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Improved frequency-domain elastic wave modeling
using weighted-averaging difference operators

Dong-Joo Min∗, Changsoo Shin‡, Byung-Doo Kwon∗∗,
and Seunghwan Chung§

ABSTRACT

We develop a new finite-difference scheme that re-
duces the number of grid points per wavelength required
in frequency-domain elastic modeling. Our approach
computes weighted averages of the spatial second-
order derivative and the mass acceleration terms us-
ing a 25-point computational stencil. By determining the
weighting coefficients to minimize numerical dispersion
and numerical anisotropy, we reduce the number of grid
points to 3.3 per shear wavelength, with a resulting er-
ror in velocities smaller than 1%. Our choice of grid
points reduces the computer memory needed to store
the complex impedance matrix to 4% of that for a con-
ventional second-order scheme and to 54% of that for a
combined second-order scheme. The 25-point weighted
averaging scheme of this paper makes it possible to ac-
curately simulate realistic models. Numerical examples
show that this technique can achieve the same accurate
solutions with fewer grid points than those from previ-
ous frequency-domain second-order schemes. Our tech-
nique can be extended directly to 3-D elastic modeling;
the computational efficiency will be even greater than
that realized for 2-D models.

INTRODUCTION

Frequency-domain modeling has been developed and used
successfully in forward modeling of wave propagation for
the last thirty years. Frequency-domain modeling was initi-
ated by Lysmer and Drake (1972) to account for the wave
propagation in the earth and developed further by Marfurt
(1984) and Marfurt and Shin (1989). Shin (1988) applied
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frequency-domain finite-element modeling to seismic inver-
sion. All of these authors used the finite-element method.
Pratt and Worthington (1990) and Pratt (1990a,b) have ap-
plied finite-difference modeling in the frequency domain to
the inversion of crosshole tomography and seismic imaging.

The frequency-domain technique has proved to be, for vis-
coelastic modeling, more tractable than time-domain methods
because the viscoelastic wave equation, expressed as a form
of convolution integral in the time domain, is represented
in linear form with a complex viscoelastic modulus. In ad-
dition, we avoid the stability limitations of time integration
schemes (Marfurt, 1984). Although there is a large oscilla-
tion at the natural frequencies of a given geological model,
the resonant phenomena can be prevented by adding attenua-
tion (by introducing complex frequencies). Another advantage
of the frequency-domain technique is that parallelization can
be easily implemented by distributing frequencies across the
computational processors. In spite of these advantages, how-
ever, the frequency-domain finite-difference modeling tech-
nique has not gained popularity because acceptable accuracy
requires more grid points per wavelength than working in other
domains.

To overcome this serious limitation, Jo et al. (1996) and Shin
and Sohn (1998) proposed a weighted-averaging scheme for
solving the 2-D scalar wave equation. Jo et al. (1996) used an
optimal nine-point finite-difference operator for the approxi-
mation of a Laplacian and a mass acceleration term. To dis-
cretize the Laplacian operator, they computed a weighted av-
erage of finite-difference operators that were formulated in
coordinate systems rotated at 0◦ and 45◦. The mass accelera-
tion term was approximated by Jo et al. (1996) by combining
the lumped mass and the consistent mass matrix operators. This
nine-point scheme reduces the number of grid points to 5 per
wavelength, achieving errors within 1%. Shin and Sohn (1998)
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designed a 25-point operator that approximated a Laplacian
operator and a mass acceleration term by using several finite-
difference operators obtained over a few sets of mesh points
rotated at four different angles. The number of grid points per
wavelength can be reduced to 2.5 by using a 25-point scheme,
with errors no larger than 1%.

Štekl and Pratt (1998) extended the method of Jo et al. (1996)
to the elastic wave equations by introducing a 45◦-rotated op-
erator within a conventional second-order scheme. Four grid
points per wavelength are required for this scheme to achieve
errors less than 5%. If the errors are held within 1%, Štekl and
Pratt’s (1998) method needs approximately 9 grid points per
wavelength. To achieve this improved result, they used weight-
ing coefficients dependent on Poisson’s ratio. For a model in
which Poisson’s ratio varies widely, however, the weighting co-
efficients must be independent of Poisson’s ratio. In that case,
the number of grid points per wavelength required by Štekl
and Pratt (1998) is larger than 4, even at 5% error. To simulate
realistic models accurately, we must reduce the number of grid
points per wavelength further.

In this paper, we propose a 25-point weighted-averaging
scheme which, for 2-D elastic modeling in the frequency do-
main, is more accurate. Our method uses 25 grid points to for-
mulate finite-difference operators for 2-D elastic wave equa-
tions, as does the method proposed by Shin and Sohn (1998) for
the scalar wave equation. However, we do not rotate the coor-
dinate system nor the mesh points. By determining weighting
coefficients independent of the Poisson’s ratio using a Gauss-
Newton method, we obtain a 25-point scheme applicable to
any inhomogeneous model.

In the following sections, we describe how to formulate
finite-difference operators using the 25-point scheme. This is
followed by an explanation of our method for determining the
weighting coefficients. Next, we estimate the numerical errors
of the 25-point scheme by analyzing dispersion relations, as-
sess the accuracy by comparing numerical solutions with ana-
lytic solutions, and examine computational advantages by com-
puting the storage requirements for the complex impedance
matrix. Finally, we synthesize seismograms for a vertical-step
model to check the validity of the 25-point scheme.

THEORY

A new finite-difference operator

In a 2-D Cartesian coordinate system with the x-axis hori-
zontal and positive to the right and the z-axis positive down-
ward, the frequency-domain elastic wave equations in a homo-
geneous medium are

−ρω2u = (λ+ 2µ)2 ∂
2u

∂x2
+ µ2 ∂

2u

∂z2
+ (λ+ µ)

∂2v

∂x∂z
(1)

and

−ρω2v = (λ+ 2µ)
∂2v

∂z2
+µ∂

2v

∂x2
+ (λ+µ)

∂2u

∂x∂z
, (2)

where u and v are the horizontal and vertical displacements,
respectively; ω is the angular frequency; ρ is the density; and λ
and µ are Lamé constants.

As a possible solution for improving the accuracy of finite-
difference modeling with a larger grid interval, we extend the
computational grid points used for approximation of spatial

derivatives and mass acceleration terms to 25 (i.e., a 5 × 5
star) around the collocation point. For the approximation of
the spatial derivatives, our approach is to form as many finite-
difference operators as possible using 25 grid points and then
to average the operators using weighting coefficients. For the
mass acceleration terms, the method distributes mass acceler-
ation at the collocation point into 25 grid points around the
collocation point.

The homogeneous equations have six second-order partial
derivative terms: (∂2u/∂x2), (∂2u/∂z2), (∂2u/∂x∂z), (∂2v/∂x2),
(∂2v/∂z2), and (∂2v/∂x∂z). Figure 1 shows mesh points used to
approximate the differential operators in the 25-point scheme.
The finite-difference stencil for (∂2u/∂x2) is shown in Figure 1a.
It is possible to formulate two centered finite-difference oper-
ators using five grid points in each row. One finite-difference
operator consists of the first, third, and fifth nodal points in each
row (unfilled circles in Figure 1a), and the other consists of the
second, third, and fourth nodal points (filled circles in Figure
1a). The two possible finite-difference operators obtained in
each row are averaged using the weighting coefficients c (for
filled circles) and d (for unfilled circles). Five finite-difference
operators, given as a result of the above process for all five rows,
are then averaged using weighting coefficients b1, b2, and b3.
We assume that the second and the fourth row have the same
weighting coefficient, b2, and that the first and the fifth row have

FIG. 1. Computational grids used to approximate differential
operators by the 25-point weighted-averaging scheme for (a)
(∂2u/∂x2), (b) (∂2u/∂z2), and (c) (∂2u/∂x∂z). The weighting co-
efficients c and d are used for averaging two finite-difference
operators made in each row or column for approximation of
(∂2u/∂x2) or (∂2u/∂z2); c is the averaging coefficient for filled
circles, and d for unfilled circles. The coefficients b1, b2, and b3
are used for averaging five finite-difference operators result-
ing from averaging two finite-difference operators with c and
d in each row or column for approximation of (∂2u/∂x2) or
(∂2u/∂z2). The coefficients e and f are used for averaging two
finite-difference operators for (∂2u/∂x∂z).
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the same weighting coefficient, b3. A similar method is applied
to the approximation of (∂2u/∂z2) (see Figure 1b). The mesh
points for the approximation of (∂2u/∂x∂z) are shown in Fig-
ure 1c. Two finite-difference operators can be formulated, as
shown in Figure 1c. Averaging the finite-difference operators
with weighting coefficients e and f results in the expression of
discretization for (∂2u/∂x∂z).

The full set of finite-difference formulae for (∂2u/∂x2),
(∂2u/∂z2), and (∂2u/∂x∂z) in the 25-point scheme is

∂2u

∂x2
≈ b1

1x2

[
c(ui+1, j − 2ui, j + ui−1, j )

+ d

4
(ui+2, j − 2ui, j + ui−2, j )

]
+ b2

1x2

[
c(ui+1, j+1 − 2ui, j+1 + ui−1, j+1)

+ d

4
(ui+2, j+1 − 2ui, j+1 + ui−2, j+1)

]
+ b2

1x2

[
c(ui+1, j−1 − 2ui, j−1 + ui−1, j−1)

+ d

4
(ui+2, j−1 − 2ui, j−1 + ui−2, j−1)

]
+ b3

1x2

[
c(ui+1, j+2 − 2ui, j+2 + ui−1, j+2)

+ d

4
(ui+2, j+2 − 2ui, j+2 + ui−2, j+2)

]
+ b3

1x2

[
c(ui+1, j−2 − 2ui, j−2 + ui−1, j−2)

+ d

4
(ui+2, j−2 − 2ui, j−2 + ui−2, j−2)

]
, (3)

∂2u

∂z2
≈ b1

1z2

[
c(ui, j+1 − 2ui, j + ui, j−1)

+ d

4
(ui, j+2 − 2ui, j + ui, j−2)

]
+ b2

1z2

[
c(ui+1, j+1 − 2ui+1, j + ui+1, j−1)

+ d

4
(ui+1, j+2 − 2ui+1, j + ui+1, j−2)

]
+ b2

1z2

[
c(ui−1, j+1 − 2ui−1, j + ui−1, j−1)

+ d

4
(ui−1, j+2 − 2ui−1, j + ui−1, j−2)

]
+ b3

1z2

[
c(ui+2, j+1 − 2ui+2, j + ui+2, j−1)

+ d

4
(ui+2, j+2 − 2ui+2, j + ui+2, j−2)

]
+ b3

1z2

[
c(ui−2, j+1 − 2ui−2, j + ui−2, j−1)

+ d

4
(ui−2, j+2 − 2ui−2, j + ui−2, j−2)

]
,

(4)

and
∂2u

∂x∂z
≈ e

41x1z

× [ui+1, j+1 − ui+1, j−1 − ui−1, j+1 + ui−1, j−1]

+ f

161x1z

× [ui+2, j+2 − ui+2, j−2 − ui−2, j+2 + ui−2, j−2].

(5)

Finite-difference operators of (∂2v/∂x2), (∂2v/∂z2), and
(∂2v/∂x∂z) are formed in the same way.

The elastic wave equations also have two mass acceleration
terms; ρω2u and ρω2v. To approximate the mass acceleration
terms, we use the method of Shin and Sohn (1998). A mass
acceleration operator is distributed over all 25 points (includ-
ing the collocation); that is, the mass accelerations of 25 grid
points are averaged with weighting coefficients a1, a2, . . . , a6.
Figure 2 shows the mesh points used for the approximation of
the mass acceleration term. The same weighting coefficients
are given to the nodes that have the same distance from the
collocation, as those shown in Figure 2. The finite-difference
operator of ρω2u can be expressed as

ρω2u ≈ ρω2a1ui, j+ ρω2a2(ui, j+1+ui+1, j+ui, j−1+ui−1, j )

+ ρω2a3(ui+1, j+1+ui+1, j−1+ui−1, j−1+ui−1, j+1)

+ ρω2a4(ui, j+2 + ui+2, j + ui, j−2 + ui−2, j )

+ ρω2a5(ui+2, j+1+ ui+2, j−1+ ui+1, j−2+ ui−1, j−2

+ ui−2, j−1 + ui−2, j+1 + ui−1, j+2 + ui+1, j+2)

+ ρω2a6(ui+2, j+2 + ui+2, j−2

+ ui−2, j−2 + ui−2, j+2); (6)

ρω2v can be written in the same form.
We can also formulate finite-difference operators for het-

erogeneous media, where density and elastic constants vary
spatially. We combine the above approach for homogeneous

FIG. 2. Computational grids used to approximate the mass ac-
celeration terms by the 25-point weighted-averaging scheme.
The weighting coefficients a1, a2, . . . ,a6 are used for averaging
25 grid points.
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media with the heterogeneous formulation suggested by Kelly
et al. (1976).

Determination of weighting coefficients

To minimize grid dispersion and numerical anisotropy, we
must determine the weighting coefficients that make normal-
ized phase and group velocities close to unity. The normal-
ized phase and group velocities are obtained from dispersion
relations.

We assume a uniform and infinite medium that supports a
plane wave, expressed as uω(x, z)= (uω, vω)ei (kx x+kzz), in the
frequency domain. Finite-difference approximations for the
homogeneous elastic wave equations in matrix form are

[
ω2 Dm +

(
α2 Dxx + β2 Dzz

)
(α2 − β2)Dxz

(α2 − β2)Dxz ω2 Dm +
(
β2 Dxx + α2 Dzz

)] uω = 0, (7)

where Dxx, Dxz, and Dzz are the finite-difference operators for
spatial derivatives; Dm is the mass acceleration operator; and α
and β are the compressional- and shear-wave velocities. Under
the condition that the determinant of the matrix is zero, we
obtain the dispersion relations

ω2 = 1
2Dm

[
(α2 + β2)(−Dxx − Dzz)

± (α2 − β2)
√

(Dxx − Dzz)2 + 4D2
xz

]
, (8)

where the two signs give the compressional- and the shear-
wave dispersion relation, respectively. Substituting the finite-
difference operators formulated by the 25-point scheme and
the plane-wave solution into equation (8) yields

ω2 = 1
212 A

[
(α2 + β2)B± (α2 − β2)

√
C
]
, (9)

where A, B, and C are

A = Pm, (10)

B = −Pxx − Pzz, (11)

and

C = (Pxx − Pzz)2 + 4P2
xz. (12)

for these equations,

Pm = a1 + 2a2[cos(kx1)+ cos(kz1)]

+ 4a3 cos(kx1) cos(kz1)

+ 2a4[cos(2kx1)+ cos(2kz1)]

+ 4a5[cos(2kx1) cos(kz1)

+ cos(kx1) cos(2kz1)]

+ 4a6 cos(2kx1) cos(2kz1), (13)

Pxx = −
[

4c sin2 kx1

2
+ d sin2(kx1)

]
× [b1 + 2b2 cos(kz1)+ 2b3 cos(2kz1)], (14)

Pzz= −
[

4c sin2 kz1

2
+ d sin2(kz1)

]
× [b1 + 2b2 cos(kx1)+ 2b3 cos(2kx1)], (15)

and

Pxz = −esin(kx1) sin(kz1)− f

4
sin(2kx1) sin(2kz1)

(16)

for the special case of

1 = 1x = 1z.

Note that A, B, and C are functions of the weighting co-
efficients, grid interval, and horizontal and vertical wave-
numbers. The horizontal and vertical wavenumbers, i.e.,
kx (= kp cos θ or ks cos θ) and kz (= kp sin θ or ks sin θ), are func-
tions of the propagation angle, θ , with respect to the x-axis. The
phase velocities are defined as

αph = ω

kp
(17)

and

βph = ω

ks
(18)

for compressional and shear waves, respectively. Substituting
equation (9) into equations (17) and (18) yields the normalized
phase velocities for compressional and shear waves:

αph

α
= 1

2π
β

α

1
Gs

{
1

2A

[(
1+ β

2

α2

)
B+

(
1− β

2

α2

)√
C

]} 1
2

(19)
and

βph

β
= 1

2π
1

Gs

{
1

2A

[(
1+ α

2

β2

)
B+

(
1− α

2

β2

)√
C

]} 1
2
,

(20)
where Gs is the number of nodal points per shear wavelength.

One of the most effective methods that can be used to deter-
mine the weighting coefficients is the Gauss-Newton method
(Lines and Treitel, 1984). When using the Gauss-Newton
method, we do not need any constraints, unlike the method
used by Jo et al. (1996), Shin and Sohn (1998), and Štekl and
Pratt (1998). In the Gauss-Newton method, we search for the
weighting coefficients that make the numerical phase velocities
as close as possible to the true velocities. Since the weighting
coefficients which give the best phase velocities also lead to the
best group velocities, we will consider only the phase velocities
to determine the optimal weighting coefficients. We will then
check the errors on our group velocities. For each normalized
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phase velocity resulting from a variety of Poisson’s ratios, prop-
agation angles, and grid intervals, we can define the prediction
error, ei = di − Fi (m), i = 1, . . . , N, where di is unity, m is a
set of M weighting coefficients, and Fi (m) is normalized phase
velocities of compressional and shear waves. Since Fi (m) is
functions of weighting coefficients, grid interval, Poisson’s ra-
tio, and propagation angle, N is dependent upon the range and
the interval length of Poisson’s ratio, propagation angle, and
number of grid points per wavelength used for determining the
weighting coefficients. The weighting coefficients that we want
to obtain should lead to the smallest overall error E, defined as

E = eTe, (21)

where e is the error vector.
We begin with an initial guess of the weighting coefficients,

m◦. By supposing that the model response (normalized phase
velocity) Fi is a linear function around m◦, we express a small
perturbation of the model response about m◦ using Taylor se-
ries expansion:

F(m) = F(m◦)+
M∑

j=1

∂F
∂mj

∣∣∣∣∣
m=m◦

(
mj −m◦j

)
(22)

or, in matrix notation,

F(m) = F(m◦)+ J∆m, (23)

where F is the vector with components Fi and J is the Jacobian
matrix [Ji j = (∂Fi /∂mj )]. Then the error vector e is written as

e = d− F(m)

= d− F(m◦)− J∆m, (24)

where d is the vector with components di , and ∆m is chosen
to minimize the total error E, that is, to satisfy (∂E/∂m)= 0.
Then ∆m is expressed by

∆m = (JTJ)−1JT(d− F(m◦)) (25)

and a new set of weighting coefficients m is given as

m = m◦ +∆m. (26)

In an iterative manner, we determine the optimal weighting
coefficients.

We can construct the matrix J by changing Poisson’s ratio σ ,
propagation angle θ , and number of grid points Gs. We change
σ and 1/Gs from 0.01 to 0.33 in steps of 0.01, and we change θ
from 0◦ to 45◦ in 15◦ steps. The matrix J becomes an overdeter-
mined matrix whose size is 8712× 13 (8712= 2× 33× 4× 33,
and 13 is the number of weighting coefficients), when both
compressional and shear phase velocities are considered. In
our experience, the process does not necessarily benefit from
using a wider range of σ and 1/Gs. Although we use σ up to
0.33, we also obtain good results for σ = 0.4 (see Figures 6 and
10).

The initial guess of the weighting coefficients we used in the
Gauss-Newton method was

a1 = 0.39, a2 = 0.11, a3 = 0.01, a4 = 0.0,

a5 = 0.01, a6 = 0.0, b1 = 0.62, b2 = 0.18,

b3 = −0.001, c = 0.685, d = 0.4, e= 0.95,

f = 0.05. (27)

These initial values were obtained by arbitrarily changing the
weighting coefficients from 0 to 1 and then by choosing the op-
timal values which give the minimum error of phase velocities.

The optimal set of weighting coefficients determined by the
Gauss-Newton method was

a1 = 0.5128838, a2 = 0.1451598, a3 = 0.021430882,

a4 = 0.0050698, a5 = −0.0029849, a6 = 0.000114596,

b1 = 0.608781, b2 = 0.2708982, b3 = −0.025726564,

c = 0.7596838, d = 0.311686, e= 1.204687,

f = −0.026533956. (28)

The set of weighting coefficients of equation (28) is nearly in-
dependent of the physical properties of the models because we
chose the weighting coefficients by taking all ranges of prop-
agation angle and nearly a full range of Poisson’s ratio into
consideration. Once we determine the weighting coefficients,
we can apply them to any model. The same weighting coeffi-
cients can also be used for the heterogeneous formulation.

Dispersion analysis

Given the optimal weighting coefficients, we now examine
the dispersion relations by plotting phase and group velocities
for different propagation angles with respect to the grid and
for different values of Poisson’s ratio. The compressional- and
shear-wave phase velocities are obtained from equations (19)
and (20).

Figures 3 and 4 depict phase velocities for compressional
and shear waves obtained using the conventional scheme
for Poisson’s ratios of 0.25 and 0.4, respectively. From Fig-
ures 3 and 4, we see that the compressional-wave phase veloc-
ity is very dispersive and that the dispersion is isotropic. The
numerical, compressional waves travel at the same phase ve-
locity, regardless of propagation direction. On the other hand,
the shear-wave phase velocities are numerically very disper-
sive and anisotropic. The shear-wave phase velocities are de-
pendent on the propagation angles. Phase velocities for the
25-point scheme are shown in Figures 5 and 6. The 25-point
scheme gives nearly ideal results for compressional waves, even
for a large Poisson’s ratio. The numerical anisotropy for shear
waves is greatly reduced.

Group velocities for compressional and shear waves can be
obtained by calculating (dω/dk) from equation (9). Figures 7
and 8 show group velocities computed by the conventional
scheme and Figures 9 and 10 by the 25-point scheme. Group ve-
locities are more dispersive than phase velocities. The 25-point
scheme gives nearly perfect group velocities for the compres-
sional waves. From Figures 9 and 10, we conclude that grid
dispersion and grid anisotropy from the 25-point scheme are
only very weakly dependent on Poisson’s ratio, and that the grid
dispersion is strongest for waves traveling along the x-axis and
weakest for waves traveling in the direction 30◦ with respect to
the x-axis.

To keep the errors of group velocities within 1%, the con-
ventional and 25-point schemes require 33.3 and 3.3 grid points
per shear wavelength, respectively. The scheme introduced
by Štekl and Pratt (1998) requires 9 grid points per shear
wavelength to achieve the same accuracy. Our scheme thus



Frequency-Domain Elastic Modeling 889

FIGS. 3, 4. Normalized phase velocities for (a) compressional waves and (b) shear waves obtained by the conventional fi-
nite-difference scheme for a Poisson’s ratio of 0.25 (Figure 3, left) and 0.4 (Figure 4, right). Gs is the number of grid points
per shear wavelength. Dispersion curves are plotted for propagation angles of 0◦, 15◦, 30◦, and 45◦ with respect to the x-axis.

FIGS.5, 6. Normalized phase velocities for (a) compressional waves and (b) shear waves obtained by the 25-point weighted-averaging
scheme for a Poisson’s ratio of 0.25 (Figure 5, left) and 0.4 (Figure 6, right). Gs is the number of grid points per shear wavelength.
Dispersion curves are plotted for propagation angles of 0◦, 15◦, 30◦, and 45◦ with respect to the x-axis.
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FIGS. 7, 8. Normalized group velocities for (a) compressional waves and (b) shear waves obtained by the conventional fi-
nite-difference scheme for a Poisson’s ratio of 0.25 (Figure 7, left) and 0.4 (Figure 8, right). Gs is the number of grid points
per shear wavelength. Dispersion curves are plotted for propagation angles of 0◦, 15◦, 30◦, and 45◦ with respect to the x-axis.

FIGS. 9, 10. Normalized group velocities for (a) compressional waves and (b) shear waves obtained by the 25-point
weighted-averaging scheme for a Poisson’s ratio of 0.25 (Figure 9, left) and 0.4 (Figure 10, right). Gs is the number of grid points
per shear wavelength. Dispersion curves are plotted for propagation angles of 0◦, 15◦, 30◦, and 45◦ with respect to the x-axis.
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represents a further reduction in the number of grid points per
wavelength by more than 60%.

Accuracy analysis

We use a homogeneous model for our comparison of ana-
lytic and numerical solutions. Analytic solutions of 2-D elastic
wave equations for the homogeneous model are presented by
Eason et al. (1956) and Pilant (1979). We obtained analytic
solutions with a method similar to that used by Pilant (1979),
who solved the problem by defining a scalar and a vector po-
tential in the frequency-space domain and by using Laplace
and Fourier transforms. We also applied the definition of the
scalar and the vector potential in the frequency-space domain
but only used the Fourier transform.

The analytic solutions in the time domain given by Pilant
(1979) when a vertical source is applied in a homogeneous
medium are

u(x, z, t) = cos θ sin θ
2πρv2

p

H
(

t − r

vp

)
√

t2 − r 2

v2
p

− cos θ sin θ
2πρv2

s

H
(

t − r

vs

)
√

t2 − r 2

v2
s

+ cos θ sin θ
πρr 2

√
t2 − r 2

v2
p

H
(

t − r

vp

)

− cos θ sin θ
πρr 2

√
t2 − r 2

v2
s

H
(

t − r

vs

)
(29)

and

v(x, z, t) = cos2 θ

2πρv2
p

H
(
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)
√
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v2
p

+ sin2 θ

2πρv2
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√
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2πρr 2

√
t2 − r 2

v2
p

H
(

t − r

vp

)
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(

t − r
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)
,

(30)

with

H
(
t − r

v

)
=


1 , t ≥ r

v
,

0, t <
r

v
,

(31)

r =
√

x2 + z2, (32)

and

θ = tan−1 x

z
, (33)

where u and v are the horizontal and vertical displacements, ρ
is the density, and vp and vs are the compressional- and shear-
wave velocities. The analytic solutions of equations (29) and
(30) in the time domain have singularities at t = (r/vp) and
t = (r/vs). For this reason, we are unable to obtain an exact
solution in the time domain. To circumvent this problem, we
calculated analytic solutions in the frequency domain and took
their inverse Fourier transform. The analytic solutions for a
homogeneous medium in the frequency domain are

u(x, z, ω) = i

4ρv2
p

cos θ sin θH(1)
0

(
ω

vp
r

)

− i

4ρv2
s

cos θ sin θH(1)
0

(
ω

vs
r

)

− i

2ρvp

cos θ sin θ
rω

H(1)
1

(
ω

vp
r

)

+ i

2ρvs

cos θ sin θ
rω

H(1)
1

(
ω

vs
r

)
(34)

and

v(x, z, ω) = i

4ρv2
p

cos2 θH(1)
0

(
ω

vp
r

)
+ i

4ρv2
s

sin2 θH0

(
ω

vs
r

)
− i

4ρvp

cos2 θ − sin2 θ

rω
H(1)

1

(
ω

vp
r

)
− i

4ρvs

sin2 θ − cos2 θ

rω
H(1)

1

(
ω

vs
r

)
, (35)

with

i =
√
−1,

where ω is the angular frequency, H(1)
0 [(ω/vp)r ] and

H(1)
0 [(ω/vs)r ] are Hankel functions of the first kind of zero or-

der, and H(1)
1 [(ω/vp)r ] and H(1)

1 [(ω/vs)r ] are Hankel functions
of the first kind of the first order.

Figure 11 shows the geometry of the homogeneous model
for which analytic and numerical solutions were calculated.
The first derivative of a Gaussian pulse is excited at the center
of the model; numerical and analytic solutions are obtained at
the three receivers shown in Figure 11. The numerical solutions
were computed by the conventional and 25-point schemes. Fig-
ure 12 shows horizontal displacements at receiver 3. At re-
ceivers 1 and 2, there are no horizontal displacements [equa-
tion (34)]. Figure 13 shows vertical displacements at receivers
1, 2, and 3. In Figures 12 and 13, we can easily see some discrep-
ancy between the exact solutions and the numerical solutions
computed by the conventional second-order scheme, but the
numerical solutions given by the 25-point scheme agree well
with the exact solutions.

Computational efficiency

Previous second-order schemes use 9 grid points around
the collocation to calculate solutions at a given node; the
25-point scheme uses 25 grid points. Although the operator
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length of the 25-point scheme is larger than that of the previous
second-order schemes, the scheme results in a smaller compu-
tational cost because it can reduce the number of grid points.
For a 1% upper limit of error, the 25-point scheme reduces
the total number of grid points to 10% of the conventional
second-order scheme and to 37% of the combined second-
order scheme (from dispersion analysis). The fewer grid points
reduce computer memory requirements for storing the com-
plex impedance matrix. The actual memory requirements are
dependent on the method used to decompose the matrix. We
will compute the storage amount required by a band-type ma-
trix solver and a more sophisticated nested dissection matrix
solver.

We will compare the storage amount of the 25-point scheme
with those of the conventional and the combined second-order
schemes [which Štekl and Pratt (1998) present]. Suppose that
the number of grid points along the x-axis is the same as that
along the z-axis. If the number of grid points required for the
conventional scheme is N× N for a model, the number of grid
points is (3/11)N× (3/11)N with 9 grid points per wavelength
in the combined scheme and (1/10)N× (1/10)N with 3.3 grid
points in the 25-point scheme to simulate a model of exactly
the same size. All models are calculated such that the group
velocity errors remain below 1%.

The storage amounts for the band-type matrix solver are
shown in Table 1. Generally, the storage requirements for

FIG. 11. The geometry of the homogeneous model.

FIG. 12. Analytic solutions (solid line) and numerical solutions
by the 25-point weighted-averaging scheme (dashed line) and
the conventional finite-difference scheme (dotted line) for hor-
izontal displacements at receiver 3 of Figure 11. The number
of grid points per minimal shear wavelength is 3.3.

the nested dissection matrix solver are given by C2 N2 log2 N+
O(N2) (George and Liu, 1981; Štekl and Pratt, 1998). Ta-
ble 2 shows the storage requirements for the nested dissection
method, obtained under the assumption that O(N2) can be
neglected compared to C2 N2 log2 N.

FIG. 13. Analytic solutions (solid line) and numerical solutions
by the 25-point weighted-averaging scheme (dashed line) and
by the conventional finite-difference scheme (dotted line) for
vertical displacements at (a) receiver 1, (b) receiver 2, and (c)
receiver 3 of Figure 11. The number of grid points per minimal
shear wavelength is 3.3.
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From Tables 1 and 2, we observe that the 25-point scheme
achieves a 90% reduction with the band-type matrix solver
and a 46% reduction with the nested dissection method in the
computer memory requirements needed to store and factor
the complex impedance matrix, compared with those for the
combined scheme. We expect that the 25-point scheme will
be more powerful for simulating a realistic model than other
frequency-domain schemes and that the savings will be even
greater when the analog of the proposed scheme is applied to
3-D elastic modeling.

Boundary conditions

We apply a stress-free condition at the free surface, written
as

∂u

∂z
+ ∂v
∂x
= 0 (36)

and

λ

ρ

∂u

∂x
+ λ+ 2µ

ρ

∂v

∂z
= 0. (37)

To discretize equations (36) and (37), we use a one-sided
difference approximation for the vertical spatial derivative
(∂/∂z) and a central difference approximation for the hori-
zontal derivative (∂/∂x). For a grid point (i, j ) at the free sur-
face, we use grid points (i, j ) and (i, j + 1) to approximate a
vertical spatial derivative and use grid points (i−1, j + 1/2) and
(i + 1, j + 1/2) to approximate a horizontal derivative. We use
the average of the displacements at (i − 1, j ) and (i − 1, j + 1)
for the displacements at (i − 1, j + 1/2) and use the average
of the displacements at (i + 1, j ) and (i + 1, j + 1) for the dis-
placements at (i + 1, j + 1/2). These discretized conditions are
expressed as

ui, j+1 − ui, j

1z
+ vi+1, j + vi+1, j+1 − vi−1, j − vi−1, j+1

41x
= 0

(38)

Table 1. Storage requirements of the band-type matrix solver
for the complex impedance matrix; C1 is a constant.

Storage Percent
amount improvement

Conventional scheme C1 N3 100%

Combined scheme C1
(

3
11 N

)3
20%

25-point scheme 2C1
(

1
10 N

)3
0.2%

Table 2. Storage requirements of the nested dissection matrix
solver for the complex impedance matrix; C2 is a constant.

Percent
Storage amount improvement

Conventional scheme C2 N2 log2 N 100%

Combined scheme C2
(

3
11 N

)2
log2

3
11 N 7.4%

25-point scheme 4C2
(

1
10 N

)2
log2

1
10 N 4%

and
λ

ρ

[
ui+1, j + ui+1, j+1 − ui−1, j − ui−1, j+1

41x

]
+ λ+ 2µ

ρ

[
vi, j+1 − vi, j

1z

]
= 0. (39)

To estimate the accuracy of the numerical solutions at the
free surface boundary, we compare numerical solutions with
analytic solutions for a semiinfinite medium (2-D Lamb prob-
lem). The analytic solutions are given by Ewing et al. (1957).
Figures 14 and 15 show numerical and analytic solutions of hor-
izontal and vertical displacements obtained at 300 and 450 m
horizontally apart from the source for a homogeneous model
whose compressional and shear wave velocities are 2000 and
1000 m/s, respectively, and density is 2.0 g/cm3. The numerical
solutions are compatible with the analytic solutions to some de-
gree, but there exists some discrepancy. This discrepancy might
result from using one-sided differencing operators for the ver-
tical spatial derivatives and operators that are three points wide
for the horizontal derivation. However, even when central dif-
ferencing operators or 5-point-wide operators were used, we
could not obtain better results. Furthermore, we note that the
one-sided discretization operators for the stress-free condition
make the complex impedance matrix unsymmetric, thereby
violating the source-receiver reciprocity theorem. To obtain
more accurate results, the finite-difference operators for the
stress-free condition need to be studied further.

To suppress edge reflections resulting from finite-size mod-
eling, we apply the sponge boundary condition of Shin (1995).
This condition damps the wavefield gradually by defining
damping coefficients which vary linearly from 1.0 to 0.9 within
the sponge zone.

NUMERICAL EXAMPLES

We tested the 25-point scheme with a vertical-step model.
The finite-difference scheme used here is a heterogeneous for-
mulation of the 25-point scheme, obtained by considering vari-
ations of the elastic constants λ and µ and the density ρ from
node to node in the manner of Kelly et al. (1976). We used the
first derivative of a Gaussian pulse as the source.

Vertical-step model

The geometry of a vertical-step model is shown in Figure 16;
the material properties are in Table 3. The explosive source,
excited at a depth of 150 m, produces a source wavelet with
a maximum frequency of 40 Hz. The receivers are spread on
the surface. The spatial grid spacings are1x=1z= 7.5 m, and
the numbers of spatial grid points for horizontal and vertical
direction are Nx = Nz= 201. We applied stress-free conditions
at the free surface boundary.

Figure 17 shows synthetic seismograms of horizontal and
vertical displacements. The direct P-waves, which appear at

Table 3. Physical properties of the vertical-step model
of Figure 16.

Layer Vp Vs ρ

1 1700 m/s 1000 m/s 2.0 g/cm3

2 2500 m/s 1470 m/s 2.4 g/cm3

3 4000 m/s 2200 m/s 2.7 g/cm3
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t = 0.0706 s with reference to zero offset, are followed by
Rayleigh waves. The Rayleigh waves have strong and constant
amplitudes, even at the far offset. The PP-reflections from the
first reflector appear at t = 0.4 s, and the PS- and SP-reflections
resulting from mode conversion appear at t = 0.56 s and 0.515
s. The SS-reflections appear at 0.68 s for zero offset. At a later
time, the reflections from the second reflector are corrupted
by multiples. In the seismograms, the unwanted seismic waves
which can be generated from artificial boundaries are effec-
tively removed by the sponge boundary condition.

CONCLUSION

We have presented a 25-point weighted-averaging scheme
that can be applied to elastic wave equations in the fre-
quency domain. The 25-point scheme uses 25 grid points to
approximate the second-order partial derivatives of displace-
ments and the mass accelerations. This scheme allows us to
reduce the number of grid points per shear wavelength nec-
essary to achieve accurate results. Although we use a larger
operator than other methods, the operator is accurate enough
to reduce the overall computer memory requirements for the
storage of the factored complex impedance matrix.

Our numerical dispersion analysis showed that the 25-point
scheme requires 3.3 grid points per shear wavelength to achieve
a 1% upper error limit in phase and group velocities. With the
reduction in the number of grid points, the computer mem-

FIGS. 14, 15. Analytic (solid line) and numerical horizontal (Figure 14, left) and vertical (Figure 15, right) solutions obtained by the
25-point weighted-averaging scheme (plus symbol) for a 2-D Lamb problem for source–receiver offsets of (a) 300 m and (b) 450 m.

ory can be reduced by 90% for the band-type solver and 46%
for the nested dissection method, respectively, relative to the
combined second-order scheme suggested by Štekl and Pratt
(1998). This reduction in computer memory enables the simu-
lation of realistic models or the computation of high-frequency

FIG. 16. The geometry of the vertical-step model.
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FIG. 17. Synthetic seismograms for the vertical-step model, observed on the surface: (a) horizontal motion, (b) vertical motion.

solutions. By comparing numerical solutions with analytic so-
lutions for an infinite homogeneous model, we found that the
25-point scheme matches the exact solution. In addition, we
successfully generated synthetic seismograms for a vertical-
step model using the 25-point scheme. However, our 25-point
scheme does not yield an exact solution for the 2-D Lamb prob-
lem. We need to study further the method of discretizing the
stress-free condition to improve the accuracy of the 25-point
scheme for the 2-D Lamb problem.

We expect that our 25-point scheme can be applied to
prestack elastic migration and to AVO analysis at large off-
sets, which require simulation of large-size models.
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