
 
Abstract: Accurate channel information is indispensable 
for coherent reception of OFDM signal. Although a Wiener-
type channel estimation filter (CEF) is known optimum, it is 
not easily employable due to large implementation 
complexity. In practice, a moving average (MA)-type CEF 
is often employed, but it may not provide robust 
performance to the variation of channel condition. In this 
paper, we propose a hybrid CEF that takes advantages of 
both the Wiener and MA CEF, by alternatively employing 
the CEF according to the channel condition. Simulation 
results show that the proposed hybrid CEF scheme provides 
near optimum performance, while significantly reducing 
the implementation complexity compared to the long tap 
Wiener CEF. 
 
Keywords: channel estimation, OFDM, Wiener, moving 
average. 
 

I. INTRODUCTION 

Coherent detection is often employed to improve the 
detection performance of orthogonal frequency division-
multiplexing (OFDM) receiver. It is well acknowledged that 
the detection performance directly depends on the accuracy of 
channel information. In the OFDM system, predetermined pilot 
symbols scattered in time and frequency domain are often used 
to aid the estimation of time-variant and frequency-selective 
channel characteristics in the receiver [1-3].  

It is known that two-dimensional (2-D) Wiener-type channel 
estimation filter (CEF) is optimum since it minimizes the mean 
square error (MSE) of the channel estimate [2]. However, it is 
not easily employable due to large implementation complexity. 
To reduce the implementation complexity, the use of two 1-D 
Wiener filters was considered at the expense of small 
performance loss [3]. However, it is still too complex to be 
employed unless the tap size of Wiener filters is small. As a 
result, a simple interpolator filter such as linear, Lagrange and 
Spline interpolation scheme is often employed for the CEF [4]. 
However, since most of these filters have fixed parameters 
regardless of the channel condition, they experience severe 
performance degradation under certain channel condition [5]. 

Recently, a channel estimation scheme composed of a linear 

interpolator and a moving average (MA) filter, called a 
cascaded MA, has been proposed as the CEF for simplicity of 
implementation [6]. In this scheme, the received signal is 
interpolated using a linear interpolator to obtain instantaneous 
channel impulse response (CIR) and then low-pass filtered 
using an adaptive MA filter to suppress the excess noise. This 
scheme provides good performance in nominal channel 
condition (e.g., low Doppler frequency and delay spread). 
However, it may suffer from performance degradation in severe 
channel condition (e.g., high Doppler frequency and delay 
spread) due to the properties of the MA filter. In this paper, we 
propose a hybrid CEF that takes advantages of both the Wiener 
and cascaded MA CEF, by alternatively employing these filters 
according to the channel condition. To avoid performance 
degradation in bad channel condition, we employ the Wiener 
CEF that is realizable with the use of a small number of taps, 
while providing near optimum performance. In normal channel 
condition, we employ the cascaded MA CEF.  

Following Introduction, Section II describes the OFDM 
system and channel model. After a brief introduction of the 
cascaded 2-D MA CEF, we propose the hybrid CEF and 
evaluate the performance in Section III. Finally, conclusions are 
summarized in Section IV. 

II. SYSTEM AND CHANNEL MODEL 

Consider an OFDM transmitter, where the K  subcarrier 
symbols at the n-th symbol time, { [ , ]; 0,1,2, ,X n k k =  

1}K − , are converted into a time domain signal using an 
inverse fast Fourier transform (FFT). A cyclic prefix (CP) is 
inserted to preserve the orthogonality between the subcarriers 
and to eliminate the interference between the adjacent OFDM 
symbols. We assume that the pilot symbol is regularly inserted 
in a rectangular shape (i.e., apart by td  and fd  symbols in 
the time and frequency grid, respectively).  

We assume the transmission over a wireless channel whose 
CIR is represented as 
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where L is the number of multipaths, )(⋅δ  is Kronecker delta 
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function, lτ  and )(thl  are the delay and complex-valued 
CIR at time t of the l-th path, respectively. We assume that 

)(thl  has the same normalized correlation function ( )tr t  
for all l. Then, the time-domain correlation of the l-th path CIR 
can be represented as [3] 

 * 2( ) { ( ) ( )} ( )l l l l tr t E h t t h t r tσ= + =  (2) 

where }{XE  denotes the expectation of X , * denotes the 
complex conjugate and 2

lσ  denotes the average power of the 
l-th path. The frequency response of the CIR at time t can be 
written by 
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Assuming )(thl  is statistically independent for each path with 
the normalized average path power (i.e., 
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correlation function of the frequency response can be 
represented as [3] 

*( , ) { ( , ) ( , )} ( ) ( )H t fr t f E H t t f f H t f r t r f= + + =  (4) 

where 
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symbol period sT  and subcarrier spacing cf , the correlation 
function can be represented as [ , ] [ ] [ ]H t fr n k r n r k=  where 

[ ] ( )t t sr n r nT=  and [ ] ( )f f cr k r k f= . 
In the receiver, the CP is removed before the FFT process. 

Assuming ideal synchronization at the receiver, the received 
symbol of the k-th subcarrier at the n-th symbol time can be 
represented by 

 [ , ] [ , ] [ , ] [ , ]Y n k X n k H n k Z n k= +  (5) 

where [ , ]H n k  is the frequency response of the channel at the 
k-th subcarrier and the n-th symbol time, and ],[ knZ  is the 
background noise plus interference term, which can be 
approximated as zero mean additive white Gaussian noise 
(AWGN) with variance 2

Zσ . 

III. PROPOSED HYBRID CEF  

The CIR can be estimated using the received pilot symbols 
as  

[ , ] [ , ]/ [ , ] [ , ] [ , ]p p p p p p p p p pH n k Y n k X n k H n k Z n k= = +  (6) 

where pn  and pk  denote the symbol and subcarrier index of 
the pilot symbol, respectively, and [ , ]p pZ n k  denotes the 
noise term. Assuming that [ , ] 1p pX n k =  without the loss of 
generality, [ , ]p pZ n k  can be assumed zero mean AWGN 
with variance 2

Zσ .  
In order to obtain the CIR at the n-th symbol time and the k-

th subcarrier, we exploit adjacent wN  instantaneous CIRs at 
the pilot symbol for Wiener filtering as 

 ˆ [ , ] [ , ]H
w wH n k n k= Hα  (7) 

where  

 0 0 1 1 1 1[ [ , ] [ , ] [ , ]]
w w

T
N NH n k H n k H n k− −=H . (8) 

and [ , ]w n kα  is the coefficient vector of the Wiener CEF. The 
optimum coefficient of the Wiener CEF can be represented as 
[2] 

 1[ , ] [ , ]H H
w n k n k −=α θ Φ  (9) 

where the superscript H denoted the complex transpose, 
[ ]HE= HHΦ  is the ( )w wN N×  auto-covariance matrix and 

*[ , ] [ [ , ]]n k E H n k= Hθ  is the ( 1)wN ×  cross-covariance 
vector.  

As mentioned before, however, the Wiener CEF is not often 
employed due to its implementation complexity since it needs 

wN  multiplications per symbol and matrix inversion of an 
( wN x wN ) matrix. Thus, it may not be practical unless the 
number of the tap size wN  is small. To alleviate this problem, 
the CEF can be designed by cascading an MA filter with a 
simple linear interpolator [6]. We briefly introduce this scheme 
in the following.  

In order to obtain the CIR corresponding to the data symbol, 
the CIR estimated from the pilot symbol is linearly interpolated 
in the frequency domain and then in the time domain as  
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Note that linear interpolation needs single multiplication.  
The CIR estimated using the simple linear interpolator is 

further processed to reduce the excessive noise by using a 2-D 
MA filter with ( 2 1)t tN M= +  and ( 2 1)f fN M= +  taps in 
the time and frequency domain as [6] 
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Note that the MA CEF only needs single multiplication.  
Denote the Doppler spectrum and power delay profile of the 

channel by 
1 1( )HS w  and 

2 2( )HS w , respectively. They 
correspond to the Fourier transforms of the time and frequency 
domain correlation functions, ( )tr t  and ( )fr f , 
respectively. Then, the optimum tap size ˆ

tN  and ˆ
fN  can be 

determined by [6] 
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where ( )
1

nw  and ( )
2

nw  are respectively the n-th order moment 
of the Doppler spectrum and power delay profile defined as 
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The moment information indicates how fast the channel varies 
in the time and frequency domains. It can be seen that the 
optimum 2-D MA CEF can be designed considering the signal 
to interference ratio (SIR) 21 zσ , pilot spacing, and the 
second- and fourth-order moment of the Doppler spectrum and 
power delay profile of the channel. It can also be seen that the 
lower SIR, the larger number of taps is required to suppress the 
interference. As the moments of 1w  or 2w  decrease (i.e., the 
channel has low Doppler or delay spread), the optimum tap size 
increases, and vice versa. Note that the SIR and moment 
information can accurately be estimated using the 
autocorrelation property without difficulty [7]. 

To investigate the performance of the cascaded MA CEF, 
Fig. 1 depicts the MSE in nominal and severe channel 
condition, where rmsτ  and df  denote the root mean squared 
(rms) delay spread and maximum Doppler frequency, 
respectively. Optimum tap size of the cascaded MA CEF 
designed by (12) is also shown in Fig. 1. The simulation 
condition is summarized in Table 1. For performance 
comparison, we consider the use of a simple linear interpolator 
and a (21x21)-tap 2-D Wiener CEF (we represent this as “Long 
tap Wiener” later). It can be seen that the cascaded MA CEF 
provides good performance at low SIR and nominal channel 
condition. However, as the SIR increases and/or the channel 
condition becomes worse, the performance gap between the 
cascaded MA and Wiener CEF increases. This is mainly due to 
that the Wiener CEF still uses a large number of taps with 
optimized tap coefficients, while the MA CEF uses a small 
number of taps.  

In order to provide good performance, the Wiener CEF 
needs a large number of filter taps when the channel is slowly 
time-variant and less frequency-selective. On the other hand, 
when the channel is fast time-variant and frequency-selective, it 
does not require a large number of filter taps, making it easily 
implementable (we represent this as ‘Short tap Wiener’ 
afterwards). Meanwhile, the cascaded MA CEF provides good 
performance especially in nominal channel condition without 
large implementation complexity. Consequently, if we employ 
these two CEFs alternatively, we can obtain good performance 
in a wide range of channel condition. 

Fig. 2 depicts the MSE performance of ( )5 5× -tap Wiener 
(short tap Wiener) and the cascaded MA CEF according to df  
for given rmsτ . It can be seen that the use of the cascaded MA 
CEF is better than the use of short tap Wiener CEF at low df  
and rmsτ , and vice versa. Similar tendency can also be seen 
when rmsτ  varies for given df .  

For proper operation of the proposed hybrid scheme, it is 
necessary to choose one of these two filters in response to the 
channel condition. Since the channel estimation performance is 
directly related to the MSE, it is reasonable to select the CEF 
that has lower MSE. It was shown that the MSE of the cascaded 
MA CEF is [6] 
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The MSE of the Wiener CEF is [2] 
2
, 1 [ , ] [ , ] [ , ] [ , ] [ , ] [ , ]H H H

e w w w wn k n k n k n k n k n kσ = − − +θ α α θ α Φα   (16) 

It was shown that the optimum tap size of the MA CEF, the 
coefficient of the Wiener CEF and moment information can 
easily be estimated from the autocorrelation of received pilot 
signals [7]. Thus, the MSE can easily be estimated, making the 
selection of the CEF practical without any difficulty.  

To evaluate the system performance of the proposed scheme, 
Fig. 3 depicts the packet error rate (PER) performance in 
response to the variation of df  for given rmsτ . It can be seen 
that proposed scheme provides near optimum receiver 
performance in a wide rage of df  by switching the CEF in 
response to df . Although we have shown the performance 
according to df , similar results can be obtained with the 
variation of rmsτ .  

As another measure, the computational complexity is 
compared in Table 2. Here, we do not consider the complexity 
required to calculate the SIR and correlation since it is 
commonly necessary for all the CEFs. It can be seen that the 
proposed scheme can significantly reduce the implementation 
complexity compared to long tap 2-D Wiener CEF and two 1-D 
Wiener CEFs. Thus, the proposed scheme is quite practical 
considering the implementation complexity and receiver 
performance. 

IV. CONCLUSIONS 

In this paper, we have proposed a hybrid CEF that employs a 
cascaded MA CEF or Wiener CEF with a small tap size in 
response to the variation of the channel condition. When the 
channel is in nominal condition, the cascaded MA CEF is 
effectively employed considering the computational complexity. 
On the other hand, when the channel condition becomes worse, 
the Wiener CEF with a small tap size is employed without 
significant performance degradation. Simulation results show 
that the proposed hybrid scheme can provide good receiver 
performance in a wide range of channel condition, while 



significantly reducing the implementation complexity 
compared to the use of long-tap Wiener CEF. 
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Table 1. Simulation condition. 

Parameters Values 
Total bandwidth 100 MHz 
Symbol duration 20.48 μs (+5 μs: guard interval) 

Number of subcarriers 2048 

Packet size  
Number of symbol=8,  

number of subcarrier=64 
Pilot occupation 6.25 % ( td =8, fd =4) 

Carrier frequency 5.8 GHz 
Channel coding Zig-Zag coding (code rate 1/2) 

Channel Rayleigh (Classic spectrum) 
Power delay profile Exponential 

Hopping  Equi-distant frequency hopping 
 

Table 2. Computational complexity. 

Type  
(filter tap size) 

Multiplications 
/symbol 

Matrix 
inverse 

2-D Wiener  (21 by 21) 441 (
t fN N ) 441 by 441

Two 1-D Wiener  
(21 by 21) 

23.625 
(

t f tN N d+ ) 21 by 21 

Short tap two 
1-D Wiener 

(5 by 5) 
5.625 ( t f tN N d+ ) 5 by 5 

Hybrid 
scheme 

Cascaded MA 
2.969 

( 21 ( 1) ( )t t fd d d+ − ) None 
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Fig. 1. MSE of the cascaded MA CEF under various channel 

conditions  
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Fig. 2. MSE of the cascaded MA and short tap Wiener CEF 
when df  varies 
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Fig. 3. PER performance of the hybrid scheme when 
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