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Abstract - We propose a new adaptive multiple-input multiple-
output (MIMO) transmission scheme that can work with partial 
channel information. Utilizing the information on dominant eigen-
dimensions of the channel correlation matrix, the proposed 
scheme reduces the amount of channel information required for 
adaptive transmission without noticeable performance 
degradation. It is analytically shown that the proposed scheme can 
minimize the performance loss by properly choosing the number 
of eigen-dimensions of the channel correlation matrix. Simulation 
results show that the proposed scheme is quite applicable to 
practical systems where quantized channel information is utilized. 

I. INTRODUCTION 

In multiple-input multiple-output (MIMO) systems, channel 
information plays an important role in achieving high system 
capacity. When the transmitter has full channel knowledge, it 
can achieve the channel capacity by making the use of singular 
value decomposition (SVD) and water-filling power allocation 
technique [1] (called adaptive transmission in this paper). The 
MIMO channel is usually expressed by a number of complex 
values and the channel information needs to be updated 
periodically at the transmitter due to the nature of time-varying 
properties. In practice, the channel information can be 
informed from the receiver, which may require a large 
feedback signaling overhead. Efficient quantization methods 
have been developed to reduce the feedback signaling burden 
[2], [3]. However, large quantization noise may not be 
avoidable especially when the number of transmit antennas is 
large. 

Meanwhile, when the transmitter is aware of the correlation of 
the channel, the performance can be improved by allocating 
more power to dominant eigenmodes [4], [5]. Since the 
correlation can be assumed unchanged during the time interval 
much longer than the duration of fading [6], it can be informed 
to the transmitter without significant increase of feedback 
signaling overhead. However, the use of channel correlation 
information is not sufficient for the maximization of the 
capacity [7], resulting in a large capacity loss compared to the 
use of full channel information especially when the channel is 
partially correlated. 

In this paper, we consider the use of partial channel 
information for the adaptive transmission. By utilizing 
dominant eigen-dimensions of the channel correlation matrix, 
the system can have an effective channel with a reduced 

dimension, enabling to reduce the amount of feedback 
signaling for the adaptive transmission. It is analytically shown 
that the proposed scheme can provide a capacity almost the 
same as that utilizing full channel information when dominant 
eigen-dimensions of the channel correlation matrix are chosen 
to contain most of the channel energy. It is also shown that the 
proposed scheme is quite applicable to practical systems with a 
finite-rate feedback channel. 

This paper is organized as follows. Section II describes the 
system model in consideration. The proposed scheme is 
described in Section III and the performance is analyzed in 
Section IV. In Section V, we verify the performance by 
computer simulation. Finally, Section VI concludes the paper. 

II. SYSTEM MODEL 
Consider a MIMO system that utilizes tn  transmit antennas 

and rn  receive antennas. The received signal can be 
represented by 

 = +y Hx n  (1) 

where H  denotes the r t( )n n× -dimensional channel matrix 
whose elements are random variables with zero mean and unit 
variance, x  is the t( 1)n × -dimensional transmit signal vector 
with a power of P  and n  is r( 1)n × -dimensional additive 
white Gaussian noise (AWGN) whose elements have unit 
variance. 

We define the channel correlation matrix of transmitter by 

 *
t r{ }/E nR H H  (2) 

where the superscript * denotes the conjugate transpose. The 
correlation matrix can be decomposed as 

 2 *
t =R QΣ Q  (3) 

where 
t1[ ... ]n=Q q q  is an t t( )n n× -dimensional unitary 

matrix and Σ  is an t t( )n n× -dimensional diagonal matrix 
with ordered diagonal elements 

t1 nσ σ≥ ≥  where 
t 2

t1

n
ii

nσ
=

=∑ . Then the channel matrix can be represented as [4] 

 1/2
t=H HR  (4) 

where H  is an r t( )n n× -dimensional matrix whose columns 
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are independent of each other and have the same expected 
norm value, i.e., 

 *

r

0,
[ ]

, .i j

i j
E

n i j
≠

=  =
h h  (5) 

Here, ih  denotes the i-th column of H . 

III. ADAPTIVE MIMO TRANSMISSION TECHNIQUES 

A. Full Adaptive Transmission Scheme [1] 

The capacity of the MIMO system given by 

 *
2log det( )xC = +I HK H  (6) 

can be maximized by optimizing the covariance matrix 
*{ }x EK xx  of the transmit signal. The optimum covariance 

matrix is directly related to the channel matrix which can be 
decomposed as  

 *=H UΛV  (7) 

where 
r1[ ]n=U u u  and 

t1[ ]n=V v v  are ( )r rn n×  and 
t t( )n n× -dimensional unitary matrices, respectively, and Λ  

is an r t( )n n× -dimensional rectangular matrix that has non-
negative real and ordered diagonal elements 

min1 nλ λ≥ ≥  
and zero off-diagonal elements, where min t rmin( , )n n n= .  

The optimum xK  can be determined by [1] 

 *
x =K VPV  (8) 

where 
t1diag{ ,..., }nP P=P  is an t t( )n n× -dimensional 

diagonal matrix whose first minn  diagonal elements are 
obtained by water-filling power allocation along 

min{ , 1,..., }i i nλ =  [1] and other elements are set to zero. Thus, 
the transmitter needs information on t min( )n n× -dimensional 
precoding matrix 

minmin 1[ ]n=V v v  in addition to the 
corresponding transmit power allocation min{ , 1,..., }iP i n= . 
The capacity of the full adaptive transmission scheme can be 

represented as 

 
min

2
full 2

1
log (1 )

n

i i
i

C Pλ
=

= +∑ . (9) 

B. Proposed Partial Adaptive Transmission Scheme 
Fig. 1 depicts a block diagram of the proposed scheme where 

only L dominant eigen-dimensions of the channel correlation 
matrix (called virtual antennas in this paper) are considered. 
Since each eigen-dimension is represented by a column of Q  
[4], the L dominant virtual antennas can be chosen by 
multiplying 1[ ... ]L L=Q q q  as shown in Fig. 1.  
Letting L′H HQ , the MIMO system with a reduced 

dimension can be represented as 

 L′= +y H x n . (10) 

Since the reduced system has t( )L n≤  virtual transmit 
antennas, further adaptive transmission procedure can be 
carried out using the effective channel matrix with a reduced 
dimension. 

Using 1/2
t=H HR  and 1/2 *

t =R QΣQ , the r( )n L× -
dimensional effective channel ′H  can be represented as 

 1/2 *
t L L L′ ′= = =H HR Q HQΣQ Q H Σ  (11) 

where ′H HQ  has the same distribution as H , and LΣ  is 
an t( )n L× -dimensional matrix whose diagonal elements are 
the same as the first L diagonal elements of Σ  and whose off-
diagonal elements are zero. Note that each diagonal element of 
Σ  represents the average channel gain from the corresponding 
virtual antenna. 

The dimension-reduced MIMO channel can be decomposed 
as 

 *′ ′ ′ ′=H U Λ V  (12) 

where ′U  and ′V  are r r( )n n×  and ( )L L× -dimensional 
unitary matrices, respectively, and ′Λ  is an r( )n L× -

LQ Hmin′V *Q *
min′U

1σ

tnσ

Lσ
Lx x y

*( )′ ′ ′ ′=H U Λ V

n

P

H

 
Fig. 1. Block diagram of the proposed partial adaptive transmission scheme. 



dimensional rectangular matrix that has non-negative real 
ordered diagonal elements 

min1 nλ λ ′′ ′≥ ≥  and zero off-
diagonal elements, where min rmin( , )n L n′ = . For a given ′H , 
the capacity of the dimension-reduced system can be 
maximized by optimizing the covariance matrix 

*{ }
Lx L LEK x x  using min( )L n′× -dimensional precoding matrix 

min′V  which is obtained by the first minn′  columns of ′V  and 
the corresponding transmit power '

iP , min1,...,i n′= . Note that 
the dimensions of the precoding matrix and transmit power 
allocation are reduced by a factor of ( ) ( )min t minL n n n′× ×  and 

min minn n′ , respectively, implying smaller feedback overhead in 
the proposed scheme. The capacity of the proposed system is 
given by 

 
min

* 2
part 2 2

1
log det( ) log (1 ).

L

n

x i i
i

C Pλ
′

=

′′ ′ ′= + = +∑I H K H  (13) 

IV. PERFORMANCE ANALYSIS 

We analyze the performance in terms of the capacity loss 
defined by 

 min min

full part

2 2
2 2

1 1

log (1 ) log (1 ).
n n

i i i i
i i

C C

P Pλ λ
′

= =

∆ −

′ ′= + − +∑ ∑
 (14) 

A. High SNR Environments 
In high SNR environments, the optimum power allocation is 

to equally assign the power to each spatial channel, i.e., 
min/iP P n′ ′=  for min1,...,i n′=  [10]. Then, the capacity loss can 

approximately be represented as 

 

min min

min

2 2
2 2

1 1min min

min

2

2 2
1

log log

, if 

log , otherwise.

n n

i i
i i

n
i

i i

P P
n n

L n

λ λ

λ
λ

′

= =

=

   ′∆ ≈ −   ′   
∞ <
=  

  ′ 

∑ ∑

∑

 (15) 

It can be seen that the capacity loss increases to infinity when 
minL n<  mainly due to the loss of spatial multiplexing gain. 

This implies that the number of dominant eigen-dimensions 
should be chosen such that minL n≥ , i.e., min minn n′ = .  

When minL n≥ , by letting 2 2
i i iλ λ ε′= + , where iε  is a 

nonnegative real number, the capacity loss can be represented 
as 

 

min min

min

2 min 22 2
1 1min

min 2 2
1min min

1log 1 log 1

1log 1

n n
i i

i ii i

n

i
i

n
n

n
n

ε ε
λ λ

ε
λ

= =

=

   
∆ ≈ + ≤ +   ′ ′   

 
≤ + ′ 

∑ ∑

∑
 (16) 

where the first inequality is from the Jensen’s inequality and 
the second one is from that minλ′  is the minimum singular 
value of ′H . Since the sum of eigenvalues of a matrix can be 
expressed by its trace [9], it can be shown that 

 

min min min

t

2 2

1 1 1
* *

2 2

1

=

=tr[ ] - tr[ ]

|| ||

n n n

i i i
i i i

n

i i
i L

ε λ λ

σ

= = =

= +

′−

′ ′

′=

∑ ∑ ∑

∑

HH H H

h

 (17) 

where tr[ ]A  denotes the trace of matrix A and i′h  is the i-th 
column of ( )′ =H HQ . Note that i′h  has the same distribution 
as ih . Thus, it can be shown that 

 
t

2 2
min 2 2

1min min

1log 1 || ||
n

i i
i L

n
n

σ
λ = +

  ′∆ ≤ +   ′   
∑ h . (18) 

Note that 2
minλ′  is independent of i′h , t,...,i L n= , since 2

minλ′  
is the minimum eigenvalue of 1[ ]L′ ′h h . It can be shown that 
the expected value of the capacity loss is bounded by 

 

{ }
t

t

t

2 2
min 2 2

1min min

2 2
min 2 2

1min min

2r
min 2 2

1min min

1log 1 || ||

1log 1 || ||

1log 1 .

n

i i
i L

n
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n

i
i L

E E n
n

n E
n

nn E
n

σ
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σ
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σ
λ
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= +

= +

    ′∆ ≤ +    ′     
    ′≤ +    ′    
   

= +    ′    

∑

∑

∑

h

h  (19) 

It can be seen that the capacity loss is mainly affected by the 
amount of neglected eigenvalues of the channel correlation 
matrix. 

B. Low SNR Environments 
In low SNR environments, the capacity can be maximized by 

allocating all the power to the strongest spatial channel [10]. 
The corresponding capacity can be represented as 

 
2 2

2 max 2 max

2 2
max 2 max 2

log (1 ) log (1 )

log log

P P

P e P e

λ λ
λ λ

′∆ ≈ + − +
′≈ −

 (20) 

where maxλ  and maxλ′  are the maximum singular values of 
H  and ′H , respectively. Using that 

 2 2 * *
max max tr[ ] - tr[ ]λ λ′ ′ ′− ≤ HH H H , (21) 

the capacity loss can be rewritten as 

 
( )

t

* *
2

2 2
2

1

tr[ ] - tr[ ] log

= || || log .
n

i i
i L

P e

P eσ
= +

′ ′∆ ≤

 ′ 
 
∑

HH H H

h
 (22) 



Finally, the expected value of the capacity loss is given by  

 { }
t

2
r 2

1

log
n

i
i L

E n P eσ
= +

 
∆ ≤  

 
∑ . (23) 

Note that as in the high SNR case, the performance loss is also 
related to the amount of neglected eigenvalues of the channel 
correlation matrix. 
The analytic results suggest that the capacity loss of the 

proposed scheme can be minimized by properly choosing the 
number of dominant eigen-dimensions of the channel 
correlation matrix. As an example, it may be desirable for low 
SNR users to choose the smallest L satisfying 

 
t

2
th

1

n

i
i L

σ δ
= +

≤∑  (24) 

where thδ  is a threshold value to be optimized by considering 

both the feedback overhead and performance loss, and for high 

SNR users to choose a value of L larger than minn  while 

satisfying (24). 

V. SIMULATION RESULTS 
The performance of the proposed scheme is verified by 

computer simulation in Rayleigh fading channels. We assume 
that four transmit antennas and two receive antennas are 
equally separated by four wave lengths and half wave length in 
a row, respectively, unless stated otherwise. Channel model is 
assumed to be the suburban macro scenario of tapped delay-
line parameters in [11]. We also assume that the feedback 
information is reported without delay except Fig. 4 and without 
quantization except Fig. 5. 
Fig. 2 depicts the performance of the proposed scheme 

according to the average SNR when L=2. It can be seen that the 
use of L=2 provides almost the same capacity as the full 
adaptation scheme, while reducing the dimension of the 
precoding matrix by one half. 
Fig. 3 depicts the performance of the proposed scheme 

according to the change of antenna spacing between the 
transmit antennas, where small antenna spacing means larger 
correlation between the adjacent antennas. It can be seen that in 
low SNR environments, the proposed scheme with L=1 can 
provide performance comparable to the full adaptation scheme 
as the correlation increases, while significantly reducing the 
dimension of the precoding matrix to be reported. On the other 
hand, in high SNR environments, the proposed scheme with 
L=1 is not desirable mainly due to the loss of spatial 
multiplexing gain as indicated in (15). However, the use of L=2 
is affordable when the channel correlation is high. 
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Fig. 2. Performance of the proposed scheme when L=2. 
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Fig. 3. Performance according to the change of antenna spacing. 

 



Fig. 4 depicts the performance of the proposed scheme with 
outdated channel information. We assume that the average 
SNR is 10 dB and L=2. We also assume that the instantaneous 
channel information and the channel correlation information 
are reported to the transmitter at every 5 ms and 10000 ms, 
respectively, with a time delay of 5 ms. It can be seen that 
performance loss due to the outdated channel information is 
less in the proposed scheme. This is mainly due to the fact that 
the SNR gain by exploiting the correlation information is less 
sensitive to the user mobility. It can also be seen that the use of 
correlation information reported at every 10000 ms provides 
negligible performance loss compared to the use of perfect 
correlation information resulting in marginal feedback 
overhead for the long term precoding matrix LQ . 
Fig. 5 depicts the performance with the use of quantized 

channel information when four transmit antennas and a single 
receive antenna is used. We assume that the average SNR is 10 
dB and L=2. Since the channel rank is always one when a 
single receive antenna is used, all power is allocated to the 
principle eigenmode. Therefore, only the precoding matrix (or 
equivalently beam weight vector in this case) needs to be 
reported to the transmitter. For the reporting of beam weight, 
the quantized maximum ratio transmission codebook in [2] is 
used. It can be seen that for a given amount of feedback 
information, the proposed scheme outperforms the full adaptive 
transmission scheme. It can also be seen that the proposed 
scheme can achieve desirable performance with beam weight 
reported with 4-bit precision, but the full adaptive transmission 
scheme requires the beam weight reported with at least 10-bit 
precision.  

VI. CONCLUSIONS 
We have proposed a new adaptive MIMO scheme that works 

with partial channel information. By considering dominant 
eigen-dimensions of the channel correlation matrix, the 
proposed scheme can exploit most of the channel gain, while 
significantly reducing the feedback signaling overhead. The 
performance of the proposed scheme has been analyzed in 
terms of the capacity loss and verified by computer simulation. 
The simulation results show the proposed scheme outperforms 
the full adaptive transmission scheme when the channel 
information is reported with a finite precision. 
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Fig. 4. Performance with outdated channel information. 
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Fig. 5. Performance with quantized channel information. 


