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Refraction traveltime tomography using damped monochromatic wavefield

Sukjoon Pyun', Changsoo Shin', Dong-Joo Min?, and Taeyoung Ha®

ABSTRACT

For complicated earth models, wave-equation-based
refraction-traveltime tomography is more accurate than
ray-based tomography but requires more computa-
tional effort. Most of the computational effort in trav-
eltime tomography comes from computing traveltimes
and their Fréchet derivatives, which for ray-based
methods can be computed directly. However, in most
wave-equation traveltime-tomography algorithms, the
steepest descent direction of the objective function
is computed by the backprojection algorithm, without
computing a Fréchet derivative directly.

We propose a new wave-based refraction-traveltime—
tomography procedure that computes Fréchet deriva-
tives directly and efficiently. Our method involves solv-
ing a damped-wave equation using a frequency-domain,
finite-element modeling algorithm at a single frequency
and invoking the reciprocity theorem. A damping fac-
tor, which is commonly used to suppress wraparound
effects in frequency-domain modeling, plays the role
of suppressing multievent wavefields. By limiting the
wavefield to a single first arrival, we are able to ex-
tract the first-arrival traveltime from the phase term
without applying a time window. Computing the par-
tial derivative of the damped wave-equation solution
using the reciprocity theorem enables us to compute
the Fréchet derivative of amplitude, as well as that of
traveltime, with respect to subsurface parameters. Us-
ing the Marmousi-2 model, we demonstrate numerically
that refraction traveltime tomography with large-offset
data can be used to provide the smooth initial velocity
model necessary for prestack depth migration.

INTRODUCTION

Refraction surveys were first used by seismologists in the
early twentieth century to investigate the deep structure of the
earth. Following that, exploration geophysicists succeeded in
delineating shallow salt bodies for oil exploration. With the
enhancement of acquisition techniques and improved equip-
ment, reflection surveys have replaced refraction surveys in
hydrocarbon exploration. Furthermore, since the depth pene-
tration of refracted waves is limited by the source-receiver off-
set in a reflection seismic survey, refracted waves have been
employed mainly to investigate the shallow subsurface for
static corrections. Refracted waves are interpreted chiefly by
traveltime tomographic inversion.

In the early period, refraction-traveltime tomography gen-
erally relied on the ray-tracing method to compute first-arrival
traveltimes and their Fréchet derivatives. In ray-based refrac-
tion tomography, the Fréchet derivative of traveltime with
respect to slowness is defined as the distance traversed by
the ray. This simplicity makes geophysicists favor ray-based
refraction-traveltime tomography, and consequently a vari-
ety of ray-tracing refraction tomography methods have been
developed (Hampson and Russell, 1984; Schneider and Kuo,
1985; White, 1989; Zhu and McMechan, 1989; Docherty, 1992;
Qin et al., 1993; Cai and Qin, 1994; Stefani, 1995; Shtivelman,
1996; Zhang and Toksoz, 1998; Shin et al., 1999). However,
ray-tracing traveltime tomography, which is a high-frequency
approximation, sometimes fails to compute Fréchet deriva-
tives due to shadow zones.

In order to overcome this weakness of the ray-based
traveltime tomography, wavepath methods (Woodward and
Rocca, 1988; Woodward, 1992; Luo and Schuster, 1990, 1991;
Schuster and Quintus-Bosz, 1993) and Fresnel volume meth-
ods (Vasco et al., 1995) have been used in traveltime to-
mographic inversion. Luo and Schuster (1991) devised a
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wave-equation traveltime-inversion technique by introducing
a connective function that relates the traveltime residual to the
pressure seismogram. In their method, the steepest descent di-
rection of the L, norm of traveltime residuals is computed by
backprojecting seismogram residuals.

These approaches to wave-equation traveltime tomogra-
phy, using a band-limited approximation, correctly describe
high velocity-contrast models but incur high computa-
tional costs to compute wavepaths. Schuster and Quintus-
Bosz (1993) enhance computational efficiency by computing
wavepaths using the eikonal equation. Fresnel-volume trav-
eltime tomography, which is a modified ray-tracing method,
gives results similar to those of wave-equation tomography
while incurring computational costs comparable to those of
ray-tracing tomography. However, Fresnel-volume tomogra-
phy is a high-frequency approximation and, therefore, some-
times fails near the source and receiver at low frequencies
(Vasco et al., 1995).

Based on the merits of wave-equation traveltime tomog-
raphy, we suggest a new refraction-traveltime tomographic
inversion technique that efficiently computes the Fréchet
derivatives of traveltime and amplitude using a monochro-
matic damped wavefield (e.g., Shin et al., 2003a). By introduc-
ing a damping factor inherent in frequency-domain modeling,
we can choose the first-arrival traveltime without time win-
dowing or tapering and explicitly calculate the Fréchet deriva-
tives. Our method is similar to that of Woodward (1992) and
Schuster and Quintus-Bosz (1993) in that we extract travel-
times from phase terms. The main difference between con-
ventional wave-equation methods and our method is in the
computation of Fréchet derivatives of traveltimes and ampli-
tudes. In conventional wave-equation traveltime tomography,
the steepest descent direction is computed by crosscorrelat-
ing forward-modeled wavefields and backprojected traveltime
residuals. In our technique, Fréchet derivatives are computed
by calculating the partial derivative of the damped monochro-
matic wavefields with respect to velocity. In our approach,
we reduce computational costs required to compute Fréchet
derivatives by applying the source-receiver reciprocity the-
orem (Shin et al., 2001b). We demonstrate our refraction-
traveltime tomography algorithm by applying the velocity-
depth model generated with our refraction-traveltime to-
mography to Kirchhoff prestack depth migration for the
Marmousi-2 model (Martin et al., 2002) and reconfirm that the
Kirchhoff prestack depth migration is sensitive to the initial
model.

CALCULATI(,)N OF TRAVELTIME
AND ITS FRECHET DERIVATIVE

In wave-equation—based traveltime tomography, it is im-
portant to efficiently compute traveltime and its Fréchet
derivative. For an efficient traveltime-tomography method,
we suggest using a damped monochromatic wave equation as
Shin et al. (2003a) used to compute first-arrival traveltime.
In this section, we briefly review the traveltime computation
method of Shin et al. (2003a) and then explain how to explic-
itly compute Fréchet derivatives from the damped monochro-
matic wavefield.

When solving the wave equation by using the time-domain
finite-element method, we need to solve the discretized matrix

equation given by
Mii + Ku =f, (1)

where M is the mass matrix, K is the stiffness matrix, u is the
pressure or displacement vector, ii is the second-order partial
derivative of the pressure or displacement vector with respect
to time, and f is the source vector (Marfurt, 1984).

In the temporal Fourier domain, we can rewrite equation 1
as

Sii=f, (2)
with
S =K — oM, 3)

where § is the complex impedance matrix and @(w) and f(w)
are the Fourier transforms of u(f) and f(¢), respectively, ex-
pressed as

i(w) = [ ” u(r)e ' dr (4)

o]

and
f(w) :/ f(r)e " dt. 3)

In order to obtain the frequency-domain wave solution i, we
factor the impedance matrix S into upper and lower trian-
gular matrices. We then obtain the frequency-domain wave
solution i by forward and backward substitutions. In the
frequency-domain modeling, we often use the complex angu-
lar frequency w to suppress the wraparound effects:

w=o"+ia, (6)

where o* is the real angular frequency and « is the
wraparound suppression factor. The resulting wavefield in the
time domain is equivalent to the wavefield damped by e . By
choosing the optimum wraparound suppression factor (Shin
et al., 2003a), we were able to suppress all the energy follow-
ing the first arrival and obtain a damped spike.

The damped spike-shaped wavefield can be expressed (Shin
et al., 2003a) in the frequency domain as

ﬁ(.x, ¥, 2, (U*) — A(.X, v, Z)e—ar(x,y,z)eiw*r(x,y.z), (7)

where i(x,y,z, w*) is the Fourier transformed wavefield,
7(x, y, z) is the traveltime from the source to a depth point
in the subsurface, and A(x, y, z) is the amplitude at the depth
point in the subsurface.

By taking the logarithm of both sides of equation 7, we ob-
tain

Ini(x,y,z,w*)=1n |A(x, v, Z)e—ar(x,y,z)

+iw*t(x,y, 2).
®)
Dividing the imaginary component of equation 8 by the real
angular frequency w* gives us the traveltime 7 (x, y, z) at each
depth point. Although first-arrival traveltimes can be com-
puted using an arbitrarily chosen angular frequency, Shin et al.
(2003a) found that choosing a low frequency for traveltime
computation avoids cycle-skipping effects.
For our refraction-traveltime tomography, we calculate the
Fréchet derivatives using the damped-wave solutions in the
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frequency domain. In order to compute the Fréchet deriva-
tives efficiently, we exploit source-receiver reciprocity as de-
scribed by Shin et al. (2001b). To proceed, we express equa-
tion 7 as

~ —art; i ot |
iy, j(w) = Aj je” e

i=1,2,....,n; j=12,...,n;y, 9)
where i indicates the receiver number, j denotes the shot num-
ber, n, is the number of receivers, and n, is the number of
shots. Following Shin et al.’s (2001b) notation, we parameter-
ize our subsurface by N = N, x N, elements, where N, and N,
are the numbers of elements in the x- and z-directions, respec-
tively. We assume that the unknown model parameter vector
p is defined as the velocity within each element, represented
by p = [p1, p2s---, Pe»---, pn]- Since the wavefield can be
expressed as a function of the velocity parameter (e.g., Shin,
1988), we differentiate i; ; with respect to the subsurface ve-
locity parameter p,. As a result, we obtain partial-derivative
wavefields having the form

aﬁi,j — %e_m’\/ eiwr,-_j + Aiyje_ati’j(_a)%eiwn‘j
ape ape ape
. 0T ;
+ A, je e T jo—L (10)
apy
i=1,2,....n; j=1,2,....ny; [=1,2,...,N.

In the process of computing the partial derivative wavefields
with respect to each model parameter, we invoke the source-
receiver reciprocity theorem (Shin et al., 2001b).

The next stage is to use these partial-derivative wavefields
with respect to model parameters to calculate the Fréchet
derivative of traveltime. Dividing both sides of equation 10
by equation 9 and rearranging gives

1 aﬁ,‘j 1 BA,-j 31','.1' . 8Tij

— = —a— tiw— (11)

iij Ope A Ope ape ape
i=1,2,....,n; j=12....n: [=12...N.

We can extract the Fréchet derivative of traveltime from the
imaginary part of equation 11.

As a byproduct of calculating the Fréchet derivative of trav-
eltime, we can also compute the Fréchet derivative of the ab-
solute amplitude from equation 11.

VERIFICATION OF FRECHET DERIVATIVE

To verify our algorithm for computing the derivative of
traveltime, we compare the analytically calculated Fréchet
derivative with the numerically computed Fréchet derivative
(Lines and Treitel, 1984). By the finite-difference formula, the
variation of traveltime 7; with respect to the parameter p; is
expressed by

- _9u _ u(p;+Apj) —u(pj = Apj) 12)
T 2Ap; '

To verify the Fréchet derivative, we choose a simple homo-
geneous model (Figure 1) whose velocity is 2 km/s. The size
of the model is 5 km wide by 0.5 km deep. We subdivide the
model into 25 000 elements, each of 10 m by 10 m size. We

then perturb the element at (x = 2.5 km, z = 0.1 km) (Figure
1) and measure traveltimes along the surface.

Figures 2a, 2b, and 2c show analytic and finite-difference
Fréchet derivatives where the source is located at 1.5 km,
2.5 km, and 4.5 km, respectively. Note that the numeri-
cal Fréchet derivatives agree well with the analytic Fréchet
derivatives. Note that in equation 11, the Fréchet derivative
is generated by computing partial derivative wavefields that
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Figure 1. Velocity model for comparing the analytic Fréchet
derivative with the numerical Fréchet derivative.
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Figure 2. Comparison of the analytic and numerical Fréchet
derivative of traveltime, where the shot is located at (a) 1.5
km, (b) 2.5 km, and (c) 4.5 km, respectively. FDM = finite-
difference method.
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are obtained by introducing virtual sources (e.g., Pratt et al.,
1998; Shin and Chung, 1999). When a wavefield propagates
from the shot point to a perturbed point, it acts as a virtual
source and reradiates energy to all receivers at the surface. In
this manner, we can compute Fréchet derivatives even for a
homogeneous medium, thereby allowing us to start with a ho-
mogeneous model as an initial model in refraction-traveltime
tomography.

We also check the Fréchet derivative of amplitude. In Fig-
ure 3, we compare analytically computed Fréchet derivatives
of amplitude with numerically computed values for the ho-
mogeneous model shown in Figure 1. As shown in Figure 3,
the numerically computed Fréchet derivatives of the ampli-
tude are also compatible with the analytically computed ones.

INVERSION ALGORITHM

In traveltime-tomographic inversion using the least-squares
method, we define the objective function as the L, norm of
residual errors between the first-arrival traveltimes of the real
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Figure 3. Comparison of the analytic and numerical Fréchet
derivative of amplitude where the shot is located at (a) 1.5 km,
(b) 2.5 km, and (c) 4.5 km, respectively. FDM = finite-
difference method.

data and those obtained by numerical modeling:
E(p) = %AT‘AT (13)
and
AT =Tq— Tu, (14)

where p is the material property vector, T4 is the observed
traveltime, T, is the numerically computed traveltime, and the
superscript t denotes the transpose.

In general, the least-squares method needs either direct or
indirect estimates of the Fréchet-derivative. In this study, we
choose the steepest descent method and update the velocity
model by following the general iterative rule

p+) = p® _ 40y g®), (15)

where

JgE®

v,E® = =J'AT (16)

and k is the iteration number, VPE(") is the steepest descent
direction normal to the objective function at the kth iteration,
a is the step length, and J' is the transpose of the Fréchet-
derivative matrix.

When using the Gauss-Newton or full Newton method, we
can obtain the step length by inverting the full Hessian or an
approximate Hessian and multiplying the steepest descent di-
rection by the inverse of the Hessian. However, if the num-
ber of unknowns is large, the computation of the Hessian is a
formidable task, even employing a PC cluster with MPI inter-
process communication. Furthermore, calculating an inverse
of the huge Hessian is also prohibitively expensive and some-
times suffers from the illposedness of the Hessian (Shin et
al., 2001a). In our tomographic inversion, we efficiently reg-
ularize the steepest descent direction using the diagonals of
the Hessian rather than the full Hessian or the approximate
Hessian, since the Hessian is diagonally dominant. In order to
avoid the illposedness of the Hessian, we also add the damping
factor to the diagonals of the Hessian.

EXAMPLE OF AN ISOLATED BLOCK EMBEDDED
IN THE TWO-LAYERED MODEL

In order to test our algorithm, we take an isolated block em-
bedded in a two-layer model. Figure 4a shows the true model.
The velocities of the first layer, second layer, and the block in
the middle are 1.5 km/s, 4.5 km/s and 3 km/s, respectively. The
size of the model is 3 km in horizontal distance and 0.5 km
in depth. For the initial model, we assume a velocity model
linearly increasing with the depth, ranging from 1.5 km/s to
3.5 km/s, as shown in Figure 4b. We subdivide the velocity
model into 300 x 50 elements. At the surface with intervals of
10 m, 301 receivers are placed. Figure 4c displays the inverted
model at the 600th iteration. Since we use a small step length,
the convergence rate is very slow. Note that the inverted ve-
locity model converges to the true model in Figure 4c. Fig-
ure Sa describes traveltimes computed for the true, the initial,
and the inverted model; Figure 5b shows the rms error of the
traveltimes, which decreases from 61 ms at the initial stage to
1 ms at 600 iterations.
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MARMOUSI-2 MODEL

We also invert the traveltimes generated for the Marmousi-
2 model (Martin et al., 2002). Figure 6a shows the P-wave
velocity model for the Marmousi-2 model. For simplicity, we
peeled off the model’s water layer. The horizontal distance of
the model is 17 km and the depth is 3 km. The lowest velocity
is 1.028 km/s in the gas-charged sand channel and gas-sand
trap. The maximum velocity is 4.7 km/s in the salt layer. The
initial model for inverting the Marmousi-2 model is shown in
Figure 6b. At the surface, the velocity is 1.5 km/s, and it in-
creases linearly as the depth increases. The maximum velocity
is 4.5 km/s at 3 km depth.

We perform refraction-traveltime tomography for two cases
of the Marmousi-2 model using short- and large-aperture data.
In both cases, 213 shots are located at the surface with inter-
vals of 80 m. For the short-aperture case, we locate 150 re-
ceivers with intervals of 20 m on the left side of every source
simulating a 3000-m towed-streamer array. For the large-
aperture case, 851 receivers are spread over the entire surface
with spacings of 20 m. In Figures 6¢c and 6d, we display the
inverted models for the two cases of the Marmousi-2 model.
From Figures 6¢c and 6d, note that the larger offset we use,
the deeper structure we obtain. For comparison of our results
with another inverted example, we also display an inverted
velocity model derived from a simultaneous iterative recon-
struction technique (SIRT) (Dines and Lytle, 1979) in Figure
6e. In the SIRT, we use the 80-m-grid Marmousi-2 model. In
Figures 6d and 6e, we can see that our refraction tomography
method gives results similar to those of the SIRT for the shal-
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Figure 4. (a) An isolated block embedded in the two-layered
model, (b) the initial model for the inversion, and (c) the last
inverted model.
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low structures, but for the deep structures our method yields
slightly better results.

Next, we examine whether the inverted velocity-depth
model can be used as a smooth velocity model for the
prestack depth migration. Figures 7a, 7b, 7c, and 7d show the
Kirchhoff-migrated images obtained by using the true, the ini-
tial, and the two inverted velocity models (for short- and large-
aperture data) shown in Figures 6a, 6b, 6¢, and 6d, respec-
tively. For Kirchhoff prestack depth migration, we computed
the most energetic traveltimes following the method of Shin
et al. (2003b). From Figure 7, we note that the two inverted
velocity models yield images superior to the initial velocity
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Last inverted model
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0 T T T T T ]
0 200 400 600
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Figure 5. An isolated block embedded in the two-layered
model: (a) the traveltime curves of the true model, the initial
model, and the last inverted model, and (b) the history of rms
error of our inversion results.
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model and that the large-aperture model gives the best image.
In particular, the depth of the left side of the model is consid-
erably improved, and the outline of the faults in the middle
of the model is well defined. In addition, the continuity of the
anticline in the deeper area is enhanced.

We also compare the Kirchhoff migration images obtained
by our refraction tomography with those generated by the
SIRT example. Figure 7e shows the Kirchhoff migration im-
age obtained by using the SIRT. By comparing Figure 7d
with Figure 7e, we note that the migrated image obtained by
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Figure 6. (a) The Marmousi-2 model, (b) the initial model
used for the inversion, (c) the inverted model obtained us-
ing short-aperture data, (d) the inverted model obtained using
large-aperture data, and (e) the inverted model obtained from
the SIRT.

our technique shows slightly better resolved structures for the
deep part than those of the SIRT. From these results, we can
safely assert that the inverted velocity model resulting from
refraction-traveltime tomography can be satisfactorily used as

a) Distance (km)

Figure 7. Kirchhoff prestack depth images generated for the
Marmousi-2 model by using the most energetic traveltime cal-
culated from (a) the ture model. (b) the initial model, (c) the
inverted model obtained using the short-aperture data, (d) the
inverted model obtained using the large-aperture data, and (e)
the inverted model obtained from the SIRT.
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an initial velocity model for prestack depth migration, even
though the accuracy of the velocity model decreases slightly
at depth.

CONCLUSIONS

We developed a new traveltime-tomography technique
using a monochromatic damped wavefield. An optimally
damped wave equation propagates a single pulse instead of
wave trains that are generated by a conventional two-way
wave equation. By solving the damped-wave equation in the
frequency domain and taking the logarithm of a damped
wavefield at a single frequency, we extract the amplitude
and the phase (or traveltime) of the first arrival. Because
the damped-wave equation is symmetric, we apply the reci-
procity theorem to reduce the computational cost required
for computing Fréchet derivatives. We solve our inverse prob-
lem by using the steepest descent method and by regularizing
the problem with the diagonal elements of the approximate
Hessian, making it possible to use a scaled step length.

Our numerical tests of the Marmousi-2 model show that al-
though refraction-traveltime tomography using large-aperture
data does not give complete information on the subsur-
face, the velocity model obtained by refraction-traveltime
tomography can be successfully used as a smooth velocity
model for prestack Kirchhoff migration. Our refraction-
traveltime tomography algorithm can also be used to de-
lineate velocity structure for global tectonics and to esti-
mate velocities in the shallow subsurface for engineering or
environmental geophysics.

In the future, we expect that our algorithm for computing
Fréchet derivatives of amplitude, as well as for traveltime, will
allow us to include the amplitude term in refraction tomog-
raphy and extend our algorithm to transmission tomography
without any difficulty.
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