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ABSTRACT

Lim, H.Y., Min, D.-J.,  Shin, C.-S., Yang, D.-W., Cha, y. andSuh, 1.H.,2002. presrackdeprh
migration using straight ray technique (sRT). "/oarnal of seismic Exploration, rl:2j1.-2g1.

Kirchhoff prestack depth migration requires an elaborate book-keeping effort and a massive
IO process to construct Kirchhoff hyperbolas. In order to avoid the complexity of the programming
code and the massive IO process, we propose a straight ray technique (SRT) for traveltimi
calculations in Kirchhoff migration. Since all the rays are straight in. polar coordinates for the 2D
velocity model,or in spherical coordinates for the 3D velocity model, traveltimes can be simply
computed along a straight ray for a given source-receiver configuration,without suffering from
shadow zones and caustics, and used directly for building Kirchhoff hyperbolas. In this way, we
clrcumvent the substantial IO process required for reading traveltimes on a disk and save
computational storage. Numerical examples demonstrate that SRT computes traveltimes intermediate
between first-arrival traveltimes and the most energetic arrival traveltimes, resulting in better images
than the first arrival traveltimes for the 2D IFP Marmousi data. With the implementation of SRT
for 2D Kirchhoff migration, we successfully extend our SRT to 3D Kirchhoff misration for the
SECiEAGE salr dome data.

KEY WORDS: straight ray technique, Kirchhoff prestack depth migration, rraveltime calcularion,
Kirchhoff hyperbola, polar coordinate, spherical coordinate.
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INTRODUCTION

Kirchhoff prestack depth migration needs a single traveltime and
amplitude from a source to a depth point in the subsurface as an asymptotic
Green's function of the wave equation. For calculating the traveltimes needed
in seismic imaging and velocity analysis, ray-based methods and finite-difference
eikonal equation solvers have been widely used.

Ray-based methods (Cassell, 1982; ierveny et al., 1977; Um and
Thurber, 1987) accurately compute traveltimes for multiple arrivals, but
sometimes suffer from large shadow zones and interpolation problems.
Finite-difference eikonal solvers, which avoid these problem, have proven to be
unconditionally stable (Vidale, 1988; Qin et al., 1990; van Trier and Symes,
1991; Podvin and Lecomte, l99l; Popovici, 1991a, i991b; Cao and
Greenhalgh, 1994; Schneider, 1995; Sethian and Popovici, 1999). However,
finite-difference eikonal solvers only compute the first-arrival traveltimes, which
often miss the most energetic wave event.

Geoltrain et al. (1993) and Nichols (1996) asserted that the most energetic
arrival traveltimes provide higher fidelity images than the first-arrival
traveltimes. Although there are several methods of calculating the most energetic
arrival traveltimes using either ray-based methods (e.9., the Gaussian beam
method; Hill, 1990) or wave equation solutions (Nichols, 1996), unfortunately
it is difficult and expensive to compute the most energetic arrival traveltimes.

In Kirchhoff prestack depth migration, we often store the computed
traveltimes and field data on disk, and then read them from the disk to construct
Kirchhoff hyperbola. As a result, the complexity of Kirchhoff prestack depth
migration algorithm is mainly dependent upon how to load the computed
traveltimes stored on disk into computer memory and how to minimize the iO
process of reading traveltimes.

In this paper, we propose a SRT that does not require the writing of
traveltimes on a disk and loading them into computer memory for Kirchhoff
migration. SRT has been used in prestack time migration, even though it is not
supported theoretically. We begin by supporting the theoretical basis of SRT and
then give numerical examples for the IFP Marmousi and 3D SEG/EAGE salt
dome models.

STRAIGHT RAY TECHNIQUE AND THE VELOCITY MODEL TRANSFORM

To provide a theoretical base for SRT, we design SRT in polar and
spherical coordinates for 2D and 3D, respectively. Although we only describe
2D SRT in polar coordinates, extension of our algorithm to 3D SRT is
straightforward.
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For our SRT, we first define a polar coordinate system having an origin
at a source point as shown in Fig.1. We also assume that within a cell of Fig.1,
slowness is constant along an arc, but varies linearly in a radial direction. In the
coordinate system, we note that all the rays are shot in radial directions and that
all the raypaths are straight even though material properties change as the rays
propagate in radial directions. As a result, we can easily compute traveltimes
on straight rays from a source to a depth in the subsurface. In the SRT, we can
also calculate amplitude simply by applying a transmission coefficient
relationship between a layered cake model and geometrical spreading.

Since velocity models are given in the Cartesian coordinate, the next step
performed in SRT is to transform a velocity model in Cartesian coordinate into
a velocity model inpolar coordinates. For the transform of the velocity model,
we use interpolation algorithms, such as the bilinear and bi-cubic algorithms. In
Fig. 2, we display an original fourJayer velocity model in Cartesian coordinate
and three angular velocity models transformed into the polar coordinates with
different polar cell divisions. Fig. 2 shows that the coarse cell division greatly
distorts the velocity model, and as the grid spacing approaches zero (Ar - 0 and
A0 * 0), the transformed velocity model approaches the original model. From
these results, we note that errors in traveltimes computed using SRT mainly
come from differences between the original in the Cartesian coordinate and the
transformed velocity model in polar coordinates.
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Fig. l. A polar coordinate for SRT.

path



1 1 4 LIM, MIN, SHIN, SUH, CHA & YANG

Distance(km)
1 . 0

Distance(km)
1 . 0

Fig. 2. Comparison of model discretization errors for a four-layered model where velocities are
i500, 2000, 2500 and 3000 m/s, respectively: (a) original velocity model in a Cartesian coordinate,
(b) transformed velocity model with Ar = 70 m and Ad = 10", (c) transformed velocity model with
Ar = 7 m and Ad : 1', and (d) transformed velocity model with Ar = 0.7 m and Ad : 0.1".
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COMPUTATIONAL EFFICIENCY

The simplicity of SRT will simpliff Kirchhoff migration algorithms. In
the case of Kirchhoff migration using the ray-based method or eikonal equation
solvers, we begin by computing traveltimes and storing them on a disk. These
are used to construct Kirchhoff hyperbola. In this case, we note that the massive
IO process required results in congestion in a popular PC-based cluster machine.
However, in our SRT we avoid massive IO process by computing traveltimes
and then using them directly in Kirchhoff migration algorithm.

$"g
[I,, !

$,, e
Ll,, !



276 LIM, MIN, SHIN, SUH, CHA & YANG

We quantitatively compare the computational storage amount required for
the SRT with that required for the ray-based method and the eikonal equation
solver. We computed the storage required for a given model which is expressed
by NX x NZ grids. If we assume that we use the field data obtained for NX
sources and NX receivers located at the surface, then we need to store NX x
NX x NZ traveltimes and NX x NZ velocity model on the disk for each
source. On the other hand, for SRT, we only store NX x NZ velocities,
because we can compute traveltimes on-the-fly, use them in Kirchhoff migration
algorithm, and then discard them. In this way, we also reduce the computing
time related to the IO process in addition to computational storage requirement.

NUMERICAL EXAMPLES

The IFP Marmousi model

To ensure that the SRT gives a good migrated image for a complex
model, we applied our SRT algorithm to the Marmousi data set (Bourgeois et
aI.,1991). In Fig. 3, we compare traveltimes computed by our method with both
the first-arrival traveltimes obtained from Vidale's (1988) algorithm and the
most energetic arrival times picked from a wavefield generated by finite-element
wave equation modeling. From Fig. 3, we note that traveltimes (black solid line)
obtained from the SRT lie in the intermediate zone between the most energetic
arrival traveltimes(white solid line) and the first-arrival traveltimes (black dotted
line).

Distance(km)
4 5

Fig. 3. Traveltimes computed by SRT (black solid line), first arrival traveltimes by Vidale's (1988)
algorithm (black dashed line) and the most energetic arrival traveltimes picked from the wavefields
by FEM modeling (white solid line) overlaid on a snapshot image obtained by FEM modeling.
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Having produced the traveltimes for the Marmousi model, we proceed to
perform Kirchhoff migration for the Marmousi data set. Figs. 4a and 4b show
final migrated images obtained by using the first-arrival traveltimes of Vidale's
(1988) algorithm and the intermediate traveltimes of our SRT, respectively. By
comparing Fig. 4b with Fig. 4a, we note that our SRT produces a better-defined
imase of the fault boundaries and the reservoir than Vidale's (1988) traveltimes.
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Fig. 4. Migrated images produced using (a) first arrival traveltimes by Vidale's (1988) algorithm
and (b) traveltimes by SRT.
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The SEG/EAGE Salt dome model

We also apply SRT to the 3D SEG/EAGE salt dome model. The overall

model size is L3.5 x 13.5 x 4.2Wn, and the grid interval20 m. Fig. 5a shows

traveltime contours computed by SRT overlied on an inline section at x : 7220

km, and Fig. 5b shows a corfesponding migrated image. We note that the final,

migrated image obtained using our SRT has good agreement with the original

model. Well-imaged layer boundaries and fault lines are apparent.
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Fig, 5. (a) Traveltime contours generated by SRT and (b) migrated image atx:7440 m for the

3D SEG/EAEG salt dome model.
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Fig. 6. (a) Traveltime contours generated by SRT and (b) migrated image at z : 1240 m for rhe
3D SEG/EAEG salt dome model.
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However, most of the layer boundaries under the salt body are not
distinguishable on the section. Figs. 6a and 6b show traveltime contours
overlied on a horizontal slice at a depth of 1240 m and their migration image,
respectively. The horizontal slice cuts the central part of the salt body. Fig. 6b
shows a very clear image of the complex salt boundary. It took 4 hours to
migrate the full data set with the traveltimes of the SRT using 64 CPUs oflBM
RS6000.

CONCLUSIONS

By describing SRT in polar coordinates, we present a simple traveltime
calculation method. Since all the rays are stlaight in polar coordinates, our SRT
has neither a caustic problem nor the shadow zone for complex velocity models.
The fact that SRT directly computes traveltimes along straight lines from a
source to a receiver makes it possible to avoid massive IO processes. As a
result, in the SRT migration algorithm, we reduce both the storage amount and
the computing time. Numerical examples show that our SRT yields intermediate
traveltimes between the first arrival traveltimes and the most energetic
traveltimes, and that the intermediate traveltimes give better images than the
first-arrival traveltimes by Vidale's (1988) algorithm. By applying SRT to the
3D SEG/EAGE salt dome model, we show that SRT can be successfully
extended to 3D velocitv model.
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