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Gangliosides are receptors for various peptides and 

proteins including neuropeptides, β-amyloid proteins, 

and prions. Recently, the role of gangliosides in muco-

sal immunization has attracted attention due to the 

emerging interest in oral vaccination. Ganglioside 

GM1 exists in abundance on the surface of the M cells 

of Peyer’s patch, a well-known mucosal immunity in-

duction site. In the present study we identified a pep-

tide ligand for GM1 and tested whether it played a 

role in immune induction. GM1-binding peptides were 

selected from a phage-displayed dodecapeptide library 

and one peptide motif, GWKERLSSWNRF, was fused 

to the C-terminus of enhanced green fluorescent pro-

tein (EGFP). The fusion protein, but not EGFP fused 

with a control peptide, was concentrated around 

Peyer’s patch after incubation in the lumen of the in-

testine ex vivo. Furthermore, oral feeding of the fusion 

protein but not control EGFP induced mucosal and 

systemic immune responses against EGFP resembling 

Th2-type immune responses. 
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Introduction 
 

Interactions between carbohydrates and proteins are im-

portant in many cellular processes and are potential tar-

gets for therapeutic and preventive measures against vari-

ous diseases (Bergelson et al., 1982; Fishman, 1982; 

Markwell et al., 1981). Gangliosides, as cell-surface gly-

colipids, are involved in signal transduction and also act 

as receptors for cell-to-cell interactions, viruses, and tox-

ins (Kurganov et al., 2004; Mattei et al., 2004; Valdes-

Gonzalez et al., 2001). In particular, GM1-ganglioside, a 

glycolipid with a terminal sialic acid, is a receptor for 

subunit B of cholera toxin (CTB), and disruption of this 

interaction could be an approach to preventing CT-

induced diarrhea. 

Recently, the role of gangliosides in mucosal immuni-

zation has received attention due to emerging interest in 

oral and intranasal vaccination (Bae et al., 2003; de Haan 

et al., 1998; Gardby et al., 2003; Kang et al., 2004; 

Kawamura et al., 2003). CT and its close relative, E. coli 

heat-labile toxin (LT), bind to GM1 and these proteins are 

well-known adjuvants (Ogushi et al., 2004). Therefore, 

CT, LT, and their derivatives have been tested as mucosal 

adjuvants, but the results were unsatisfactory because the 

entire CT molecule was found to accumulate in the nerv-

ous system after intranasal administration (van Ginkel et 

al., 2000) and a flu vaccine containing LT adjuvant was 

withdrawn from the market for a similar reason. Later, the 

non-toxic B subunit of CT was tested as an adjuvant, al-

though is adjuvant effects are controversial (Fujihashi et 

al., 2002). 

Molecules

and

Cells
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Another strategy for identifying mucosa-targeting pep-

tides, phage display, has been used to screen peptides or 

proteins with high affinity for specific ligands; for exam-

ple antibodies for lipopolysaccharide, and peptides for 

GM1 (Matsubara et al., 1999; Miura et al., 2004). In a 

previous report, specific peptides binding to the carbohy-

drate moiety of GM1 glycolipid were isolated by biopan-

ning through a GM1 monolayer on a water-air interface, 

but their biological roles were unclear (Matsubara et al., 

1999). It seemed possible that different methods of pre-

paring GM1 ligands for phage display yield quite differ-

ent peptides and that a combination of phage display and 

bioassay could yield peptides of biological significance. 

We therefore isolated GM1-specific peptides from a 

phage display library, analyzed their homology to CTB, 

and then tested the biological activities of antigens con-

taining these motifs. We report that oral feeding of a fu-

sion of the peptide, GWKERLSSWNRF, with EGFP 

induced mucosal and systemic immune responses against 

the fusion antigen in mice. 

 

 

Materials and Methods 

 

Chemicals and Laboratory ware Unless otherwise specified, 

chemicals and laboratory ware were obtained from Sigma 

Chemical Co. (USA) and Falcon Labware (Becton-Dickinson, 

USA), respectively. 

 

Biopanning A phage display library of 1015 dodecapeptides 

(New England Biolabs, Inc., USA) was used to screen peptides 

binding to GM1 ganglioside according to the manufacturer’s 

protocol. In brief, a 60 mm dish was coated with 150 μg GM1 

overnight at 4°C, blocked with 2 ml of 1% BSA for 2 h at 4°C, 

and then washed 6 times with TBST (TBS, 0.01% Tween-20). 

About 1.5 × 1010 peptides were added to the dish which was 

incubated for 1 h at 4°C. After 3 washes with TBST, the bound 

peptides were eluted with 1 ml of elution buffer (0.1 M glycine, 

pH 2.0). Panning was repeated twice with the successively 

eluted and amplified phages. 

 

Production of recombinant EGFP-peptide fusion protein In 

order to generate an EGFP-peptide fusion vector, referred to as 

EGFP-CL3, EGFP was amplified by PCR from pEGFP-1 (Clon-

tech, USA) using forward and reverse primers: 5′-GAT CGG 

ATC CAC CGG TCG CCA CCA TGG TGA GC-3′ and 5′-AGC 

TGA GCT CCT AAT ACA GAG TAG TCG TCT GAC TAT 

TCT TAT GAA ACG CCT TGT ACA GCT CGT CCA T-3′. 

The amplified product was digested with BamHI and SacI and 

ligated into the same cloning site of pQE31 (Qiagen, Germany), 

yielding pEGFP-CL3. The integrity of the product was con-

firmed by nucleotide sequencing. In a similar way, a control 

expression vector, pEGFP-C, which contains the sequence of an 

unrelated dodecapeptide, was prepared using the same forward 

primer and a different reverse primer: 5′-AGC TGA GCT CCT 

AGT GAT TAC TAA TTG TCT GCA GAA TTG TTC GGG 

TGT TCA TCT TCT TGT ACA GCT CGT CCA T-3′. The fu-

sion proteins were expressed and purified, and quantified by 

Bradford assay and Coomassie staining (Bradford, 1976). About 

1 mg of nearly homogeneous recombinant protein was obtained 

per 1 L culture. Purified EGFP-CL3 and EGFP-C were dialyzed 

against PBS and diluted to 1 mg/ml. 

 

Mouse gut loop experiments Mouse intestinal loops were pre-

pared as described previously (Foster et al., 1998; Jang et al., 

2004). Briefly, gut loops were created by appropriate ligature of 

small pieces of gut intestine, 2−3 cm long with one or more 

Peyer’s patch. They were filled with PBS containing purified 

EGFP-CL3 or EGFP-C and incubated for 1 h. After washing the 

specimen five times with PBS, bound protein was examined 

with UV illumination or with a fluorescence microscope (Ax-

ioskop 2, Carl Zeiss, Germany). 

 

Mucosal immunization BALB/c mice (Charles River Tech-

nologies, Orient Inc., Korea) were maintained by feeding sterile 

food and water ad libitum. Groups of five mice between 5 and 

12 weeks of age were immunized by oral administration. Briefly, 

the mice were deprived of food for 2 h prior to oral immuniza-

tion, and 30 min before antigen administration each mouse was 

gavaged to reduce stomach acidity with 0.5 ml of neutralization 

buffer (8 parts Hanks’ balanced salt solution and 2 parts 7.5% 

sodium bicarbonate). Then 100 μg of EGFP-CL3 or EGFP-C in 

phosphate-buffered saline was orally administrated on day 0, 7, 

and 14. 

 

Serum and feces collection Serum samples from the immu-

nized mice were collected and analyzed to monitor the presence 

of anti-EGFP IgG. Fecal extracts were also prepared as de-

scribed (Hino et al., 2005; Jang et al., 2004) and used to detect 

anti-EGFP IgA. Briefly, 0.1 g of fecal pellet was mixed with 1 

ml of PBS containing NaN3 and vortexed for 5−10 min. After 

centrifugation, supernatants were collected and stored at −70°C. 

 

ELISAs for antigen-specific fecal IgA or serum IgG from 

immunized mice Levels of antibodies in serum and fecal ex-

tracts were titrated by ELISA as described previously (Okahashi 

et al., 1996; Shin et al., 2005). Briefly, ELISA plates were 

coated with 100 ng of recombinant EGFP and blocked with non-

fat dry milk. After washing, serial twofold dilutions of the se-

rum or fecal samples were added to individual wells. After in-

cubation, HRP-conjugated goat anti-mouse γ or α heavy chain-

specific antisera (Southern Biotechnology Associates, Inc., 

USA) were added and developed to measure titers of IgG or IgA. 

Data are presented as the reciprocal log2 titers from titrations in 

which samples were first diluted 15-fold and subsequently by 

successive 2-fold dilutions. The minimum value for a positive 

result was set at 0.1 because the value without serum was below 

0.1. The reciprocal log2 titers are given as –log2 (dilution). The 

same method was used to titer IgG isotypes in immunized serum 

and cytokines secreted from immunized splenocytes as a result 
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of activation by the protein antigen. 

 

Isotyping of serum IgG from immunized mice In order to 

determine IgG subclass titers, 100 μl of biotin-conjugated rat 

monoclonal anti-mouse γ1 (G1-7.3, 2 μg/ml), γ2a (R19-15; 1 

μg/ml), γ2b (R12-3; 0.5 μg/ml), or γ3 (R40-82; 1 μg/ml) heavy 

chain-specific antibodies were used as described previously 

(Okahashi et al., 1996). After incubation and washing, 100 μl of 

HRP-conjugated streptavidin (Life Technologies, Gaithersburg, 

MD, USA) was added and developed with 3,3′,5,5′-tetramethyl-

benzidin (TMB) (MOSS Inc., USA). 

 

Cytokine analysis of activated T cells from immunized mice 

Splenocytes were isolated from the spleens of immunized mice 

by passing the tissue through a mesh screen as described previ-

ously (Kim et al., 2004; Yamamoto et al., 2000). After stimula-

tion of the splenocytes with EGFP, the levels of diverse cyto-

kines in the culture supernatant were measured by cytokine-

specific ELISAs as described previously. Briefly, Maxisorp 

immunoplates (NUNC, Napeville, USA) were coated with 

monoclonal anti-IFN-γ, and anti-IL-4 antibodies (BD Biosci-

ences Pharmingen, USA). After blocking, samples and serial 

dilutions of standards were added to duplicate wells and 

incubated overnight for 4°C. The wells were washed and further 

incubated with biotinylated anti IFN-γ and anti-IL-4 antibodies 

(BD Biosciences Pharmingen). After washing, peroxidase-

labeled anti-biotin antibody (Vector Laboratories, USA) was 

added and developed with 2,2′-azinobis(3-ethylbenzthiazoline-

6-sulfonic acid)-containing H2O2. 

 

Proliferation and cytokine assays About 10 d after the last 

feed, spleens were removed and splenocytes were prepared un-

der sterile conditions (Son et al., 2004). After lysis of erythro-

cytes, the cells were washed and plated at 5 × 105 cells per well. 

They were then further stimulated with 100 μg/well EGFP or 

medium alone for 4 d at 37°C. Culture supernatants were col-

lected for cytokine analysis and the cells were pulsed with 0.5 

μCi of [3H]-TdR (Amersham Life Science, Buckinghamshire, 

UK) per well for 18 h to measure the extent of proliferation. The 

cells were then harvested with a 96-well cell harvester (Inotech, 

Switzerland) and tritium contents were measured with a liquid 

scintillation counter (Packard Instrument Co., USA). 

 

Statistical analyses The results are expressed as means ± stan-

dard errors of the means (SEM) using SPSS ver. 12.0 software 

and at least three independent experiments were performed 

unless otherwise stated. A value of P < 0.05 by Student’s t-test 

was considered significant. 

 

 

Results 

 

Selection of GM1-specific peptides using a phage li- 

brary In order to select high-affinity ligands for GM1 

ganglioside, three rounds of panning were performed us- 

Table 1. GM1 ganglioside-targeting peptide motifs. 

Peptide Sequence Repeat 

CL1 

CL2 

CL3 

C 

A

T

G

K

F

N

W

M

H

C

K

N

K
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Q
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R
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T 
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I 

T 

S 

S 

L 

T 

G 

W 

Q 
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R

I

Y

L

F

S

4 
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ing a phage library containing 15 billion dodecapeptides 

(Wu et al., 1998). Out of 40 ligands sequenced after the 

final panning, three ligands were chosen for further ex-

periments based on the high frequencies with which they 

were selected by panning (Table 1). Each of these ligands 

was then compared with the amino acid sequence of CTB, 

revealing that two of them, CL1 and CL3, had limited 

homology to CTB. Interestingly the CL3 motif, GWK-

ERLSSWNRF, partially overlapped with the GM1 bind-

ing region of CTB (Merritt et al., 1994; Verlinde et al., 

1994). These three peptides were further tested for activ-

ity in mucosal immunization. 

 

Association of a fusion protein between EGFP and a 

GM1-specific peptide with the mucosal surface of the 

intestine To test whether the selected ligands enhance the 

immune responses of mice after feeding foreign proteins 

fused with them, we generated constructs containing 

fusions of the peptides with the C-terminus of EGFP. 

Only one fusion protein, EGFP-CL3 was well-expressed 

in the bacterial expression system, while the other two 

fusion proteins strongly reduced bacterial growth. We also 

generated a control protein named EGFP-C, containing a 

nonspecific peptide whose amino acid sequence is shown 

in Table 1. The fusion proteins had N-terminal His-tags 

and were purified near to homogeneity by a Ni-NTA af-

finity column as shown in Fig. 1. 

The purified recombinant proteins were incubated in 

the mouse gut ex vivo to check their binding affinity for 

gut epithelium or M cells in Peyer’s patches, a main por-

tal for foreign materials in the mouse small intestine 

(Neutra et al., 1996). UV illumination revealed that 

EGFP-CL3 was well retained after extensive washing but 

EGFP-C was not (Fig. 2). 

 

Enhancement of antigen-specific mucosal immunity 

using the GM1-specific peptide We also tested the role 

of the selected ligand in mucosal immune induction in the 

mouse model. After feeding recombinant EGFP-CL3, the 

levels of antigen-specific IgA monitored by ELISA 

showed that EGFP-specific IgA was more efficiently in-

duced by EGFP-CL3 than by EGFP-C (Fig. 3). For exam-

ple, in the fifth week after feeding, EGFP-specific IgA 

production by EGFP-CL3 was more than 2-fold higher 

than by EGFP-C. 
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Fig. 1. Purification of recombinant proteins. His-tagged recom-

binant EGFP-CL3 (lane 1), EGFP-C (lane 2), and EGFP (lane 3) 

were expressed in E. coli and purified per the manufacturer’s 

protocol. Recombinant proteins were separated by SDS-PAGE 

followed by Coomassie staining. Lane M is a molecular weight 

size marker. 
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Fig. 2. Binding of EGFP fusion proteins around mouse Peyer’s 

patch. EGFP fused with a control peptide (EGFP-C) or the 

GM1-specific peptide (EGFP-CL3) was incubated in mouse gut 

ex vivo. After several washes, fusion proteins were revealed by 

UV illumination (B). EGFP-CL3 was concentrated around 

mouse Peyer’s patch (A and B). Enlarged images around Peyer’s 

patch show that green fluorescence was much stronger with 

EGFP-CL3 (E and F) than with EGFP-C (C and D). Arrow indi-

cates Peyer’s patch. 

 

 

Enhancement of antigen-specific systemic immunity 

using the GM-1 specific peptide After determining that 

feeding of the CL3-fused EGFP induced mucosal IgA, we 

tested whether systemic immunity could also be enhanced 

by oral administration of EGFP-CL3. Indeed, feeding 

with EGFP-CL3 generated about 1.5-fold higher EGFP-

specific antibody titers than feeding with EGFP-C (Fig. 4). 

Levels of EGFP-specific IgG1 and IgG2a, in particular, 

were high 6 weeks after EGFP-CL3 administration, while 

only a slight increase in IgG1 and IgG2a concentrations 

were detected in the serum from mice fed the EGFP-C 

control protein (Fig. 5). 

 

IL-4 secretion by splenocytes of mice orally immu- 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Induction of mucosal immunity in mice fed EGFP-CL3. 

ELISAs with fecal IgA revealed that after 5 weeks more EGFP-

specific IgA was produced by mice fed EGFP-CL3 (white bar) 

than those fed EGFP-C (black bar). Data are given as reciprocal 

log2 titers and represent the means ± SEM of five mice per 

group. They are typical of three independent experiments. Stars 

denote significant differences; ** P < 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Induction of systemic immunity in mice fed EGFP-CL3. 

ELISAs with serum IgG showed that after 5 weeks EGFP-

specific IgG was higher in mice fed EGFP-CL3 (white bar) than 

in those fed EGFP-C control protein (black bar). Data are given 

as reciprocal log2 titers and represent the means ± SEM of five 

mice per group. They are typical of three independent experi-

ments. Stars denote significant differences; ** P < 0.01. 

 

 

nized with EGFP-CL3 Next, we tested which T helper 

cells were involved in EGFP-CL3 immunization. As 

shown in Fig. 6, EGFP-CL3 induced both IFN-γ and IL-4 

secretion from spleen cells but the increase in cytokine 

secretion relative to that observed with EGFP-C was 

higher for IL-4. Since IgG1 production and IL-4 secretion 

are indicators of Th2 type immunization (Carter and Dut-

ton, 1996; Parronchi et al., 1992; Spellberg and Edwards, 

2001), this result indicates that a Th2 type response plays 

a major role in EGFP-CL3 immunization. 

 

Induction of splenocyte proliferation by EGFP-CL3 In 

order to test whether spleen cells from immunized mice 
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Fig. 5. IgG1 and IgG2a in mouse sera after oral administration 

of recombinant proteins. six weeks after feeding with EGFP-C 

(A) or EGFP-CL3 (B), serum IgG subtypes were measured by 

sandwich ELISAs for IgG1 (white bar) or IgG2a (black bar). 

More of both isotypes were generated in mice fed EGFP-CL3 

than in those fed EGFP-C. Assays were done with the combined 

sera of five mice, and data are reciprocal log2 titers. 

 

 

could be activated by the EGFP fusion protein, spleno-

cytes were isolated 10 d after the last feed and restimulated 

with the same antigen. Although some cell proliferation 

was detected in mice administered EGFP-C, stimulation 

was much greater in mice administered EGFP-CL3 (Fig. 7). 

 

 

Discussion 

 

A vital need for the development of effective vaccines is 

to enhance the low immunogenic of antigens on their own. 

Newton et al. (1989) reported that an antigen epitope was 

active when inserted into Salmonella flagellin and 

induced epitope-specific immune responses. However this 

procedure could not be generalized, especially for large 

antigens, because of interference with flagellin expression. 

Recently, flagellin-EGFP protein was tested for ability to 

induce specific immune responses (Cuadros et al., 2004). 

This new approach can accommodate larger epitopes, or 

even multiple epitopes, and avoids the unknown risks of 

live vaccination. In the present study we also aimed to 
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Fig. 6. Analysis of cytokines secreted from splenocytes of im-

munized mice after restimulation by antigen. Spleen cells were 

isolated from mice immunized with EGFP-C (white bar) or 

EGFP-CL3 (closed bar) after 6 weeks feeding. They were 

restimulated by EGFP-C or EGFP-CL3 and secreted cytokines 

were measured by sandwich ELISAs for IFNγ (A) or IL-4 (B). 

Assays were done with the combined sera of five mice and data 

are reciprocal log2 titers. Similar results were obtained in two 

independent experiments and a representative figure is shown. 

 

 

develop a mucosal carrier of small size which would be 

useful for various sizes of epitopes. Thus, we identified a 

dodecapeptide among fifteen billion peptides with affinity 

for GM1 ganglioside and tested whether it enhanced epi-

tope-specific immune responses using recombinant pep-

tide-EGFP protein. 

Among the three most often selected peptides obtained 

after three rounds of panning against GM1 ganglioside, 

only one was capable of yielding a fusion protein with 

EGFP in E. coli. We are not sure why the other two motifs 

affected bacterial growth, but we assume that they have 

high affinity for a hydrophobic region of GM1 ganglioside 

and may interfere with cytoplasmic membrane function. 

The motif of CL3, GWKERLSSWNR, has limited but sig-

nificant homology to the GM1 binding motif of CTB pro-

tein (Verlinde et al., 1994; Merritt et al., 1994). The se-

quence ERLssWN of CL3 is very similar to the EKLcvWN  
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Fig. 7. Induction of splenocyte proliferation by antigen. After a 

last feed, splenocytes were isolated and restimulated with 

EGFP-C or EGFP-CL3, and cell proliferation was measured by 

[3H]-thymidine uptake. The stimulation index was calculated as 

the [3H]-thymidine incorporation by cells receiving antigen di-

vided by the [3H]-thymidine incorporation of unstimulated cells. 

The black bar indicates the stimulation index for EGFP-C, and 

the white bar that for EGFP-CL3. Assays were done with the 

combined splenocytes of five mice. Similar results were ob-

tained in two independent experiments and a representative 

figure is shown. 

 

 

sequence of residues 90 to 96 of CTB near its GM1 binding 

domain. Interestingly, it also resembles the sequences of 

some viral proteins, for example WnEtRLSnWN (aa 398- 

407) of human immunodeficiency virus (HIV) gp160, and 

GWsERLaSWrR (aa 134-144) of hepatitis C virus (HCV) 

E2 (Daniels et al., 2003; Wu et al., 2001). This suggests 

possible roles of the CL3 motif. Thus, HIV gp160 is known 

to induce strong mucosal and systemic immune responses 

and has been proposed as a mucosal adjuvant (Sakaue et al., 

2003). Also, HCV E2 is a component of the viral envelope 

protein complex consisting of E1 and E2, a ligand for the 

cellular receptor CD31. 

Although we showed that EGFP-CL3 was retained 

around Peyer’s patch after incubation in the mouse intes-

tine (Fig. 2), we cannot exclude the possibility that the 

induction of immunity was caused by an effect on cells 

outside Peyer’s patch. This could involve the villous M 

cell (Jang et al., 2004), a recently identified immune in-

duction site, a possibility strengthened by reports that 

Peyer’s patch is more relevant to immune tolerance (Fuji-

hashi et al., 2001; Kato et al., 2003). 

Although the antigen-specific immune responses in-

duced by EGFP-CL3 were much higher than those in-

duced by the EGFP-C control, continuous feeding of 

EGFP-C also seemed to induce an EGFP-specific immune 

response (Figs. 3−5). We assume that even the control 

ligand, which was selected at random from the primers, 

can enhance the delivery of fused EGFP protein to muco-

sal immune induction sites, since we did not detect immune 

induction by feeding EGFP alone (data not shown). Cur-

rently, we are preparing several dodecapeptide-conjugated 

EGFPs to clarify the effects of control peptides. 

In conclusion, we have isolated a peptide motif from a 

15 billion peptide library and generated a fusion protein 

between it and EGFP. EGFP with this motif was more 

efficient than a fusion of EGFP with a control peptide in 

inducing mucosal and systemic immune responses. Based 

on cytokine secretion, IgG subtype, and splenocyte prolif-

eration, we believe that the peptide induces Th2-dependent 

immune responses. We are currently testing the efficacy of 

this ligand in inducing mucosal and systemic immune re-

sponses with antigens isolated from pathogenic bacteria 

and viruses. 
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