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A frequency-space 2-D scalar wave extrapolator using
extended 25-point finite-difference operator

Changsoo Shin∗ and Heejeung Sohn‡

ABSTRACT

Finite-difference frequency-domain modeling for the
generation of synthetic seismograms and crosshole to-
mography has been an active field of research since the
1980s. The generation of synthetic seismograms with the
time-domain finite-difference technique has achieved
considerable success for waveform crosshole tomogra-
phy and for wider applications in seismic reverse-time
migration. This became possible with the rapid devel-
opment of high performance computers. However, the
space-frequency (x, ω) finite-difference modeling tech-
nique is still beyond the capability of the modern su-
percomputer in terms of both cost and computer mem-
ory. Therefore, finite-difference time-domain modeling
is much more popular among exploration geophysicists.
A limitation of the space-frequency domain is that the
recently developed nine-point scheme still requires that
G, the number of grid points per wavelength, be 5. This
value is greater than for most other numerical modeling
techniques (for example, the pseudospectral scheme). To
overcome this disadvantage inherent in space-frequency
domain modeling, we propose a new weighted aver-
age finite-difference operator by approximating the spa-
tial derivative and the mass acceleration term of the
wave equation. We use 25 grid points around the col-
location. In this way, we can reduce the number of
grid points so that G is now 2.5. This approaches the
Nyquist sampling limit in terms of the normalized phase
velocity.

INTRODUCTION

Seismic inversion of the scalar wave equation using implicit
finite-difference methods in the space-frequency (x, ω) domain
has been employed recently by Pratt and Worthington (1990).
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Unfortunately, the complex impedance matrices required by
implicit finite-difference methods are huge. Therefore, any sav-
ings in the number of grid points required in such schemes is
of critical importance. In the space-time or (x, t) domain, for
a time step 1t or near the stability limit, ten (G = 10) or more
grid points per wavelength should be used when a second-order
finite-difference technique is employed, while a fourth-order
O(1t2, 1x4) scheme requires five grid points per wavelength
(Alford et al., 1974). Finite-difference algorithms using higher
order terms such as O(1t4, 1x10) require three grid points
per wavelength, approaching the same level of accuracy as the
pseudospectral method (Dablain, 1986). One disadvantage of
the space-time (x, t) domain is that for strongly inhomoge-
neous velocity models, the accuracy depends on the value of
the local velocity, while the stability limit is determined by the
greatest velocity in the model. The space-frequency domain
modeling does not have any stability problem (Marfurt, 1984).
In spite of this advantage, the conventional five-point operator
in the space-frequency domain (Pratt and Worthington, 1990)
requires more grid points (G = 13) than the corresponding op-
erators in the space-time domain to achieve the same accu-
racy. The algorithm developed by Jo et al. (1996) exploited a
finite-element–like (Marfurt, 1984) optimal nine-point finite-
difference star for the approximation of the Laplacian and
the mass acceleration terms, in which an optimal set of co-
efficients could be found. The nine-point scheme allowed the
number of grid points to be reduced from thirteen per wave-
length to five or six per wavelength (maintaining the same
accuracy).

In this study, we present a new scheme for designing a 25-
point operator based on a new averaging method for selecting
coefficients. In contrast to the method used to develop the nine-
point star, we use a weighted Laplacian operator and mass
acceleration term at four different rotation angles to reduce
numerical anisotropy. We find coefficients by constructing the
overdetermined matrix satisfying the best normalized phase
velocity and solve it using a singular-value decomposition
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method. Numerical analysis indicates that a 25-point finite-
difference operator in the forward modeling when solving the
2-D scalar wave equation can reduce the number of grid points
down to three points per wavelength in terms of the group ve-
locity, thereby approaching the accuracy of the pseudospectral
method.

IMPROVEMENT OF THE ACCURACY BY A 25-POINT
AVERAGE FINITE DIFFERENCE SCHEME

In a Cartesian coordinate system, the 2-D scalar wave equa-
tion with no damping in the frequency domain is given by

∇2 P + ω2

ν2
P = f (ω)δ · (x − xs)δ(z − zs), (1)

where P(x, z, ω) is the Fourier component of the wavefield
pressure, ω is the angular frequency, ν(x, z) is the velocity of
propagation, f (ω) is the source function Fourier transform,
δ(x) is the Dirac delta function, and xs and zs are the hor-
izontal and vertical coordinates of the source location. The
conventional second-order finite-difference approximation to
equation (1) is

Pm+1,n − 2Pm,n + Pm−1,n

1x2
+ Pm,n+1 − 2Pm,n + Pm,n−1

1z2

+ ω2

ν2
Pm,n = F(ω)δsr, (2)

where 1x and 1z are the finite-difference grid spacing in x-
and z-direction, respectively, Pm,n is the discretized wavefield at
([xm, zn] = [x0+(m−1)1x, z0+(n−1)1z]), and δmn is Kronecker
delta, with δsr = 1 when s= r and δsr = 0 otherwise. In the case
of the extended 25-point average finite-difference star shown in
Figure 1, we can have four different finite-difference operators
at 0◦, 26.6◦, 45◦, and 63.4◦, each approximating the Laplacian
in a different coordinate frame:

FIG. 1. The 25-point finite-difference computational grid.

∇2
(0) P = ∂2 P

∂x2
0

+ ∂2 P

∂z2
0

,

∇2
(26.6) P = ∂2 P

∂x2
26.6

+ ∂2 P

∂z2
26.6

;

(3)

∇2
(45) P = ∂2 P

∂x2
45

+ ∂2 P

∂z2
45

,

∇2
(63.4) P = ∂2 P

∂x2
63.4

+ ∂2 P

∂z2
63.4

,

where xθ , zθ denote the Cartesian grid rotated by θ degrees.
Finite-difference approximations to equation (3) for the inner
nine-point grid (Figures 2a and 2b) are given by

∇2
(0,1) P

∣∣
x=xm,z=zn

= (Pm+1,n + Pm−1,n − 4Pm,n + Pm,n+1 + Pm,n−1)
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0

,
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(4b)
while approximations using the outer 17-point grid (Fig-
ures 2c–2f) are given by
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(4f)
Following Jo et al. (1996) in approximating the mass acceler-
ation term, we can approximate the pressure Pm,n of the mass
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acceleration term in equation (2) by using the eclectic form of a
lumped mass at the center node itself and the consistent mass at
its neighboring nodes (Marfurt, 1984). We distribute the pres-
sure Pm,n of the mass acceleration term in equation (2) at the
collocation point and its neighboring points. In our 25-point
finite-difference grids, we separated 25-point finite-difference
grids into seven difference groups of nodal points as

P̄(0,0) = Pm,n, (5a)

P̄(0,1) = Pm−1,n + Pm,n−1 + Pm+1,n + Pm,n+1, (5b)

P̄(45,
√

21) = Pm−1,n−1 + Pm+1,n−1 + Pm+1,n+1 + Pm−1,n+1,

(5c)

P̄(0,21) = Pm−2,n + Pm,n−2 + Pm+2,n + Pm,n+2, (5d)

P̄(45,2
√

21) = Pm−2,n−2 + Pm+2,n−2 + Pm+2,n+2 + Pm−2,n+2,

(5e)

P̄(26.6,
√

51) = Pm+2,n−1 + Pm+1,n+2 + Pm−2,n+1 + Pm−1,n−2,

(5f)

P̄(63.4,
√

51) = Pm+1,n−2 + Pm+2,n+1 + Pm−1,n+2 + Pm−2,n−1,

(5g)

where the first number in parenthesis indicates the angle of ro-
tation and the second number in parenthesis indicates the dis-
tance from the collocation point. Each group of nodal points in

FIG. 2. Five-point Laplacian operators extracted from Figure 1, corresponding to equations (4a)–(4f).

equation (5) will have different weighting coefficients and the
weighted average of each group will be used to approximation
the pressure Pm,n in equation (2).

Since each of these approximations to ∇2 P and P̄ ap-
proaches the true value as 1 → 0, we can approximate ∇2 P
and P̄ in equation (2) by any linear combination of the
estimates given by equations (4) and (5). We express this
arbitrary linear combination with (yet to be determined) coef-
ficients a1 − a6, b1 − b7, thereby obtaining the finite-difference
equation(

a1∇2 P(0,1) + a2∇2 P(0,21) + a3∇2 P(45,
√

21)

+ a4∇2 P(45,2
√

21) + a5∇2 P(26.6,
√

51) + a6∇2 P(63.4,
√

51)

)
+ ω2

ν2

(
b1 P̄(0,0) + b2 P̄(0,1) + b3 P̄(0,21) + b4 P̄(45,

√
21)

+ b5 P̄(45, 2
√

21) + b6 P̄(26.6,
√

51) + b7 P̄(63.4,
√

51)

) = 0,

(6)

where the coefficients are additionally constrained by∑6
i =1 ai = 1, b1 + 4

∑7
i =2 bi = 1.

The object of creating the linear combination given in equa-
tion (6) is to combine the dispersion characteristics of each
separate finite-difference operator in the most optimal means.
This is accomplished by expressing normalized phase and
group velocities in terms of the coefficients, and adjusting the
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coefficients to keep these normalized velocities as close to unity
as possible.

We now perform classical dispersion analysis by assuming a
plane-wave solution of the form:

P(x,z) = eik(x cos θ+zsin θ),

where θ is the propagation angle.
Substituting this plane harmonic wave into equations (4)–(6)

yields

ωR

V R
= L

M12
, (7)

where

L = a1(4 − 2 cos(2π(sin θ)/G) − 2 cos(2π(cos θ)/G))

+ a2(1 − 0.5 cos(4π(cos θ)/G)

− 0.5 cos(4π(sin θ)/G))

+ a3(2 − 2 cos(2π(cos θ)/G) cos(2π(sin θ)/G))

+ a4(0.5 − 0.5 cos(4π(cos θ)/G) cos(4π(sin θ)/G))

+ a5(0.8 − 0.4 cos(4π(sin θ)/G + 2π(cos θ)/G)

− 0.4 cos(2π(sin θ)/G − 4π(cos θ)/G))

+ a6(0.8 − 0.4 cos(2π(sin θ)/G + 4π(cos θ)/G)

− 0.4 cos(4π(sin θ)/G − 2π(cos θ)/G));

M = b1 + b2(2 cos(2π(sin θ)/G) + 2 cos(2π(cos θ)/G))

+ b3(2 cos(4π(cos θ)/G) + 2 cos(4π(sin θ)/G)

+ b4(4 cos(2π(cos θ)/G) cos(2π(sin θ)/G))

+ b5(4 cos(4π(cos θ)/G) cos(4π(sin θ)/G))

+ b6(2 cos(4π(sin θ)/G + 2π(cos θ)/G)

+ 2 cos(2π(sin θ)/G − 4π(cos θ)/G))

+ b7(2 cos(2π(sin θ)/G − 4π(cos θ)/G)

+ 2 cos(4π(sin θ)/G − 2π(cos θ)/G)),

where G = λ/1 and G is the number of grid points per wave-
length.

We can now calculate the numerical phase velocity Vph = ω/k
and the numerical group velocity Vgr = ∂ω/∂k: Equation (7)
can be written as

Vph

ν
= G

2π

√
(L/M), (8)

Vgr

ν
= 1

21

(M × ∂L/∂k − L × ∂M/∂k)/M2√
(L/M)

. (9)

We have two ways to obtain the coefficients ai and bi . The
first way is to minimize the error defined by the difference

between the normalized phase velocity and unity (see Jo
et al., 1996). The second approach, which we adopt here,
is to explicitly assume the normalized phase velocity is
unity for many propagation angles θ and many values of
G simultaneously. If we attempt to satisfy this require-
ment for enough propagation angles, we obtain an overde-
termined system of equations that can be solved in the
least-squares sense. From equation (8), assuming unity, we
obtain

G

2π

√
L/M = 1. (10)

We rearrange equation (10) as

L − M4π2/G2 = 0 (11)

and substitute the first constraint (
∑6

i =1 ai = 1) associated with
equation (6) to obtain

L̃ + M4π2/G2 = 4, (12)

where

L̃ = a1(2 cos(2π(sin θ)/G) + 2 cos(2π(cos θ)/G))

+ a2(3 + 0.5(cos(4π(cos θ)/G) + cos(4π(sin θ)/G)))

+ a3(2 + 2(cos(2π(cos θ)/G) cos(2π(sin θ)/G)))

+ a4(3.5 + 0.5(cos(4π(cos θ)/G) cos(4π(sin θ)/G))

+ a5(3.2 + 0.4(cos(4π(sin θ)/G + 2π(cos θ)/G)

+ cos(2π(sin θ)/G − 4π(cos θ)/G)))

+ a6(3.2 + 0.4(cos(2π(sin θ)/G + 4π(cos θ)/G)

+ cos(4π(sin θ)/G − 2π(cos θ)/G))).

M = b1 + b2(2 cos(2π(sin θ)/G)

+ 2 cos(2π(cos θ)/G))

+ b3(2 cos(4π(cos θ)/G) + 2 cos(4π(sin θ)/G))

+ b4(4 cos(2π(cos θ)/G) cos(2π(sin θ)/G))

+ b5(4 cos(4π(cos θ)/G) cos(4π(sin θ)/G))

+ b6(2 cos(4π(sin θ)/G + 2π(cos θ)/G)

+ 2 cos(2π(sin θ)/G − 4π(cos θ)/G))

+ b7(2 cos(2π(sin θ)/G + 4π(cos θ)/G)

+ 2 cos(4π(sin θ)/G − 2π(cos θ)/G)),

where G = λ/1 and G is the number of grid points per wave-
length.

Because L̃ and M are functions of the number of grid points
per wavelength G and the propagation angle θ , equation (12)
can be given in a matrix form,
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A∗
i B∗

i C∗
i D∗

i E∗
i F∗

i · · · K ∗
i L∗

i M∗
i

· · · · · · · · · · · ·
·
·
·
·
·
·
·
·

A∗
n B∗

n C∗
n D∗

n E∗
n F∗

n · · · K ∗
n L∗

n M∗
n



×



a1

a2

a3

·
·

a6

b1

·
b6

b7



=



4

4

·
·
·
·
·
·
·
·
4



. (13)

Each additional row is generated by choosing a new value of
G or θ , where

A∗
k = 2 cos(2π sin(θi )/Gk) + 2 cos(2π cos(θi )/Gk),

B∗
k = 3 + 0.5 cos(4π cos(θi )/Gk) + cos(4π sin(θi )/Gk),

C∗
k = 2 + 2 cos(2π cos(θi )/Gk) cos(2π sin(θi )/Gk),

D∗
k = 3.5 + 0.5 cos(4π cos(θi )/Gk) cos(4π sin(θi )/Gk),

E∗
k = 3.2 + 0.4(cos(4π sin(θi )/Gk + 2π cos(θi )/Gk)

+ cos(2π sin(θi )/Gk − 4π cos(θi )/Gk)),

F∗
k = 3.2 + 0.4(cos(2π sin(θi )/Gk + 4π cos(θi )/Gk)

+ cos(4π sin(θi )/Gk − 2π cos(θi )/Gk)),

G∗
k = 4π2/G2

k,

Hk = 4π2/G2
k(2 cos(2π sin(θi )/Gk)

+ 2 cos(2π cos(θi )/Gk)),

I ∗
k = 4π2/G2

k(2 cos(4π cos(θi )/Gk)

+ 2 cos(4π sin(θi )/Gk)),

J∗
k = 4π2/G2

k(4 cos(2π cos(θi )/Gk) cos(2π sin(θi )/Gk)),

K ∗
k = 4π2/G2

k(4 cos(4π cos(θi )/Gk) cos(4π sin(θi )/Gk)),

L∗
k = 4π2/G2

k(4π cos(2 sin(θi )/Gk + 2π cos(θi )/Gk)

+ 2 cos(2π sin(θi )/Gk − 4π cos(θi )/Gk)),

M∗
k = 4π2/G2

k(2 cos(2π sin(θi )/Gk + 4π cos(θi )/Gk)

+ 2 cos(4π sin(θi )/Gk − 2π cos(θi )/Gk)),

k = 1, . . . , n, i = 1, . . . , m.

As the number of grid points per wavelength (G) increases and
the propagation angle with respect to the z-axis θ is changed,
equation (13) becomes overdetermined. The number of rows in
equation (13) is dependent on the number of grid points and the
propagation angles chosen. In our case, the interval of propaga-
tion angle is 5◦ and the interval of 1/G is 0.0025. The maximum
number of grid points is four points per wavelength (G = 4).
The size of the overdetermined matrix is 1000 by 13. After solv-
ing the overdetermined matrix using the singular-value decom-
position method, we obtained the coefficients below.

a1 = 0.0949098, a2 = 0.280677, a3 = 0.247253,

a4 = 0.0297441, a5 = 0.173708, a6 = 0.173708,

b1 = 0.363276, b2 = 0.108598, b3 = 0.00414870,

b4 = 0.0424801, b5 = 0.000206312,

b6 = 0.00187765, b7 = 0.00188342. (14)

Figure 3 shows normalized phase and group velocity curves
based on these coefficients. If we require the normalized group
velocity to be less than 0.5%, the conventional five-point for-
mula in the frequency domain requires G = 13 (Figure 4). For a
comparable degree of accuracy, the optimal nine-point formula
of Jo et al. (1996) requires G = 5 (Figure 5). For the 25-point av-
erage finite-difference operator, the number of grid points per
shortest wavelengths is 2.5 (Figure 3). The new scheme offers a
substantial reduction (50%) in the number of grid points while
maintaining the same bandwidth of the complex impedance
matrix. Consider the total number of core elements required
to store the complex impedance matrix when we use the band
matrix solver to factor the complex impedance matrix. Suppose
that the number of computer core locations used to store the
complex impedance matrix for the 9 point scheme for G = 5
is Nx × Nz × Nz, where Nx is the number of grid points in the
x-direction and Nz is the number of grid points in the z direc-
tion. The number of core memory elements for the twenty five
scheme for G = 2.5 will be (Nx/2) × (Nz/2) × (Nz). This results
in a memory reduction of one quarter and maintenance of the
same bandwidth, Nz, and results in the reduction of floating
point operations by four when a scalar computer is used to
factor the complex impedance matrix.

NUMERICAL EXAMPLE

To test the frequency-domain code based on the twenty-five
point scheme, we used a 2-D homogeneous model (2000 m
× 2000 m) as shown in Figure 6. The source is located at a
subsurface point and the receiver is located 1000 m horizon-
tally from the source. The velocity of the medium is 1500 m/s,
and the highest frequency used is 75 Hz. The grid interval
is 10 m for the minimum number of grid points (i.e., two
points per wavelength) allowed. For 200 × 200 mesh points, we
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FIG. 3. Normalized phase and group velocity curves for the finite-difference
solution of the 2-D scalar wave equation in the frequency domain using a
25-point weighted-average difference formulation with the coefficients given
in the text.

FIG. 4. Normalized phase and group velocity curves for different propaga-
tion angles with respect to the grid, for the finite-difference solution of 2-D
scalar wave equation using a conventional five-point difference formulation
in frequency-space domain.
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generated synthetic seismograms by the conventional five-
point formula of Pratt and Worthington (1990), nine-point for-
mula of Jo et al. (1996), and the twenty five point formula of
this study. Figure 7 shows the synthetic seismograms for each
formulation. As shown in Figure 7, the synthetic seismograms
based on the five- and nine-points formulas suffer from more
grid dispersion than the twenty-five-point formula.

CONCLUSIONS

We have developed a new frequency-domain finite-
difference scheme by extending the difference star at the col-
location point. The new scheme offers a substantial reduc-
tion in the number of grid points and extra savings of core
memory, while maintaining the same bandwidth of the com-
plex impedance matrix. In terms of the group velocity, the new
scheme is comparable to the pseudospectral method (Kosloff
and Baysal, 1982). The consequence of this reduced stor-
age is that realistically sized models can now be used in the
space-frequency domain, making multisource modeling and in-
version possible for large scale exploration problems.

FIG. 5. Normalized phase and group velocity curves for the frequency-domain finite-difference solution using
the nine point weighted average difference formulation given in Jo et al. (1996).

FIG. 6. The homogeneous model taken to compare the syn-
thetic seismograms by each different method.
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a)

b)

c)

FIG. 7. Synthetic seismograms generated by the different finite-difference technique using two-grid points per
wavelength in all cases (G = 2). (a) Synthetic seismogram generated by the conventional five-point difference
star. (b) Synthetic seismogram generated by the nine-point finite-difference star of Jo et al. (1996). (c) Synthetic
seismogram generated by the twenty-five point operator of this study.
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