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Solid-State NMR and Electrochemical Dilatometry Study on
Li* Uptake/Extraction Mechanism in SiO Electrode
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This work reports the Li* uptake/extraction mechanism in silicon monoxide (SiO) as the negative electrode in lithium secondary
batteries. A combined study of solid-state 2°Si- and "Li-nuclear magnetic resonance (NMR), electrochemical dilatometry, and
charge-discharge cycling consistently demonstrates that the SiO, domain in SiO irreversibly reacts with Li* to produce lithium
silicates and Li,O in the first discharging period, whereas the elemental Si domain reversibly reacts, delivering the same charge-
discharge characteristics to those of conventional amorphous Si electrodes. The volume expansion accompanied by the irreversible
reaction is less significant than that caused by the lithiation of Si domain. The postmortem analysis made on cycled electrodes
reveals a phase segregation between the lithium silicates/Li,O and lithiated Si phase. It is likely that the lithium silicates/Li,O
phase plays a buffering role against the volume change of Si matrix, but the crack formation at the phase boundaries and eventual

pulverization are still a problem to be solved.
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Recently, many efforts have been made to replace the carbon-
based anode with Li-alloy materials such as Si and Sn. Even if Si is
known to have a higher theoretical capacity (Li;5Siy:
3579 mAh g7!) than that of graphite, it has not been used as an
anode in a practical battery mainly due to a severe volume change
encountered with cycling.l'3 To overcome or alleviate this problem,
several approaches have been made with nanosized Si p0wders,4’5
active/inactive composites (for instance, Si/TiN, Si/TiB,, and
Si/FeSi),ﬁ'8 and Si/carbon composites.g‘lo Rather surprisingly, how-
ever, the literature dealing with silicon monoxide (SiO) as the nega-
tive electrode for lithium cells is still limited even if this chemical is
commercially available with a reasonable price.“’14 This may be
because the diffraction methods commonly used to solve structures
of crystalline materials cannot provide useful structural data for
these amorphous systems. The microscopic structure of SiO is still
controversial. Two models have been proposed in the literature, the
random-bonding (RB) and random-mixture (RM) models.'>8 The
former describes SiO as a single-phase material, wherein Si—Si and
Si—O bonds are supposed to be randomly distributed throughout a
continuous network. > The latter model, however, describes SiO as a
mixture of amorphous elemental Si and SiO, domains of <10 A in
size.'® Even if the literature dealing with the electrochemical behav-
ior of SiO did not provide a clear structural description on SiO,
some informative results concerning the reaction products formed
after cycling have been presented.1 ' For instance, Miyachi et al.
have reported the generation of phase mixture, nanosized Si and
lithium silicates, after an electrochemical charge-discharge cycling
on SiO thin-film electrode.® The formation of elemental Si and
lithium silicates by a nonelectrochemical pathway, a high-energy
ballmilling with metallic lithium, was also evidenced by Yang and
co-workers.”

This work has been motivated by a premise that SiO might be a
better choice than its nonoxide counterpart when the issue of volume
change is solely considered. That is, the absolute volume expansion
of SiO should be smaller than that of Si because the absolute amount
of Si in SiO is lower than in pure Si. Moreover, any oxygen-
containing materials, SiO, and/or lithium silicates that are known to
be generated during cycling, can play a buffering role against the
volume change of Si domain. Another favorable feature expected
with SiO is that the nanosized Si and SiO, domain, if the RM model
is the right one, may give an unusual electrochemical reactivity that
cannot be obtained with bulkier materials. In fact, unexpected elec-
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trochemical behaviors have been observed in many nanosized
single- or mixed-phase materials: alloys,zl metal oxides,”*** and
metal halides.”2°

After reviewing the problems encountered with SiO electrode
and the expectations projected above, the following goals have been
identified in this work: (i) identification of a more realistic model
for the microstructure of SiO, (ii) the Li* uptake/extraction mecha-
nism, and the nature of reaction products and their effects on the
anodic performance of SiO electrode, (iii) the extent of volume
change in SiO electrode upon Li* uptake/extraction, and (iv) any
unexpected reactivity associated with nanosized crystalline and/or
amorphous mixture. The galvanostatic charge-discharge cycling was
carried out to examine the anodic performance of SiO electrode,
whereas any volume change evolved during cycling was traced with
electrochemical dilatometry. The reaction products were analyzed
by solid-state "Li and %°Si nuclear magnetic resonance (NMR) tech-
nique, and morphological change was examined with a transmission
electron microscope (TEM).

Experimental

The used SiO powder (325 mesh) was purchased from Aldrich
Chemical Company and used as received. To prepare the negative
electrodes, a mixture of SiO, Super P (as a carbon additive for con-
ductivity enhancement), and polyvinylidene fluoride (PVdF, as a
polymeric binder) in 80:10:10 weight ratio was dispersed in
N-methyl pyrrolidone (NMP) and homogenized. The resulting slurry
was spread on a piece of copper foil (10 wm thickness and 1 cm?
apparent area) and dried in vacuum at 120°C for 12 h. It was then
pressed to enhance the interparticle contact and to ensure a better
adhesion to the current collector. For the electrochemical dilatom-
etry experiment, however, the electrode composition was changed to
75:5:25 in weight ratio because a larger amount of polymeric binder
(PVdF) was needed to minimize the electrode deformation. A
beaker-type three-electrode cell was employed to assess the electro-
chemical performance of the samples. Lithium foils (Cyprus Co.)
were used as the counter and reference electrode, and 1.0 M LiClO,
dissolved in a mixture of ethylene carbonate (EC) and diethyl car-
bonate (DEC) (1:1, v/v) was used as the electrolyte. Galvanostatic
charge-discharge cycling was made at a current density of
100 mA g~! in the voltage range of 0.0-2.0 V (vs Li/Li*) with a
battery-testing system (Toyo Co.). The electrode swelling and con-
traction was monitored using a homemade electrochemical
dilatometer.””*® For the solid-state NMR study, the cycled cells
were disassembled in an argon-filled dry box and the electrode ma-
terials were scraped from the current collector and washed with
dimethyl carbonate. The magic-angle-spinning (MAS)-NMR spectra
were recorded with a Bruker DSX-400 NMR spectrometer. The Li
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Figure 1. (a) The galvanostatic discharge-charge voltage profiles traced with
SiO electrode and (b) the differential-capacity plots (dQ/dV vs V) for the
initial two cycles.

spectra were obtained at a Larmor frequency of 155.5 MHz with
1.3 us pulses and 0.2 s recycle delays and the sj spectra at
79.5 MHz with 2.0 ws pulses and 10.0 s recycle delays. The "Li and
2Si chemical shifts were referenced to 1.0 M LiCl and tetra-
methysilane (TMS), respectively. For referencing purposes, Li;SiO,4
powder was prepared by firing a mixture of SiO (Aldrich Chemical
Company) and LiOH (Aldrich Chemical Company, 99%) at 800°C
for 10 h in a tubular furnace under air flow. The microscopic inves-
tigation was carried out with a JEOL JEM 2000 EXII TEM. In this
work, the Li* uptake was expressed as discharging and the extrac-
tion as charging.

Results and Discussion

Typical galvanostatic discharge-charge voltage profiles observed
with the SiO electrode are reproduced in Fig. 1a, where the lower
profiles correspond to the discharging (lithiation) curves and the
upper ones to the charging (delithiation) curves. In the first cycle,
the specific discharge and charge capacity was 2680 and
1470 mAh g!, respectively, reflecting a large amount of irreversible
capacity (1210 mAh g7!) being generated. The much-reduced or
negligible irreversible capacity from the second cycle reflects that
the irreversible reaction takes place mainly in the first cycle. The
plateau appeared at 0.8 V (vs Li/Li*), which is likely associated
with the electrolyte decomposition and concomitant solid electrolyte
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Table I. Chemical shift of ?’Si nuclei in some lithium silicate
materials.”

Anionic Q Chemical
Composition silica Compound state shift/ppm*
Si0, Si0) Si0, Q* -108 +2
Li,0/Si0, = 1:2 Si,0% Li,Si,O5 2Q3 -92+2
Li,0/Si0, = 1:1 Si03” Li,SiO5 Q? -75+2
Li,0/Si0, = 3:2 Si,05 LigSi,04 2Q! =70 +2
Li,0/Si0, = 2:1 Siog” Li,SiOy4 Q° -65+2

*From Ref. 32-35

interface (SEI) formation on both the carbon additive (Super P) and
Si surface, may account for some portion of the irreversible
capalcity.29 The observation that the capacity seen at 0.8 V (ca.
150 mAh g7!) is much smaller than the total irreversible capacity
(1210 mAh g~!), however, suggests that other irreversible processes
or reactions are occurring. The major irreversible reaction can be
identified on the differential capacity plot (Fig. 1b), where an intense
peak at 0.25 V appears in the first discharging, which is absent from
the second cycle. Clearly, the major irreversible reaction, whatever it
is, takes place near 0.25 V. Another revealing feature in Fig. 1b is
that the peaks appeared in both first and second cycles (0.23 and
0.08 V on discharging and 0.28 and 0.45 V on charging as indicated
by arrows), thus assignable as a reversible reaction, are similar in
both shape and position to those of amorphous Si electrode.*®!

A detailed study on the nature of irreversible/reversible reactions
and their products has been made with solid-state 2si- and
"Li-NMR techniques. Table 1 provides the representative lithium
silicate  compounds (Li,0-SiO,) and their 2’Si chemical-shift
data.**° Here, the structural type of lithium silicates is expressed as
Q", where the n value indicates the number of bridging Si—O-Si
oxygen atoms as the silicate tetrahedral.*® For instance, the n value
of silica (SiO,) is four as the tetrahedral units are three-
dimensionally connected through four oxygen atoms, whereas n
=0 for LiySiO, because the SiO, tetrahedron is not connected to
any neighboring ones but to four Li* ions. One systematic trend in
the chemical shift of 2°Si (the last column in Table I) is the steady
movement to the positive direction with a decrease in the n value,
which is in good agreement with those predicted b¥ the group elec-
tronegativity calculation made on lithium silicates.”’

The #’Si-NMR spectra for some representative silicon com-
pounds are provided in Fig. 2a. The pure Si gives a resonance signal
at —82.3 ppm, while no signal was detected for the lithiated Si
(Lis 5Si). The reason for this is not clear at present but might be due
to either a peak broadening or peak shift to the outside of the
common 2Si chemical shift range.38 The chemical shift of SiO,
(—108.6 ppm) and Li;SiO,4 (-65.0 ppm) is in good agreement with
the reported values (Table I).** The small peak at —76.5 ppm (Q?
state) in the latter sample comes from Li,SiO3 impurity. The most
important observation in Fig. 2a is that SiO shows two broad bands
whose chemical shifts are close to those of Si and SiO,, which
favors the RM model.

The 2°Si-NMR spectra were taken after the SiO electrode was
cycled according to the scheme in Fig. 2b. When the electrode was
discharged from 2.0 to 0.2 V and left at 0.2 V for 5 h to complete
the irreversible reactions at 0.25 V, a broad peak was observed at
—60 to —80 ppm at the expense of the peak located at —110.6 ppm
(0.2 V trace in Fig. 2¢). This illustrates that the SiO, component
(=110.6 ppm) in SiO takes up Li* to produce some Si-containing
compounds (—60 to —80 ppm) at 0.25 V. The most probable Si-
containing compound seems to be LiySiO, as the new peak is lo-
cated at —67.6 ppm (Q° state), but the formation of other com-
pounds (Li,SiO; or LigSi,O7) cannot be totally discarded because
the chemical shift of these compounds also lies within the range.
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Figure 2. (a) The 2Si-NMR spectra for some representative silicon-
containing materials, (b) the discharge-charge voltage profile and the voltage
where the NMR experiments were performed, and (c) the 2Si-NMR spectra
of SiO electrode recorded according to the scheme shown in (b). Note that
the spectrum of SiO was multiplied by 20 times in (a).

This observation leads to a tentative conclusion that the SiO, do-
main reacts to produce lithium silicates near 0.25 V. A similar spec-
trum was obtained after discharging down to 0.0 V and charging up
to 2.0 V. The weak or negligible SiO, peak at —110.6 ppm in the
latter spectrum (2.0 V trace) strongly suggests that the reverse reac-
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tion from lithium silicates to SiO, does not occur in the charging
period, that is, the lithiation of SiO, to lithium silicates is an irre-
versible reaction. The reactions associated with the Si domain in SiO
cannot be clearly identified because the resonance of Si is over-
lapped with that of lithium silicates (Fig. 2¢). This problem has been
solved by using the "Li-NMR technique. The "Li-NMR spectra
taken with the same cycling scheme shown in Fig. 2b are displayed
in Fig. 3.

The "Li-NMR spectrum taken after discharging the SiO electrode
down to 0.2 V has been deconvoluted with three Lorentzian peaks
as shown in Fig. 3a. The most intense peak at 3.18 ppm can be
assigned to Li,O according to previous reports.” ' The peak lo-
cated at 1.02 ppm is most likely due to Li,SiO,4 because the sepa-
rately synthesized LiySiO4 sample gives the peak at almost the same
position (1.2 ppm in the inset in Fig. 3a). The sharp peak at
—1.02 ppm is believed to come from Li* ions either in lithium salt
or SEI film.*** This result suggests a formation of lithium silicate
and Li,O near 0.25 V in the first discharging period. Note that this
"Li-NMR study reveals the formation of Li,O in addition to lithium
silicates, whose generation has been confirmed in the above
2Si-NMR study. When the SiO electrode is discharged deeper down
to 0.0 V, a new peak at 7.64 ppm develops along with the already-
present three peaks responsible to lithium oxide (3.21 ppm), lithium
silicate (1.20 ppm), and lithium salts (—1.0 ppm), respectively (Fig.
3b). The new peak at 7.64 ppm can be assigned to lithiated Si on the
basis of the previous literature, whereby the chemical shift of Li
nuclei in Li Si has been reported to be ca. 10 ppm.44 Note that the
lithiation of Si domain at 0.25-0.0 V in the first discharging was
already clear in the differential capacity plot (Fig. 1b). The
"Li-NMR spectrum taken after charging up to 2.0 V is shown in Fig.
3c. A better fitting was obtained with one Lorentzian line
(1.16 ppm) than with two or three, indicating that only lithium sili-
cates are present after a full charging. The absence of lithiated Si
(7.64 ppm) is natural because the electrode is fully charged, but the
disappearance of Li,O (3.21 ppm) after charging, which was present
in the discharged electrodes (Fig. 3a and b), is unexpected. As a
plausible explanation, the reaction between Li,O and elemental
Si(2Li,O + Si — SiO, + 4Li* + 4e) is proposed, where the el-
emental Si, generated from Li,Si by Li* extraction, is assumed to
further react with Li,O. As a matter of fact, there are plenty of
examples demonstrating that electrochemically driven nanosized
Li,O reacts with metal nanoparticles.ZI'25 This can be validated if a
recovery of SiO, after charge is verified in the 2Si-NMR spectrum,
but the spectrum in Fig. 2¢ (2.0 V trace) does not give a solid
answer due to a low signal/noise ratio.

The nature of irreversible/reversible reactions and their products
that was studied by NMR technique is further ascertained from the
electrode swelling/contraction profiles traced with Li* uptake/
extraction. Figure 4 shows the electrochemical dilatometry data,
where the change of electrode height was traced in the initial three
cycles. An immediately apparent feature in Fig. 4a is the two-step
electrode swelling in the first discharging. That is, when the elec-
trode potential moves from 2.0 to 0.0 V, there appears a moderate
electrode swelling near 0.25 V (region A), which is followed by a
rather significant swelling from 0.25 to 0.0 V (region B). The former
type of swelling is, however, absent in the second and third charging
(Fig. 4b), strongly indicating that it is related with irreversible reac-
tions. The later stage swelling observed at region B, however, ap-
pears in every cycle along with the contraction in the charging pe-
riod, reflecting that this is associated with lithiation and delithiation
of Si component in SiO because this reaction is a continuous process
in nature and the volume of lithiated Si is proportional to the extent
of lithiation.**The linear volume change of Si electrodes has also
been observed in the atomic force microscopy (AFM) and electro-
chemical dilatometry study.45’46 The generation of lithium silicate
and lithium oxide at 0.25 V in the first discharging, which was evi-
denced in the NMR study (Fig. 2 and 3) and appeared as the mod-
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Figure 3. The 'Li-NMR spectra taken with SiO electrode (a) after discharg-
ing down to 0.2 and (b) 0.0 V and (c) after charging up to 2.0 V. The
spectrum of Li,SiO, is provided in the inset of (a).

erate swelling in the dilatometry data, can be rationalized by the
density of LiySiO, and Li,O (Table II). Note that these oxides are
denser materials than lithiated Si(Liz5Si), implying that the forma-
tion of these oxides should lead to a less significant volume expan-
sion than that resulted from Si lithiation.
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Figure 4. The electrode height change of SiO electrode traced by electro-
chemical dilatometer: (a) first cycle and (b) second and third cycle. Note the
two-step electrode swelling in the first cycle.

A combined study of NMR, dilatometry, and charge-discharge
cycling consistently demonstrates that SiO is composed of two sepa-
rate domains, elemental Si and SiO,. The SiO, domain is irrevers-
ibly lithiated in the first discharging to produce lithium oxide and
lithium silicate, whereas the Si domain reversibly reacts with Li*
and electrons. Here, two points would be of value to be addressed.
First, SiO, is known to be inactive with Li*, but its reactivity is
clearly demonstrated in this work. Additional evidence for the reac-
tivity of SiO, can be found in Fig. la, where the first discharging
capacity amounts to 2680 mAh g=!. If only the Si domain is as-
sumed to be active while the SiO, being inactive, the discharging

Table II. Density of some Li- and Si-containing materials.

Material Density (g cm™)
Si 2.33
SiO 2.18°
SiO, (Quartz) 2.65
Li,SiO, 2.39
Li,0 2.02
Lis 1S 1.18*

* Calculated from the data provided by Ref. 30
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Li,O and Li,SiO, LiSi

capacity of SiO is calculated to be 1142 mAh g~'. This cannot ac-
count for the observed value (2680 mAh g!), even if the irrevers-
ible capacity associated with SEI formation (ca. 150 mAh g~!) and
capacitive charging capacity (<150 mAhg™!) that was estimated
from the initial sloping region in the charging profile in Fig. 1a are
considered.”® Rather, the observed first discharging capacity should
be explained by Li* uptake by the SiO, in addition to Si domain.
The reactivity of SiO, domain may be explained by its extremely
small size (less than 10 A) as many reports claim a reactivity of
nanosized_electrode materials, which cannot be found with bulkier
materials.”'?® Another interesting feature observed in this work is
that the Si domain, which is present as an amorphous state in the
initial stage, remains amorphous even if it is discharged down to
0.0 V. It is somewhat contrary to the previous observation, whereby
amorphous Si recrystallizes at 0.05 V in the discharging period to
form Li;5Siy phase:.30 The absence of recrystallization is a desirable
feature because it is known to cause an inhomogeneous volume
expansion and crack formation within the Si matrix.

In order to see what effects the lithium silicate/lithium oxide
formation has on the anodic performance of SiO, the postmortem
analysis was made on the cycled electrodes. The TEM image of
initial SiO is shown in Fig. 5a. Even if the SiO is supposed to be a
mixture of Si and SiO, domain, the image looks like a single phase
because of the small domain size. The TEM image taken after a full
discharging exhibits a totally different morphology as shown in Fig.
5b. The wrinkled dumbbell-like particles and a lighter image at the
interfacial sites can be located. Because the dumbbell-like morphol-
ogy is characteristic to lithiated silicon,”’ the lighter image can be
assigned to Li,O and lithium silicates. It is, however, seen that the
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Figure 5. The TEM images of SiO par-
ticles taken (a) before cycling, (b) after
first discharging, (c) after first charging,
and (d) after 20 cycles.

initially nanosized Si domain has been grown to be aggregated big-
ger particles (5-60 nm); even further, they are segregated from the
lithium silicates/Li,O phase. This reflects the instability of nano-
sized materials having a large interface area.*® The size of lithiated
Si particles, however, decreases upon charging, accompanied by a
crack formation at the interface (indicated by arrows), which must
be resulted from a volume contraction in the Si particles. The TEM
image of SiO electrode taken after 20 cycles is shown in Fig. 5d,
where a pulverization resulted from a severe phase segregation is
noticed. It is likely that the lithium silicates/Li,O phase plays a
buffering action against the volume changge of Si domains because
they are located between the Si particles.1 In the situation where the
pulverization is severe, however, it is questionable if the buffering
role is indeed prevailing. The steady capacity fading shown in Fig.
la may be the result of this pulverization.

Conclusion

In this work, the microstructure and electrochemical performance
of SiO were investigated using solid-state NMR and electrochemical
dilatometry technique. The following points are summarized.

1. The ’Si MAS-NMR spectra of SiO show two different reso-
nances whose chemical shift values are close to those of elemental-
state Si and SiO,, suggesting that the RM model is the more appro-
priate description for SiO microstructure.

2. Contrary to the micrometer-sized SiO,, the nanosized SiO,
domain in SiO reacts with lithium. This must be one of the examples
that nanosized alloys and metal oxides show unexpected electro-
chemical reactivity.

3. The electrochemical dilatometry was successfully utilized for
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the study of electrode swelling/contraction. In this particular study,
the irreversible formation of lithium silicates and lithium oxide and
reversible lithiation/de-lithiation of Si domain were ascertained from
the difference in electrode swelling between two processes.

4. It was found that two nanosized domains in SiO were aggre-
gated by themselves to be separate lithium silicates/lithium oxide
and lithiated Si phase after cycling. This reflects the instability of
nanosized amorphous mixture having a larger interface area. In this
work, the crack formation at the two-phase boundaries and pulveri-
zation were observed, which should be minimized by any modifica-
tion or optimization of SiO electrodes.
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