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A highly efficient wide-band-gap host material for blue
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We report on an efficient wide-band-gap host material for blue electrophosphorescence devices,
namely, 1,2-trans-di-9-carbazolylcyclobutane (DCz). Photophysical studies show that lower-energy
excimer formation between the carbazole units can be efficiently suppressed in a DCz film, thus
maintaining its high triplet-state energy and inducing an exothermic energy transfer from DCz to
iridium(IIT)bis[ (4,6-difluorophenyl)-pyridinato-N, C*' Jpicolinate ~ (FIrpic). Electrophosphorescent
devices comprising a Flrpic:DCz emitting layer exhibit a superior performance with a maximum
external quantum efficiency of 9.8%, a maximum luminance efficiency of 21.5 cd/A, and a
maximum power efficiency of 15.0 Im/W at 0.01 mA/cm?. © 2007 American Institute of Physics.

[DOL: 10.1063/1.2821116]

Phosphorescent emitters, such as Ir(IT), Pt(IT), or Eu(III)
complexes, are appropriate for obtaining highly efficient or-
ganic light-emitting devices (OLEDs) because they enable an
effective use of both triplet and singlet excitons, thus provid-
ing a 100% internal quantum efficiency for light emission.' ™
In designing phosphorescent OLEDs, the use of a host ma-
terial with a higher triplet-excited-state (‘1) energy than that
of a phosphorescent dopant is essential to ensure exothermic
energy transfer. However, until now it has been very difficult
to synthesize a suitable host material for blue phosphorescent
dopants, because achieving a 'T energy higher than that of
the blue phosphors is not a simple task. The reason for this is
that aromatic structures are inevitably required for the host
material (to ensure a good charge-carrier mobility and ther-
mal stability), but they unfavorably lower the 'T energy.5

Carbazole is known to be a potential host material for
blue electrophosphorescence because of its wide-band-gap
energy, high 'T energy, and good charge-transporting
ability.ﬁf9 Particularly, arylamine-type host materials contain-
ing two carbazole groups have shown appropriately high 'T
levels; for example, N,N’-dicarbazolyl-3,5-benzene (mCP)
exhibits a 'T energy of 290eV (Ref. 6) and
4,4’ -bis(9-carbazolyl)-2-2'-dimethyl-biphenyl shows a 'T
energy of 3.0 eV.” However, the planar and rigid arrange-
ment of the carbazole units in these compounds leads to the
formation of excimers in the concentrated film state,lo_12
which results in detrimental charge trapping and the appear-
ance of low-'T-energy sites, thus eventually limiting the de-
vice efficiency and long-term operation stability.5 Here, we
propose a host material comprising a 1,2-trans-configuration
of carbazoles locked in a cyclobutane ring for the suppressed
excimer formation. This trans configuration prevents the in-
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tramolecular formation of excimers between adjacent carba-
zoles. Furthermore, its sterically bulky nature also prevents
intermolecular excimer formation—a fact that has been thor-
oughly investigated for photoconductors.13 From this host
material, we expect a reduced concentration of excimer-
forming sites, thus giving a higher 'T energy and a better
OLED performance. In this letter, we demonstrate the occur-
rence of efficient blue electrophosphorescence provided by
effective exothermic energy transfer from the 1,2-trans-di-9-
carbazolylcyclobutane (DCz) host to the blue phosphores-
cent iridium complex, iridium(IIT)bis[(4,6-difluorophenyl)-
pyridinato-N, C?' Jpicolinate (FIrpic). The obtained host
material exhibited effective suppression of excimer forma-
tion, thereby providing a higher 'T level (as identified by
transient photoluminescence). The OLED performance of the
FlIrpic:DCz device was also found to be superior to that of a
reference device fabricated using mCP as the host material.

Figure 1(a) shows the molecular structure of DCz, which
was readily synthesized via the photochemical cyclodimer-
ization of N-vinylcarbazole [acetone solution (~0.1 g/ml)
under irradiation at 365 nm (4 W)1],'*'° with a high conver-
sion (80% after workup).

At room temperature, the DCz film—evaporated on a
quartz substrate—showed a characteristic carbazole mono-
meric emission (N,,,,=353 nm) with a significantly sup-
pressed excimer fluorescence [which commonly appears at
N>420 nm, see Fig. 1(a)]. In addition, the fluorescence
spectrum of DCz overlaps very well with the metal-to-ligand
charge-transfer absorption band of Flrpic so that an efficient
Forster energy transfer is expected to take place from DCz to
Flrpic. We observed a high-energy 'T" emission band in the
low-temperature (12 K) time-resolved photoluminescence
spectra [see Fig. 1(a)], which suggests a facile It energy
transfer. Two sharp emission peaks (at 371 and 389 nm),
which were assigned to a delayed fluorescence, decayed rap-
idly, whereas a broad emission signal (at around 421 nm,
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FIG. 1. Photophysical properties of emissive materials. (a) Molecular struc-
tures of Flrpic and DCz. Absorption (closed squares) and emission (open
triangles) spectra of a 3 wt% Flrpic-doped polymethylmethacrylate
(PMMA) film on a glass substrate, and fluorescence (open circles) and phos-
phorescence (closed circles) spectra of a DCz film (100 nm). (b) Phospho-
rescence decay of 6 wt % Flrpic-doped CBP (diamonds) and DCz (circles)
films.

2.95 eV) was assigned to a triplet emission of DCz. Hence,
considering the 'T energy of Flrpic (2.65 V), an exothermic
energy transfer can be expected from DCz to Flrpic. To in-
vestigate this energy transfer, we measured the transient
photoluminescence by means of the direct excitation of a
thermally evaporated DCz film (50 nm) doped with 6 wt %
Flrpic. 4,4’-N,N’-dicarbazole-biphenyl (CBP) and mCP
films doped with FlIrpic (6 wt %) were also prepared
and used as controls. As shown in Fig. 1(b), the
phosphorescence-decay profile of Flrpic in a CBP host can
be deconvoluted into two components, namely, a fast-decay
component (of 1.0 us) and a slow-decay one (of 12.7 us).
The observation of a long-lived phosphorescence indicates a
thermally activated back energy transfer from Flrpic to CBP,
which results from the low-lying 'T level of the latter
compound.5 In contrast, the phosphorescence decay of Flrpic
in DCz consists of a single component with a time constant
of 1.8 us. No longer-lived phosphorescence was observed,
which indicates that the triplet excitons in the Flrpic:DCz
film are efficiently trapped within Flrpic. This phosphores-
cence behavior is almost identical to that observed for Flrpic
in the well-known high-'T-energy (2.90 eV) (Ref. 6) host
mCP (which shows a monoexponential decay with a time
constant of 1.7 ws). This result can be explained by an effi-
cient exothermic energy transfer from DCz to Flrpic and is
also consistent with a high-energy triplet emission [see Fig.
1(a)] of DCz.

Blue electrophosphorescent OLEDs have been fabri-
cated using Flrpic:DCz and Flrpic:mCP as the emitting
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FIG. 2. EL spectra of an Flrpic:DCz device. Inset: energy diagrams of the
device (in eV).

layers; the devices have the configurations indium tin oxide
/NPB (400 A)/8% Flrpic:DCz or mCP (300 A)/BAlq
(400 A)/LiF (10 A)/Al  (where = NPB=4,4-bis[N-
(1-naphtyl)-N-phenylamino |biphenyl and BAlg=4-
biphenyloxolatoaluminum (III) bis (2-methyl-8-quinolato) 4-
phenylphenolate). The electroluminescence (EL) spectrum of
an FlIrpic:DCz device (Fig. 2, measured at a current density
of 1 mA/cm?) exhibits a characteristic Flrpic emission
(N pax=472 and 496 nm) with a total absence of host emis-
sion. Figure 3 shows the current-voltage-luminance (J-V-L)
characteristics of Flrpic:DCz and Flrpic:mCP devices. As
can be seen, the Flrpic:DCz unit maintains a higher lumi-
nance and a higher current density than its Flrpic:mCP coun-
terpart throughout the studied voltage range (namely,
0-11 V). It is worth noting that the Flrpic:DCz device is
better than the Flrpic:mCP one, although both of them are
exothermic-energy-transfer systems (which are quite differ-
ent to the endothermic Flrpic:CBP system). The luminance
of the Flrpic:DCz device reached a value of 12 320 cd/m? at
an applied voltage of 11 V. This good J-V-L characteristics
are most likely originated from a good charge injection into
the emitting layer and an efficient charge trapping within
Flrpic, as shown in the energy-level diagram in the inset of
Fig. 2. A maximum external quantum efficiency of 9.8%, a
maximum luminance efficiency of 21.5 cd/A, and a maxi-
mum power efficiency of 15.0 Im/W were obtained (at a
current density of 0.01 mA/cm?) for our Flrpic:DCz device.
All these characteristics are superior to those of Flrpic:mCP
(which exhibits a maximum external quantum efficiency of
9.3%, a maximum luminance efficiency of 20.4 cd/A, and a
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FIG. 3. J-V-L characteristics of Flrpic:DCz (circles) and Flrpic:mCP
(squares) devices. Inset: efficiency of the Flrpic:DCz device.

Downloaded 16 Mar 2008 to 147.46.94.115. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp



233501-3 Whang et al.

maximum power efficiency of 13.2 Im/W), thus indicating
an efficient exciton trapping within Flrpic.

In conclusion, we have fabricated a highly efficient blue
electrophosphorescent OLED by using a carbazole-based
host material DCz. Excimer formation of the carbazole units
is efficiently suppressed in DCz, which makes it possible to
achieve a high 'T level of the host layer and thus exothermic
energy transfer from DCz to Flrpic. As a consequence of this
suppressed excimer formation, the performance of the
Flrpic:DCz device was superior to that of a Flrpic:mCP
device.
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