehensive mean to define innovative pricing schemes
for CEs and IEs.

5. VALIDATION
We validate the expediency of the pricing information ser-

vice by presenting two Utility Computing scenarios which
employ the service. The first scenario looks at the broad
picture for Grid Utility Computing. The second scenario
focuses on resource providers and shows that the flexibility
of the general pricing scheme.

5.1 Scenario: Utility Computing
Utility Computing provides on-demand resources to con-

sumers. However, different service providers offer different
types of resources, priced and bundled in different ways, us-
ing heterogeneous Grid middleware technologies.

The proposed price information service allows a uniform
way of expressing prices across heterogeneous Grid middle-
ware by means of CEs or CIs bundles. This way of express-
ing prices allows for automatic processing of price informa-
tion for example by a Grid broker service. The automatic
processing of price information enables integration of the
different Grid middleware into a global Utility Computing
platform transparent to service consumers.

5.2 Scenario: Resource Utilization
Current SLAs only allow defining pricing functions linked

to the resource usage of a user. The proposed pricing infor-
mation service, however, allows prices to change dynamically
based on various inputs: e.g., resource utilization informa-
tion provided by the RMS, market indicators, or historic

data. Moreover, the proposed pricing scheme is general in
the sense that it allows expressing arbitrary pricing func-
tions. Being able to model generic pricing functions makes
it possible to implement dynamic prices, e.g. prices which
depend on the resource utilization by all consumers. The
resource provider might want to increase prices if a certain
utilization threshold is reached.

6. CONCLUSION
This paper analyzed economic-related issues, in particu-

lar pricing issues, present in today’s Grid computing tech-
nologies. Based on those results, the paper introduced a
general pricing scheme for informational and computational
elements. The introduced general pricing scheme supports
arbitrary pricing functions and allows for an uniform expres-
sion of prices across heterogeneous Grid middleware.

Another contribution of this paper is the introduction of
an extensible pricing information service, which separates
the functionality of setting, managing, and keeping track
prices and pricing schemes from the definition and signing
of service level agreements. The service has an extensible
design and provides interfaces, which allow automatic pro-
cessing of price information. The service is separated from
the functionality of other Grid services such as metering,
accounting, and payment.

A pricing service with features such as a generalized pric-
ing scheme, uniform expression of units of trade, and sep-
aration from other billing functionality can be applied in
many Grid middleware and in different Utility Computing
scenarios. The proposed pricing service is the first step to
enable trading of complex Grid computing services in an
economic-aware Grid environment.

7. REFERENCES
[1] J. Altmann, C. Courcoubetis, J. Darlington, and

J. Cohen. GridEcon - The Economic-Enhanced
Next-Generation Internet. In GECON 2007,
Workshop on Grid Economics and Business Models,
Rennes, France, August 2007. Springer LNCS.

[2] J. Altmann, M. Ion, and A. B. Bany Mohammed.
Taxonomy of grid business models. In GECON 2007,
Workshop on Grid Economics and Business Models,
Rennes, France, August 2007. Springer LNCS.

[3] J. Altmann and D.J. Veit. Grid Economics and
Business Models. LNCS 4685, ISBN 0302-9743.
Springer-Verlag, Berlin, Germany, August 2007.

[4] Amazon. Amazon EC2 Developer Guide, 2006.

[5] Amazon EC2. http://aws.amazon.com/ec2.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM Press.

[7] A. Barmouta and R. Buyya. GridBank: A Grid
Accounting Services Architecture (GASA) for
Distributed Systems Sharing and Integration. In
IPDPS ’03: Proceedings of the 17th International
Symposium on Parallel and Distributed Processing,
page 245.1, Washington, DC, USA, 2003. IEEE
Computer Society.

[8] H.K. Bhargava and A. Bagh. Tariff Structures for
Pricing Grid Computing Resources. In Gecon 2006,
Singapore, 2006.

[9] P. T. Bulhoes, C. Byun, R. Castrapel, and
O. Hassaine. N1 grid engine 6 features and
capabilities. In SUPerG, the Sun Users Performance
Group, Phoenix, Arizona, May 2004.

[10] R. Buyya, D. Abramson, and J. Giddy. A case for
economy grid architecture for service oriented grid
computing. In IPDPS ’01: Proceedings of the 10th
Heterogeneous Computing Workshop (HCW), page
20083.1, Washington, DC, USA, 2001. IEEE
Computer Society.

[11] R. Buyya, D. Abramson, H. Stockinger, and J. Giddy.
Economic models for resource management and
scheduling in grid computing. Concurrency and
Computation: Practice and Experience (CCPE),
Volume 14:1507–1542, November-December 2002.

[12] R. Buyya and S. Venugopal. The Gridbus toolkit for
service oriented grid and utility computing: An
overview and status report. In 1st IEEE Int.
Workshop Grid Economics and Business Models
(GECON), 2004.

[13] DGAS. http://www.to.infn.it/grid/accounting/.

[14] EGEE DGAS: Price Authority. https://edms.cern.
ch/file/571271/1/EGEE-DGAS-PA-Guide.pdf.

[15] I. Foster, T. Freeman, K. Keahy, D. Scheftner,
B. Sotomayer, and X. Zhang. Virtual clusters for grid
communities. In CCGRID ’06: Proceedings of the
Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’06), pages
513–520, Washington, DC, USA, 2006. IEEE
Computer Society.

[16] gLite. http://glite.web.cern.ch/glite/.

[17] Gloubs toolkit. http://www.globus.org/toolkit.

[18] Google Maps. http://maps.google.com.

[19] GRIA. http://www.gria.org.

[20] GRIA Developers Kit Documentation.

[21] Gridbus. http://www.gridbus.org.

[22] GridEcon Consortium. D3.1 Grid Component
Specification Report, 2007.

[23] Sun Micosystems Inc. Sun Grid Compute Utility:
Developer’s Guide, 2006.

[24] N.V. Kanaskar, U. Topaloglu, and C. Bayrak. Globus
security model for grid environment. SIGSOFT Softw.
Eng. Notes, 30(6):1–9, 2005.

[25] D. M. Quan and J. Altmann. The impact of business
models on mapping policies for SLA-based workflows
with light communication. In HPCC 2007, High
Performance Computation Conference, Houston, USA,
September 2007.

[26] Salesforce.com. http://www.salesforce.com.

[27] Sun Grid Compute Utility. http://sun.com/sungrid.

[28] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska.
Experiences with GRIA: Industrial applications on a
web services grid. In E-SCIENCE ’05: Proceedings of
the First International Conference on e-Science and
Grid Computing, pages 98–105, Washington, DC,
USA, 2005. IEEE Computer Society.

[29] UNICORE. http://www.unicore.eu.
* All Web References have been accessed on August 2007.

