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= Abstract =Cox’s proportional hazards model has been widely used in medical
researches to evaluate the relationship between prognostic factors of a disease and the
occurrence of outcome event. On a theoretical basis, regression coefficient estimated
from Cox’s proportional hazards model could be approximated by using the Weibull
and the logistic model. Breast cancer cases (n=86) diagnosed at the Seoul National
University Hospital were selected to evaluate the possibility of some accelerated models
as an approximate model to Cox’s proportional hazards model. Age at operation,
tumor size and lymph node metastasis were the variables concerned in this study. Par-
ameter estimates of two variables from the Weibull model, which seemed not to violate
the proportionality assumption of Cox’s model, showed almost identical values to those
from Cox’s proportional hazards model. However, there was a substantial degree of
discrepancy in the parameter estimate of another variable, which showed an apparent
unproportionality. This study confirmed that both the Weibull and the logistic models
could be used as approximate methods to the estimates from Cox’s proportional
hazards model. Particularly noteworthy was the fact that the PC-SAS system could be
successfully applied to survival analysis when the parameters were going to be
estimated using Cox’s model.
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nique that quantifies the relationship between

INTRODUCTION time to death or the recurrence of a disease

and prognostic factors presumed to be

A survival analysis is a statistical tech- associated with the disease (Miller 1981). It has
been widely used to analyze survival data in

Recetved December 1991, and in final form May medical fields, especially in clinical trials or in
1992, oncological studies. The technique has its own
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come variable of survival analysis is always
composed of two separate variables: 1) survi-
vorship of an individual and 2) the time to
death or recurrence.

Whenever confounding variable(s) s
suspected to distort the relationship between
an outcome and prognostic factors, multi-
variate analysis should be required to yield
more valid results. Cox’'s proportional hazards
model can be applied to the survival data in or-
der to adjust for the confounding effect (Cox
1972). The model has been preferred to other
statistical methods because of easy under-
standing of the results, as well as its availability
in several computer softwares. Otherwise,
accelerated failure time model using some
parametric distributions, such as the ex-
ponential, Weibull, log-logistic, or gamma
distribution, is also available for the purpose.

Several  statistical  softwares  provide
procedures for Cox's proportional hazards
model. The BMDP-2L. program in the BMDP
statistical package (Dixon 1987) and the COX
procedure in the EPILOG software (Epicenter
Software 1988) are commonly used programs.
The LIFEREG procedure in the PC-SAS system,
Version ©.03, is available for parametric
methods using accelerated failure time models
(SAS Institute Inc. 1988). Although the PC-SAS
system is the most widely used program in
many scientific fields, the system contains no
procedure for fitting survival data to Cox’s pro-
portional hazards model. This study was con-
ducted to develop a program which may enable
the LIFEREG procedure in the PC-SAS system
to fit to Cox's proportional hazards model. Ap-
proximation of the results from the parametric
method using the Weibull and the logistic
model to Cox's proportional hazards model was
evaluated.

MATERIALS AND METHODS

1. Theoretical consideration
1) Cox's proportional hazards model
A functional relationship between prognos-
tic factors, X, that may be related to the hazard

function, and the hazard of a disease in Cox's
proportional hazards model can be formulated
as follows (Cox 1972);

/() = exp(f - X) - Ag(t)

where, 4(t) is a baseline hazard of an individ-
ual without covariates, X, and A (t) is the haz-
ard for an individual with the covariates. f, is
an unknown regression coefficient which refers
to the functional relation between the covariate
and the hazards. Cox's proportional hazards
model is based on two assumptions; pro-
portionality assumption and log-linear assump-
tion. The former assumes that a hazard of an
individual with covariates, A(t), is proportional
to the baseline hazard of the individual, Zo(t).
The latter assumes that the proportionality is in
log-linear relation. A data to be analyzed is,
therefore, recommended to be checked for the
proportionality assumption whenever Cox’'s pro-
portional hazards model is applied for the sur-
vival analysis (Lee et al. 1991). Compatibility of
a data to the assumption can be assessed by
graphic method using the log-negative-iog sur-
vival function.

The cumulative survival functions from
Cox's proportional hazards model can be
expressed as follows;

S(tIX) = Solt) exp(=p - %

where, Sot) is the cumulative survival function
for an individual with a baseline hazard, and
S({tIX) is that for an individual with the
covariates, X.
2) The accelerated failure time model

The accelerated failure time model, which
is widely used in engineerings, assumes that
the effect of independent variables on an
event-time distribution is multiplicative on the
event time. In the accelerated failure time
model, time to failure (T) of an individual with
covariates, Xi, is defined as follows (Cox and
Oakes 1984);

T = GXp(d : XI) " TOH

where, Ty is a failure time of an individual with-
out covariates, 0, is unknown regression coef-



ficient, and ¢ Is a scale parameter of the
accelerated failure time model. The distribution
can be taken from any distribution, for example,
the exponential, Weibull, log-logistic, and
gamma distributions (Cox and Oakes 1984).

The cumulative survival functions from the
accelerated failure time model can be expre-
ssed as follows:

Si(t]X) = So [exp(—d, « X) - t]

3) Cox's proportional hazards model and the
Weibull model
Considering only a dichotomous variable
in a univariate setting for simplicity, the cumu-
lative survival functions of Cox's proportional
hazards model and the accelerated failure time
model can be converted by log-negative-log
transformation as follows:

log[—log Si(t)] = —f - X +log[—log So(t)]
for Cox's proportional hazards model, and

log[—log Si(t)] =logi-log Selexp(—2ad, « X) - tl}
= gO( —_(SI ‘ XI + T)
for the accelerated failure time model

where, go(t) = log[—log Solt)] = logl—log So
(exp 1)1, and t = log(t). If the distribution of the
time to failure follows the Weibull distribution,
the cumulative survival functions will be as
follows (Cox and QOakes 1984):

Solt) = exp (—a - t")

where, 7 is an inverse of the scale parameter of
the accelerated failure time model. The cumu-
lative survival functions of the two models can
then be modified into:

logl —log Si(tIx)]= —pB - X+ 7 - 1+log «
for Cox's proportional hazards model, and

logl—log Si(tIx)]=g(—=d - X)+ 7 - t+log «
for the accelerated failure time model.

Finally, a functional relation between f, and 4,
can be drawn from those expressions as
follows:

B =r-0

From the mathematical identity, if the baseline

distribution is the Weibull, a regression coef-
ficient of Cox’s proportional hazards model, f.
can be estimated from the regression coef-
ficient of the Weibull model, 9, by multiplying an
inverse of the scale parameter, ». Also the
Weibull distribution is the only distribution such
that Cox's proportional hazards model and the
accelerated failure time model is equivalent(Cox
and Oakes 1984).

4) Cox’s proportional hazards model and the
logistic model

The logistic model, most widely used in

categorical data analysis with a dichotomous
outcome variable, is defined as follows (Corn-
field 1962):

logit P = w, - X+ ¢

where, m, is an unknown regression coefficient
of the Ibgistic model, and ¢ is an error term. The
logistic model assumes that the logit of the
probability of death in an interval, conditional
that death has not occurred prior to that inter-
val, is a linear function of the covariates and a
constant term specific to the interval. When the
conditional probabilities are small for each in-
terval, both the discrete proportional hazards
model and the logistic model tend to yield simi-
lar results (Hosmer and Lemeshow 1989).

When the time to failure is divided into
relatively short time intervals in which the failure
rate is constant, the logistic model can then be
converted into the following expression by
incorporating interval term, »T.

logit P = w, + X+ nlT+e¢

This formula can provide a basis on an alterna-
tive approach to estimate parameters of Cox's
proportional hazards model using the logistic
model.

2. Materials

Breast cancer cases (n = 86) were selec-
ted among those who had been confirmed
histologically at Seoul National University Hos-
pital during 1984 to 1988. Survivorship of each
study subject was followed at an endpoint of
March, 1991. Data on the prognostic factors
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(covariates) and individual characteristics were
collected from clinical record of the hospital.
Age at operation, tumor size and lymph node
metastasis were the variables concerned in this
analysis (Table 1).

Table 1. Prognostic factors analyzed in the
data
Prognostic factors Values
Age at operation 1: less than 2: greater
(NAGE) 50 years than 50 years
Tumor size* (NT) 1.7 =1 2. T=2-4
Lymph node* (NN) 1:N=0 2:N=1-3

* By UICC, AJCC classification

3. Methods

All the covariates were dichotomized for
the convenience of illustration. The proportion-
ality assumption was tested by graphic demon-
stration of the LLS plot (log-negative-log sur-
vival function against the log month) of the
survival function of each covariate. Regression
coefficients from Cox's proportional hazards
model were estimated by the BMDP-2L
program. Regression coefficients and the scale
parameter from the Weibull model were
estimated by the LIFEREG procedure of the
PC-SAS system (SAS Institute Inc. 1988). Re-
gression coefficients from the Weibull model
divided by the scale parameter from the model
were then compared with the parameter
estimated from Cox's proportional hazards
model.

Regression coefficients estimated from
the logistic model were also compared with
the values from Cox's proportional hazards
model. In the model-building procedure, a term
indicating time to failure was incorporated
into the model as an indicator variable. The
failure time of each variable was divided into
2, 5, and 10 months-interval. The LOGISTIC
procedure of the PC-SAS system (SAS Institute
Inc. 1990) was used to fit the data to the logis-
tic model.
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Fig. 1. Plots of the log of the negative log. of
the estimated survival functions against
log month by NAGE.
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the estimated survival functions against
log month by NT

RESULTS

1. Test for the proportionality assumption

The compatibility of the data to the
proportionality assumption of Cox's model was
assessed by graphic method using the log
negative log survival function (the LLS plot) for
each covariate (Fig. 1-3). For age at operation
(NAGE), the LLS plots showed a linear pattern,
which referred to the compatibility of the vari-



\N: PROPORTIONAL HAZARDS

LLS

-0.5 A: NN=0 p—B B—B

B/
1. / —t
B
2.0 A A/
-2.5 /A
't

-3.0 A

B: NN=1,2,3

10 15 20 25 30 3540
MONTH

50 60 70

Fig. 3. Plots of the log of the negative log of
the estimated survival functions against
log month by NN.

able with the Weibull model. Meanwhile, there
was a parallelism between the stratum-specific
plots of the NAGE stratified by age subca-
tegories in the early phase of follow-up period.
The pattern turned out not to be parallel in the
later period, which suggested somewhat
disproportional hazards. For tumor size (NT),
the LLS plots were not only crossing over each
other but also nonlinear. The crossing-over
plots suggested that the variable was not com-
patible to Cox's proportional hazards model.
The nonlinear plots suggested that the variable
was compatible to the Weibull model, neither.
The LLS plots of the last covariate, lymph node
metastasis (NN), showed a linear and parallel
patterns (proportional hazards).

2. Comparison of parameters estimated from
the Weibull model to those from Cox's pro-
portional hazards model

Regression coefficients estimated from the

Weibull model were compared to the par-

ameters from Cox’'s proportional hazards model

(Table 2). The regression coefficients of NAGE

and NN, derived from regression parameters

divided by scale parameters of the Weibull
model, were almost identical with those
estimated from Cox's proportional hazards
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Table 2. Regression coefficients and scale
parameters by the Weibull Model and
Cox’s proportional hazards model

Weibull model Cox mode|
Covariates p scale derived i}
coeff.  parameter f coeff* coeff.
NAGE -0.68 1.42 -0.48 -0.47
NT -0.01 1.43 -0.01 -0.04
NN 193 1.36 1.42 1.43
f coefficient

* derived f coefficient = “scale parameter

Table 3. Relative risks and corresponding 95%

confidence intervals by the Weibull
model and Cox’s proportional hazards
model
Weibull model Cox model
Covariates Relative Confidence Relative Confidence
risk interval risk interval
NAGE 0.62 0.25-154 0.63 0.25-157
NT 0.99 0.41-2.39 0.96 0.40-2.32
NN 414 1.54-109 418 154114

model. However, the covariate, NT, showed a
slightly different value compared to that from
Cox's model. The relative risks and their 95%
confidence intervals of each variable showed
almost identical patterns (Table 3), as can be
seen in Table 2. Statistical significance of each
covariate was changed, neither. Lymph node
metastasis was the only covariate, significant
for predicting prognosis of breast cancer (rela-
tive risk = 4.18(1.54-11.4) for Cox's model: 414
(1.54-10.9) for the Weibull model).

3. Comparison of parameters estimated from
the logistic model to those from Cox's pro-
portional hazards model

Time intervals were categorized as 2, 5,
and 10 months for the fitting to the logistic
model. The regression coefficients and their
standard errors estimated from the logistic
model were compared to the estimates from

Cox's proportional hazards model (Table 4).
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Table 4. Regression coefficients and standard
errors by the logistic model and Cox’s
proportional hazards model

. intervals LR Model* Cox Model
Covariates
used B coeff. se**  fc coeff. se.
NAGE 2 months -0.47 0477

5 months -0.48 0.48 -0.47 0.47

10 months -0.35 0.49

NT 2 months -0.13 0.43
5 months -0.02 0.46} -0.04 0.45

10 months -0.03 0.47

NN 2 months 1.42 0.50
5 months 1.41 0.51 J 1.43 0.51

10 months 1.43 0.52

* jogistic regression model
** standard error

For the covariates, there was not so significant
difference between parameters estimated from
the logistic model and Cox’s model.

DISCUSSION

This study confirmed that both the Weibull
model and the logistic model can be used as
approximate methods in order to estimate
parameters from Cox’'s proportional hazards
model. Particularly noteworthy was that the
PC-SAS system could be successfully applied
in survivalranalysis when the parameters were
going to be estimated from Cox's model. Ap-
proximation to Cox's model was theoretically
considered and illustratively presented in this
paper using actual data on prognostic evalu-
ation of breast cancer.

For the covariates, NAGE and NN, re-
gression coefficients estimated from the Weibull
model was almost identical with those
estimated from Cox's proportional hazards
model. Such a good estimation was certainly
due to the fact that each hazard stratified by
the variable was suitable to the proportional
model, as seen in graphic illustrations. How-
ever, the covariate, NT, showed a discrepancy

in the parameter estimate compared to that
from Cox's model, since the variable had a sub-
stantial degree of unproportionality, which was
destined to violate the proportionality assump-
tion (Cox 1972; Shibata et al. 1989). These
findings suggest that such an estimation of
regression coefficients of Cox's proportional
hazards model may not be suitable, where viol-
ation of the proportionality assumption is evi-
dent. If such violation can be confirmed appar-
ently in a survival data, one may use another
approach using a parametric model, which may
be best fitted to the data. The exponential func-
tion or the gamma function is generally
recommended for such an alternative choice
for analysis on survival data (SAS Institute Inc.
1988). Such inappropriateness due to violation
of the assumption might be alleviated through
increasing the sample size of the study group
(Shibata et al. 1989). Relative risks and their
95% confidence intervals showed almost ident-
ical results for those variable suitable to the
proportionality assumption in this study. In sur-
vival analysis, statistical significance may be af-
fected by real difference in survivorship of each
prognostic factor, as weil as by the fithess to
Cox's proportional hazards model (Lee et al.
1991).

For the approximation procedure of the
parameter from the logistic regression model to
Cox’s regression model, similar results could be
obtained for the covariates, NAGE, NN and NT.
Such approximation could be validated, be-
cause we handled the survival time as a dis-
crete time interval. It has been suggested that
the estimates from the discrete logistic model
may be similar to those from an analysis based
on the proportional hazards model when the
event rates are small in each interval, normally
less than 0.1 (Hosmer and Lemeshow, 1989).
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