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The properties of semiflexible polymer brushes are studied by applying the classical limit of mean-field ap-
proach for chains with marginal chain stiffness. Using the mean-spherical Gaussian model, the most probable
configuration for semiflexible chains is obtained, which reduces to the parabolic brush ofévidh¢iac-
romoleculesl988 21, 2610] in the flexible limit. From this configuration, equilibrium brush height as well as
interactions between semiflexible brushes are estimated.

Introduction state, and liquid crystalline polymer (LCP) are well known
examples of semiflexible chain. These semiflexible chains also
Polymer chains with one ends tethered to an interface or lzave potential use in controlling surface or interfacial properties
surface with high attachment density form polymerthrough increased brush height. Studies on the flexible chains
brushes.?2 The polymer brushes in solution, showing quite are mainly based on the random flight statisti€but the char-
different properties from free polymer chains in that theyacteristic of the random flight chain is violated by semiflexibil-
exhibit deformed configuration even in equilibrium condi- ity arising from hindrance to internal rotation and structural
tion due to the excluded volume effect, become a basiconstraint. This implies that a large number of real polymer
model for a variety of polymeric systems such as polymerichains do not obey the simple statistics of random flight chain
surfactants, stabilization of colloidal dispersions, and wet<i.e., flexible chain) and consequently other appropriate model
ting properties of surfaces and adhesion. The unique strugs needed. Among a number of models presented for the semi-
ture of the polymer brushes has thus motivated a number diexible chains, the most well-known model is the worm-like
experimental and theoretical studies. One of the most impoichain proposed by Kratky and Po¥bid which coarse graining
tant applications of the polymer brushes is the colloid stabis introduced to replace mathematically intractable discrete
lilization by end-tethered chaifs.When the coverage of chains with continuous models. Several models for both flexi-
end-tethered chains is low and poor solvent is used, solidle and semiflexible chains are shown in Figure 1. On the
colloid particles may flocculate but as the grafting density isother hand, Saito, Takahashi, and Yunoki (S¥Yjave
increased and solvent quality is improved, the polymeremployed the Wiener type integral formulation to provide a
brushes separate colloidal particles to a distance at whiclunctional integral representation for the worm-like chain. In
van der Waals interaction is too weak to keep the particlepresent study, the classical limit mean-field equation for
together due to the repulsive force between the brushes arisemiflexible polymer brushes is presented by employing a
ing from high osmotic pressure inside the brushes. model based on the worm-like chain and the physical prop-
Pioneering work on polymer brushes was given byerties predicted from the equation are discussed.
Alexandef and de GennésTheir equilibrium brush theory
assuming uniformly stretched chains with a simple step func- Theoretical Model for Semiflexible Polymer Brushes
tion profile is based upon a free energy balance argument. By
balancing the osmotic pressure resulting from excluded volume In order to incorporate semiflexibility in polymer chains,
interaction of the brushes with the elastic stretching forces of
elongation favoring to have maximum configurational entropy
they obtained ~ N(wo 193, f ~ N(wo /1)22whereh is brush
height,f is the free energy of a chain in brush phbsis, the
number of brush repeating unitsjs the surface densitgy is @
the excluded volume parameter &nsl the statistical segment
length. Their original work has prompted a large body of litera 1

ture dealing with different approaches such as the self-consi \ \/\/\
tent field equation first developed by Dolan and Edwards,

scaling approachand more recently computer simulatiéf. /
Previous studies, however, mostly focused on flexible polyme ]

brushes and few studies have reportedemniflexiblepolymer ®) (©
brushes.

gure 1. Various models for both flexible and semiflexible
Most real polymer chains possess inherent backbone rIg'q!rolymer chains; (a) Bead-Bond Model, (b) Semiflexible Persistent
ity.11-13 Polypeptides, deoxyribonucleic acid (DNA) in helical Chain Model and (c) Semiflexible Freely-Jointed Model.
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the Hamiltonian for flexible chains should be modified. Most Probable Configuration and Physical
Properties of Semiflexible Polymer Brushes
In addition to the Wiener fornfH = 2J’d EUTD ac-
When we deal with long and stretched chains, the distribu-
counting for the elastic energy of erX|bIe chalns, whigre  tion of chain configuration is sharply peaked around the
1KksT andr; is the position vector of a monomeritimchain ~ most probable configuration (MPC), that is, one which mini-
at a contour distancealong the chain, a curvatuteeding mizes the exponent of the partition function. In this work, we
energy term which is the second derivative with respect taise the classical limit mean-field approach wherein fluctua-
contour length is introduced to simulate the semiflexibility. tions around the most probable path are neglected as poly-
This model can be easily extended to more generalized caseer chains extend above their Gaussian random coil size.
by incorporating higher derivative terrifs. The semiflexible chains generally adopt more stretched con-
The classical model used to describe the configurationdiguration due to chain stiffness arising from molecular
statistics of a semiflexible polymer is the wormlike chainstructures such as mesogenic groups along the liquid crystal-
defined by a function given beléiv line polymer backbone and electronic delocalization of con-
jugated polymer chaifs as well as isotropic interaction
00 resulting from the repulsion between segments analogous to
Q= ”—' Dri TeXpD_ZI’BEZI dTDTE % (1) flexible polymer brushes. In the case of semiflexible poly-
mer brushes, there also exist anisotropic interactions which
wheree is the bending elastic constant with a dimension ofare responsible for isotropic-nematic phase transition. How-
energy per length and the notatifidri(1) denotes the func- ever, when we confine semiflexible brushes to a system with
tional integration over all trajectdries of the chain, subject toonly marginal semiflexibility and in a moderately stretched
finite chain extensibility constraintrj/dr |1 = 1. Unfortu-  regime, we can simply assume isotropic interactions, mean-
nately, for a number of applications the wormlike chain ising that in the regime con5|dered the order parameter, which
mathematically cumbersome due to the finite chain extensis defined ass = 1/2[Bcos ’9 —1C representing the degree
bility constraintdiri/dr | /1 = 1. As a result, mean-spherical or of anisotropic interactions arising from chain stiffness and
spherical approximati@fis introduced to simplify calcula- becoming zero for flexible brushes, is almost constant and
tions with the model, yet still retaining the essence of seminot of significance in the marginally semiflexible regime
flexibility of polymer chains. This procedure is, however, considered. By applying the finite chain extensibility through
analogous to employing the Gaussian model. Consequentlthe spherical approximation and employing the Euler-Lagrange

2

the following mean-spherical Gaussian model is used. equation up to the second order, the most probable configura-
tion for the semiflexible chains was obtained:
Q = [[]DPri(1) ) 3kgT

JT10n STt _ %D-kBTDu @
D e o 20 I 97" @D

expg—z ZJ’ %E ﬁgZI dr r2, % Without the interaction termkgT (0 U), the equation is a

t 2l 00 fourth-order differential equation describing the bending of a

D 0 homogeneous rigid rd@2® When we assume that each

where the functional integral ovey(r) is now uncon- brush chain is end-tethered normal to the grafting surface,
strained. To model the interactions between polymer brusthe facts that all the chains are grafted at the same surface
dr. and have the same polymerization index N simplify the
chains, the osmotic ternH = .rd rU[ri(r), d—r'] is intro- problem. This means that we use the conventional equal
time conditionz = 0, dZd7)/l =-1 at the grafted end € N)

duced, which usually includes anisotropic interactions agindz = h, d®z/dr® = 0 for the free endr= 0). Retaining only
well as isotropic interactions between the brush chains. dominant terms, the trajectory becomes

The self-consistent field equation, which is essentially the
Fokker-Planck type equation in the case of a single chain, z = D_)\ )\
could be obtained by minimizing the free enefy=-InQ, A
which in turn could be solved self-consistently through a
propagatof.1°

—Zexp(A,., (T-N))

1 h|)\—+ .
LT+ %\f —)\—[%m|)\_+|r (5)

J
———0%+lu-0, +U|G(r,u;1)=0 3
[ﬁr 2l e } (r.ui0) © +(h+A +B- J_[EGXIO( —A.N))cosA_, |t

where u = (dr/d7)/l, U is the dimensionless interaction Ao

potential between chain segments, st represents the whereA. =-A. = ((1/Bd + ((1/Be)>+8BIBe)V2)/2)Y2, A_, =
chain stiffness which is inversely proportional to the flexibil- i((-=1/Bel + ((1/3¢)>+8B/Bel)V2)/2)¥? with B = r/8N?, andh
ity parameter ¢) defined asa ~ L/A™* with L the contour is the brush height. In the flexible brush limit whedg
length andA\~* the persistence length. approaches zerapecomesicos {N/27) which is the classi-
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1.0 A brushes. When the semiflexibility of a brush chain is consid-
\\-\_ Bel=0 ered B¢ > 0), the equilibrium brush height is also obtained
AN \\ """ Pel=0.001 from minimization of the free energy with respect to brush
08 N - ggfg'?l height leading to the relatidri/| = S+T, whereSandT are
NN =
ANRN _ ,woN’ 3/2
. 06 AN \\\ S=(=— al +(Bel)™ /216
3 N\ N\ + ((woN?)’/ 1612 + woN® (Bel) ¥ 27432\ Y2 ® (7)
04} AN \\\
AR\ T = ("JGN +(Bel) ¥ 216
02r \\\\ 2 1/3
AN (- ((woN®)/161° + woN*) (Be) ¥ 2/ 432)%) 7 (8)
0.0 . L L 1 , Because we focus on the scaling relationships the numerical
0002 04 06 08 10 coefficients are not important and could be eliminated from the
/N relations. In the regime where the excluded volume effect is

Figure 2. Trajectories of a brush chain normal to a grafting surfacemore important than the semiflexibility of brush chains, the
with different degrees of chain rigidityB4). The solid line  equilibrium brush height could be obtained in a simpler form by
indicates the classical limit solution of completely flexible polymer perturbatively expanding the equilibrium brush height neglect-
brushes. ing the higher order terms théfiel ) V2

1/3
cal limit mean-field solution of flexible brushes as shown as h/1 D(wa/1)" "N+ (Bel ) ©)

a solid curve in Figure 2.For flexible polymer brusheg4 This means that the semiflexibility of a brush chain still

= 0), the trajectory results in the parabolic density profile ofcontributes to the equilibrium brush height as schematically
Milner et al?* while as chain stiffness is increased, the tra-shown in Figure 3. In the figure, the numerical coefficient is
jectory begins to deviate from the solid curve and asymptotifixed to unity for convenience.

cally approaches the diagonal line indicated by the long Recently, there have been several studies on the character-
dashed line in Figure 2 corresponding to a chain trajectory gfation of polymer brushes grafted at solid-liquid interf4ée.
completely stretched chains. This behavior implies that as challein et al?¢ investigated the reduction of frictional force
stiffness is increased, the conformation of brushes graduallyetween two solid surfaces bearing polymer brushes using a
changes from a parabolic density profile of completely flexiblesurface force apparatus. In their experiment, PS chains were
brushes to a step function density profile for completelyend-grafted on mica surfaces in toluene which is a good sol-

stretched brushes, which is in good agreement with a previzent to PS. The persistent length of the worm-like chain
ous study of Wijmangt al?® in which the self-consistent

field (SCF) lattice model was employed. The free energy pe

172

chain is obtained from the partition functiBf = -InQ in % ' ' ' ' '
general. In the classical limit, however, the free energy ca Bel=0
be directly derived from the general free energy expressio 50 Bel=0.1 Y .
i ? N T 7
F DZ Idr i ,BEZI dix=0 by substitut- | T pelsi0 Ve ]
r0 ™ 2 2 Jo alds 40 ?
ing the classmal trajectory Eq. (5) into this expression. Wk = ///‘
also employed the equal time potential of the foifz) = A- = or ; 7
B2 with A(h) = Nowh+Bh/3 and B = r8/8N? which is ///
obtained from the equal time constraint meaning that all th 20+ /, -
chains are end grafted at the same surface and have the s¢ // 7
polymerization indeXN?4. The dominant contribution from the wk / i
stiffness of chains, after dropping unimportant numerical coeffi S
cients, becomegBé)Y/NI+O(Bdl), thus the total free energy ”
obtained can be written as follows: T T wm  a e o
= DkBT h’ —(Bel )1/2 h + w%\l_o%} ©6) Polymerization Index, N
h Figure 3. Equilibrium brush height as a function of polymerization

; — PP index N for different degrees of chain rigidity witho/l = 0.1. The
I_n th(.e ﬂeX|b_Ie erSh Ilm!t/_ﬁsl_— 0.)’ the equilibrium erSh. brush height should go through the origin regardless of the
height is obtained f_rom mlnlr_nlza_ltlon of the_ free energy WIthsemiflexibility of a chain in a region close to zero polymerization
respect to brush height resulting in the relatibr N(wol?)™,  index. However, each line with a different chain rigidity is drawn in
which is the typical scaling relationship of flexible polymer a straight line to show the extrapolated intercept value.
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model ()1, which is directly proportional to the chain
stiffness, is 10.4 for PDMS chain at%Z5,while the (2)2 for
PS ranges from 13.2 to 18.8 at°’€7depending on tacticij,
meaning that PS chain is stiffer than PDMS.

Figure 4 illustrates the brush height of end-tethered PS

toluene plotted against PS molecular weight. The linear rele
tionship between brush height and molecular weight is evi
dent and from the best fit, the brush height intercept wa
estimated to be 21, which is the evidence of semiflexibility
contribution to the equilibrium brush height of the PS brushe

in the limit of zero molecular weight.
When two particles are brought into a close distance,

strong repulsive force occurs due to the interaction betwee
end-anchored brushes. In steric stabilization of colloidal par
ticles, the interaction between end-tethered brushes plays
crucial role in preventing flocculation in suspension. Using

the total free energy

Fron/ T 5 ] (DY~ (e 2, RO
+ wNzaE%EEq—DJ

and the equilibrium brus heightl1~(wo/ 1) N+ (Bel) ™ ?

Bull. Korean Chem. 8229 Vol. 20, No. 9 1029

250

[
200

150

FCOm/kBT

100

50

0.0 0.2 0.4 0.6

u (= h/h*)
Figure 5. Compressional free energy as a function ¢f h/h*) for
different degrees of chain rigidity witho/l = 0.1 and N=100 where

h is the compressed brush height &hds the equilibrium brush
height. The coefficients used in Eq. (10)@re0.5,c,=1, anct;=0

equilibrium brush height ard, c;, c; are positive numerical

the compressional free energy for semiflexible chains isonstants.
given below, where we neglected the higher order terms than Eq. (10) also shows the effect of chain rigidity on com-

(Bet)
con/k T~Cl|:NE&OD2 +Cz(ﬁgl)l/2|:&aml :|U —C

3

/3 /3
1
(pely 2090y o NS L

¥ (10)

whereu = h/h*, h is the compressed brush heidfitjs the
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Figure 4. Brush height as a function of PS molecular weight. Date
was taken from re® The brush height scales las- N6 in good
solvent and the grafting densityis given by 1642 whereN is the
chain length, anéy is the mean inter-anchor spacing. The brush
height, rescaled b$%.?? to remove the grafting density effect, is
needed in the ordinate.

pressional free energy. The first and last terms on the right
hand side of Eq. (10) represent contributions to compres-
sional free energy resulting from conformational entropy of
the chain and osmotic interactions, respectively, which is the
well known form in the case of completely flexible brushes.
The second and third terms containfgel) are the contribu-
tions due to chain rigidity. While the second term causes the
increase of free energy due to the bending energy of semi-
flexible chains, the third term decreases the free energy by
reducing osmotic interactions since the chain rigidity
decreases the conformational entropy of the semiflexible
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Figure 6. Compressional free energy as a function Gf h/h*) for

different degrees of chain rigidity witlao/l = 0.1 and N=100. The
coefficients used in Eq. (10) are= 0.5,c.= 10, ancts= 10.
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chains. Consequently, the actual feature of the resulting2.
compressional free energy depends on relative magnitude o8.

the two rigidity terms with opposite signs. If the decrease of
conformatonal entropy due to semiflexibility of chains is
negligible, the free energy will exhibit an increased value

with increasing chain rigidity. When the third term becomes ¢
comparable with the second term in Eq. (10), the compres-7.
sional free energy decreases with increasing chain rigidity g
due to the fact that reduced osmotic interactions betweeng.
semiflexible chains are dominant. The two different cased0.
for the relative magnitude of second and third terms in Eqll.
(10) are shown in Figures 5 and 6. In Figures 5 and 6, on&2-

can notice the abrupt increase of compressional free energy
as the compression ratio u becomes smaller. This is due%&
the term 14 originating from the excluded volume interac-
tion between brush chaidswhere the compressed brush
height h is one half of the separation distance (d) betweejy

shown in Figures 5 and 6.

Summary

22.

The equilibrium properties adfemiflexiblepolymer brushes

were presented using the classical limit of a mean-field theorg3.

for polymer chains with marginal stiffness. The continuous

model based on worm-like chain was employed and the mog¢-

probable path for semiflexible chains was analytically obtained,

from which equilibrium brush height as well as interaction25-

between semiflexible brushes was estimated.

26.
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