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Understanding CMP stacking hyperbola in terms
of partial derivative wavefield

Changsoo Shin∗ and Seunghwan Chung‡

ABSTRACT

Common midpoint (CMP) stacking and velocity anal-
ysis are fundamental seismic imaging concepts based on
a layered velocity model. We relate these concepts to
partial derivative seismograms, which give seismic am-
plitude variations as a function of layer coordinates. The
CMP stacking hyperbola can be described kinematically
by partial derivative seismograms, resulting in an inter-
esting seismic imaging relationship.

INTRODUCTION

In the years since Mayne (1962) invented the CDP technique
as a fundamental data processing method, the ability of explo-
ration seismologists to image the subsurface has been improved
greatly. The main objective of summing seismic signals along a
straight line after NMO correction is to enhance the primary
reflected seismic signal and to suppress multiple reflections and
noise. In stacking seismic data recorded and sorted in common
midpoint (CMP) geometry, a hyperbolic time distance relation
is assumed. This is a simple flat-layer model. However, this as-
sumption fails for large source-receiver separations and more
complex subsurface geology. An approach based on a direct
model-based stacking method for the construction of an ac-
curate zero-offset time image was proposed by Landa et al.
(1993). The hyperbola having maximum coherence in veloc-
ity analysis is replaced by the traveltime curve of the CMP
source-receiver configuration computed by ray tracing. Landa
et al. (1993) summed the seismic signals along the traveltime
curves computed by ray tracing and obtained an accurate zero
offset section. In principle, there is no conceptual difference
between the summation of seismic signals along the hyperbola
and the summation of seismic signals along a straight line after
NMO or dip moveout (DMO) correction. By comparing con-
ventional CMP stacking and model-based stacking by Landa
et al. (1993), we introduce the concept of a partial derivative
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seismogram with respect to the interface segment. The stack-
ing hyperbola having maximum coherence in velocity analysis
and the traveltime curve of Landa et al. (1993) can be evalu-
ated as a first-arrival approximation to our partial derivative
seismogram. In this paper, we show that the stacking hyperbola
having the maximum coherence measurement in velocity anal-
ysis is, in fact, the kinematic approximation of the first-arrival
events of the CMP partial derivative seismogram with respect
to the reflection interface segment.

PARTIAL DERIVATIVE SEISMOGRAMS WITH RESPECT
TO THE INTERFACE PARAMETER

As shown by Kelly et al. (1982), the 2-D scalar (i.e., acoustic)
wave equation is given by
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where x is the horizontal distance, z is the depth from the sur-
face, t is the time, U(x, z, t) is the wavefield (i.e., displacement,
pressure, etc.), ρ(x, z) is the density, k(x, z) is the bulk mod-
ulus, and f (x, z, t) is the source function. This equation and
the comparable elastic wave equation were solved by Marfurt
(1984) using a finite-element approach. Equation (1) is based
on Newton’s second law of motion and Hooke’s law, which,
in the finite-element discretized formulation of the dynamic
problem for linearly elastic, undamped materials, can be writ-
ten as

Mü+KU = f, (2)

where M is the mass matrix representing system inertia, U is
the wavefield vector, K is the stiffness matrix representing the
Laplacian term in equation (1), and f is the source vector. The
double dots indicate the second derivative with respect to time.

In finite-element discretization, the subsurface of the earth
is subdivided into a continuous grid of triangular or quadri-
lateral elements. A wave equation with appropriate boundary
conditions is approximated across each element. The solution
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to the entire problem is then obtained by assembling the sys-
tem of equations from each element and solving the resulting
system of equations. Because of the increased computational
effort required to represent an arbitrarily irregular grid, the
finite-element discretization of the wave equations has found
limited use in seismic modeling. Instead, the simpler, and there-
fore computationally faster, finite-difference method is more
commonly used. However, when modeling wave propagation
at an irregular interface, the finite-element method is superior
to the finite-difference method. The finite-element technique
is a powerful method for parameterizing the interfaces be-
tween differing geologic media. (A big advantage of the finite-
element method is that it can accurately represent slopes of in-
terfaces, whereas finite-difference methods must use stairstep
approximations.) The solution of any differential equation and
the resulting mass and stiffness matrices by the finite-element
method is a function of discretized coordinates, in addition to
material parameters such as velocity and density.

The motivation for computing partial derivative seismo-
grams with respect to the interface segment comes from need-
ing a Jacobian matrix (sensitivity matrix) to solve the nonlin-
ear least-squares inversion problem by moving the interface
separating geologic media, as described by Shin (1988). To il-
lustrate Shin’s method, we apply equation (2) to an arbitrary
model to compute the partial derivative wavefield with respect
to the interface segment or the discretized interface coordi-
nates. Figure 1 shows the 2-D model with two layers. The inter-
face separating the layers has horizontal, oblique, and vertical
segments. The interface points (xm, zm) are shown for each seg-
ment. These three segments illustrate all possibilities. Suppose
we slightly change the shape of the finite-length interface seg-
ment vertically by fixing both its end points in the horizontal
layer (perturb the interface vertically) and then measure the
difference between the pre- and postperturbed wavefields. This
procedure results in an approximated measurement of the par-
tial derivative wavefield with respect to the vertical coordinate
of the interface. In perturbing the interface segment, velocity
and density parameters are changed simultaneously.

In contrast to material parameter (velocity or density) per-
turbation used by Bleistein and Gray (1985), the amount of
perturbation of velocity and density is the difference of both

FIG. 1. The interface segments to be perturbed. The dotted
line represents the interface shape when interface segment zm
is perturbed. When perturbing the interface segment, velocity
and density are perturbed as well. Unlike Born perturbation,
the amount of perturbation is the difference between veloci-
ties sharing the interface. For the horizontal interface and the
vertical interface, the interfaces can be perturbed in the verti-
cal direction and the horizontal direction, respectively. For an
interface with a dip, perturbation is done in the horizontal and
vertical directions.

the velocity and the density between geological media sepa-
rated by the interface. This double perturbation is the major
difference between material parameter perturbation and in-
terface perturbation. Considering only material perturbation
in the vicinity of the interface and by forcing the material pa-
rameter to be perturbed in a specific direction as if it were
a vector, the results of material parameter perturbation are
similar to those of our partial derivative seismogram. In other
words, this procedure is equivalent to taking the partial deriva-
tive of the wavefield with respect to the vertical coordinate or
differentiating equation (2) with respect to zm. The result of
this differentiation gives

M
∂ü
∂zm
+K

∂u
∂zm
= − ∂M

∂zm
ü− ∂K

∂zm
u = f∗. (3)

Differentiation with respect to xm and zm for oblique segments
and with respect to xm for vertical segments results in an equa-
tion similar to equation (3).

Equation (3) is in the same form as equation (2), where ü,
u, and f are replaced by ∂ü/∂zm, ∂u/∂zm, and f∗, respectively.
Since f in equation (2) is not a function of the interface coordi-
nate unless we excite the source at the interface, the derivative
of f in equation (2) with respect to the interface segment co-
ordinate becomes zero. The value f∗ is a virtual source used to
compute the partial derivative wavefield ∂u/∂zm. The virtual
source is an imaginary source required to compute the par-
tial derivative wavefield. Using the virtual source as the real
source, we can solve equation (3) for partial derivative wave
propagation (i.e., partial derivative seismograms). Physically, a
partial derivative seismogram represents the amount of energy
that travels through the interface after being radiated from the
source. By looking at the partial derivative seismogram, we can
tell which part of the wavefield measured at the surface passes
through each interface segment in the subsurface. By measur-
ing the zero-lag value of crosscorrelation between the field seis-
mogram and the partial derivative seismogram, we can tell how
much of the field seismogram is sensitive to the interface seg-
ment. We can then image the subsurface by displaying the zero-
lag crosscorrelation between the field seismogram and the par-
tial derivative seismogram at the perturbed interface position.

Another way of viewing this is found in the least-squares in-
version and migration started by Tarantola (1984). Gray (1997)
discusses the relation between least-sqaures inversion and mi-
gration by comparing the seismic inversion and migration de-
veloped by three leading scientists. Least-squares inversion de-
generates into migration by ignoring the off-diagonal terms of
the approximate Hessian (Gray, 1997; Pratt et al., 1998) or
by adding a large constant to the main diagonal of the ap-
proximate Hessian matrix as part of the regularization process
(Lines, 1998, personal communication).

We now explain perturbation for an oblique (i.e., dipping)
layer and its implication on the CMP stacking theory. Figure 2
shows that flat layers, exemplified by the top layer, act as single-
point reflectors. In comparison, dipping layers do not act as
single-point reflectors but have finite-sized smear segments of
reflected rays. Despite the fact that the smearing effect pro-
foundly alters reflections compared to point reflections, the
(DMO) theory resolves smearing from dipping layers. The rays
for a CMP gather in the flat layered media are focused exactly
on the CDP; however, the rays for the CMP gather from the dip-
ping layer are unfocused because of smearing. To explain the
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theoretical basis of CMP stacking to include smearing, we can
use a partial derivative seismogram with respect to finite-length
segments of the interface (i.e., the smearing zone). When per-
turbing the finite-size interface segment for an oblique layer,
we replace a CMP gather seismogram with a CMP gather par-
tial derivative seismogram generated by an oblique bar-shaped
virtual source.

FIG. 2. Raypath diagrams for a CMP source-receiver configuration. Rays for the flat layer are focused on the CMP point exactly,
whereas rays for the dipping layer and synclinal model are unfocused. When perturbing the interface segment for the CMP
source-receiver configuration, the length of the perturbed zone can vary from a point for the flat layer to a relatively long segment
for the dipping and other layers.

FIG. 3. Ten interface segments are perturbed vertically and horizontally. The CMP point is located at 1100 m. Every sixth source
and receiver are indicated by an asterisk and a triangle, respectively. Forty-five shot-receiver pairs are used to compute the forward
modeling data and the partial derivative seismograms with respect to the interface segments.

CMP STACKING HYPERBOLA IN TERMS OF PARTIAL
DERIVATIVE SEISMOGRAMS

To illustrate the CMP stacking hyperbola in terms of partial
derivative seismograms, we use a four-layer velocity model as
shown in Figure 3. Within this model, we identify ten interface
segments and number them 1 through 10. Segments 2, 5, 8,
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and 9 were specifically noted for later analysis; the remaining
segments are arbitrary.

When we perturb an interface segment, we have an unlim-
ited number of choices for perturbing the interface segment
by shifting and adjusting the length of the interface segment.
The length of the interface segment to be perturbed can vary
from one point to a relatively long interface segment, depend-
ing upon the length of the focused or unfocused (smeared)
CMP zone. In fact, we should calculate the unlimited number
of CMP partial derivative seismograms with respect to the un-
limited number of interface segments, but it is impossible for us
to generate every possible CMP partial derivative seismogram
with respect to an unlimited interface segment.

We perturbed all ten segments vertically and seven segments
(4 through 10) horizontally. For the horizontal interface be-
tween the first and second layers, we used point perturbation.
For the dipping layers, we used finite-segment perturbations
with smear lengths ranging from 8 to 14 nodal points. Based
on Figure 2, we calculated the smear zone lengths so we could
perturb the same length of the interface segment with the finite-
element modeling technique. Because of its greater diversity
for multiple-shot simulations, we transformed equation (2) into
the frequency domain and used a frequency domain finite-
element technique to compute the CMP gather and partial
derivative seismograms for a CMP at 1100 m (Figure 3). For
simplicity, to avoid data processing steps and CMP sorting, and
to save computation time, we calculated the CMP seismograms
and CMP partial derivative seismograms for 45 shot-receiver
pairs instead of computing several hundred multiple-shot seis-
mograms.

Figure 4 shows the CMP gather seismograms, and Figure 5
shows the 17 partial derivative seismograms with respect to
the interface segments for the 10 segments shown in Figure 3.
It is obvious that for the first interface, the partial derivative
seismogram with respect to z2 (Figure 5b) fits the CMP gather
in Figure 4 better than do the partial derivative seismograms

FIG. 4. CMP gather section of forward modeling data for a
CMP located at 1100 m.

shown in Figures 5a,c. There is a good correlation between re-
flection events (primaries and multiples) from the first interface
on the CMP gather and the partial derivative seismogram. For
the second interface, the partial derivative seismograms with
respect to interface segments x5 and z5 (Figures 5f and 5g) have
maximum correlation with the CMP gather in Figure 4. For
the third interface, the partial derivative seismograms in Fig-
ures 5l–o, have maximum correlation with the CMP gather in
Figure 4. To clearly demonstrate the connection between the
partial derivative seismogram and the CMP stacking hyper-
bola, we computed the velocity spectrum for Figure 4. Figure 6
shows the velocity spectrum. Figure 7 shows the stacking hy-
perbolas (the traveltime curves calculated using the approach
of Landa et al., 1993) corresponding to the three reference
times and the corresponding three rms velocities numbered in
Figure 6 for the primary reflections in Figure 4. Hyperbola 1
in Figure 7 overlays the first-arrival event of the partial deriva-
tive seismogram from segment 2 (Figure 5b). Hyperbolas 2 and
3 overlay the first-arrival events in Figures 5f,g, and 5l,m,n,o,
respectively. The first-arrival events of the partial derivative
seismograms correspond to those primary reflections usually
taken into account in conventional stacking.

To proceed further, we computed zero-lag values of cross-
correlation between the partial derivative seismogram and the
CMP gather seismograms. In the same way that the partial
derivative seismograms are defined with respect to the x- and
z-coordinates of the interface segment, vector zero-lag cross-
correlation with respect to the interface segment can be ex-
pressed as

sx =
∫ xmax

−xmax

∫ tmax

0
u(x, t)ux(x, t) dx dt (4)

and

sz =
∫ xmax

−xmax

∫ tmax

0
u(x, t)uz(x, t) dx dt, (5)

where u(x, t) is the CMP gather seismogram, ux(x, t) is the
CMP gather partial derivative seismogram with respect to the
x-coordinate of the interface segment, uz(x, t) is the CMP par-
tial derivative seismogram with respect to the z-coordinate of
the interface segment, x is the offset distance, xmax is the max-
imum offset distance, tmax is the maximum recording time, sx

is the zero-lag value of crosscorrelation with respect to the x-
coordinate of the interface segment, and sz is the zero-lag value
crosscorrelation with respect to the z-coordinate of the inter-
face segment. The total value of the zero-lag crosscorrelation
can be expressed as a vector whose magnitude and direction
are given by

s=
√

s2
x + s2

z (6)

and

θ = tan−1 sz

sx
. (7)

An interesting observation is that angle θ in equation (7) is
approximately the same as the dip of the interface segment.
Table 1 shows dipping angles computed by equation (7) for
interface segments 2, 5, 8, and 9, as shown in Figure 3. Dips
computed using equation (7) approximate dips of the interface
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FIG. 5. CMP gather section of partial derivative seismograms with respect to the following interface segments in Figure 3: (a) z1,
(b) z2, (c) z3, (d) x4, (e) z4, (f) x5, (g) z5, (h) x6, (i) z6, (j) x7, (k) z7, (l) x8, (m) z8, (n) x9, (o) z9, (p) x10, and (q) z10.
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FIG. 6. Velocity spectrum for the section shown in Figure 4.
Arrows 1, 2, and 3 indicate the primary reflections from the
flat layer, dipping layer, and synclinal layer, respectively, in
Figure 2.

FIG. 7. Stacking hyperbolas reproduced from the velocity spec-
trum (the traveltime curves calculated using the approach
of Landa et al., 1993). The first hyperbola matches the
first-arrival part of Figure 5b. The second hyperbola matches
the first-arrival parts of Figures 5f and 5g. The third hyperbola
matches the first-arrival parts of Figures 5l–5o.

segments. However, in the usual stacking procedure, one mea-
sures the maximum coherence using a trial hyperbola that rep-
resent a kinematic waveform approximation of the first-arrival
part of the partial derivative seismograms with respect to a cer-
tain interface segment. Since it is impossible to determine the
exact partial derivative seismogram unless one knows the ve-
locity model and computes the partial derivative seismogram
using numerical modeling techniques, it is difficult to tell which
partial derivative seismogram (with respect to the x- or the z-
coordinate of the interface segment) is kinematically approxi-
mated in conventional stacking. The mathematical expression
of conventional CMP stacking can be given as

s=
∫ xmax

−xmax

∫ tmax

0
u(x, t)δ

(
t −

√
t2
0 +

x2

v2
s

)
dx dt, (8)

where δ is a delta function andvs is the rms velocity. A δ function
in equation (8) represents the kinematic waveform expression
of the CMP partial derivative seismogram. In a distributional
sense, equation (8) means summing seismic signals along the
hyperbola. In conventional stacking, the correct position for
displaying a zero-lag value of crosscorrelation is unknown. For
flat layered media, the summed signal having maximum zero-
lag value of crosscorrelation occurs just below the CMP. The
stacked signal is displayed at zero-offset time t0, which is the
shortest time and is proportional to the depth of the interface
segment. Migration procedures put stacked signals into their
correct positions.

To examine the link between stacking and prestack migra-
tion, we stacked the CMP gather seismogram shown in Figure 4.
Figure 8 shows the stacked trace for a CMP gather seismogram

Table 1. Dips of the interface segments in Figure 3.

Segment True dip Dip computed by equation (7)

2 0◦ 0◦
5 −4.57◦ −4.39◦
8 −10.30◦ −11.92◦
9 8.13◦ 9.3◦

FIG. 8. Stacked trace for the CMP gather section of Figure 4.
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shown in Figure 4; Figure 9 shows the total zero-lag value of
crosscorrelation displayed on the depth model. Figure 9 illus-
trates that a given stacked trace displayed below CMP can be
moved to the correct depth positions by measuring the total
zero-lag value of crosscorrelations and displaying them at their
correct location. In the illustrated case, the total zero-lag value
of crosscorrelation is the number indicating the interface sep-
arating the geologic layers (there is no interface like wiggle).

Another problem arises when measuring a zero-lag value
of crosscorrelation. Geometric spreading and reflection coeffi-
cient changes in wave propagation through the geologic media
cause a small zero-lag value of crosscorrelation at depth points
remote from the source. In field seismograms, such small values
of crosscorrelation are compensated by automatic gain control
(AGC) of the seismograms. Our recourse is to normalize the
total zero-lag value of crosscorrelation. We used three different
ways of normalizing the zero-lag crosscorrelation:

s =

√√√√√√√√
(∫ xmax
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∫ tmax

0
u(x, t)ux(x, t) dx dt

)2

+
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)2
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0
ux(x, t)ux(x, t) dx dt

)2

+
(∫ xmax
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∫ tmax
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uz(x, t)uz(x, t) dx dt

)2 , (9a)
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+
(∫ xmax

−xmax

∫ tmax

0
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Figure 10 shows three different sections normalized by equa-
tion 9. From Figure 10, we note that the values are very small for
all but four locations. After normalization, the deeper image
of interfaces is enhanced so we can identify them more eas-
ily. Since we did not generate every possible partial derivative
seismogram, it is difficult to determine which normalization
gives the best enhanced image. However, these normalizations
provide a logical way to obtain the subsurface image without
using automatic gain recovery of seismic signals weakened by
geometric spreading and reflection coefficient changes. These
sections can be considered as prestack depth migrations of a
CMP gather seismogram of Figure 4.

CONCLUSION

This paper proposes a new approach for a kinematic eval-
uation of the CMP stacking hyperbola by using the partial
derivative seismograms needed for full waveform inversion.
Numerical tests indicate that the CMP stacking hyperbola cor-

responding to the maximum coherence in velocity analysis
and Landa et al.’s (1993) traveltime curve represent the kine-
matics of the first-arrival event of the CMP partial derivative
seismogram with respect to the reflection interface segment.
The high cost of computing partial derivative seismograms
makes stacking which uses the partial derivative seismogram
impractical unless we use a more efficient way (using source
and receiver reciprocity) of computing partial derivative seis-
mograms. Therefore, it is interesting to see the relationship
of partial derivative seismograms to CMP stacking hyperbolas
(which are inexpensive). If one computes the partial derivative
seismogram using a numerical modeling technique—although
the procedure is expensive—one can obtain the stacking hy-
perbola, including primaries, multiples, and other wave events.
These hyperbolas will have amplitude and phase variations
along the hyperbolic curves. As a result, if the partial deriva-
tive seismograms are used for subsurface imaging, we do not

need AGC of the seismic signals. The normalization process
will compensate for the small zero-lag value of crosscorrelation
caused by geometric spreading.
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FIG. 10. Normalized total zero-lag values of crosscorrelation displayed for the interface locations shown in Figure 3. The values are
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