
Seoul Journal of Business
Volume 2 Number 1

Characterization and Analysis of a Nested Genetic
Algorithm for Distributed Database Design

Salvatore T. March
Unimity of Minnesota

Sangkyu Rho
Seoul National Uniwxsity

Abstract

Distributed database design is a difficult and complex task involving two
interdependent problems : data allocation and operation allocation. First,
data must be allocated to nodes in the network. Second, given such an allo-
cation, data must be efficiently retrieved, processed, and possibly com-
municated to meet the retrieval and update requirements of the users. The
problem is characterized by integer variables, a discontinuous and extremely
complex cost function, and numerous constraints. A nested genetic algorithm

naturally fits this problem formulation with the outer algorithm addressing
data allocation and the inner algorithm addressing operation allocation. We
present and characterize such an algorithm according to its gene structure
and control parameters. We experimentally analyze the effects of poolsize
and crossover operator on the performance of our algorithm.

Index Terms - Genetic algorithms, performance modeling and analysis, ex-
perimental analysis of algorithms, distributed database design

86 SEOUL JOURNAL OF BUSLNESS

With the emergence of relatively inexpensive, high -capacity com -
munications capabilities, geographically distributed databases (DDB) have
become an integral part of many computer applications [Thomas, et al.,

19901. Such distributed systems can yield significant management and
organizational advantages over centralized systems [King, 19831. Judicious
placement of data and processing capabilities can significantly reduce
operating costs and response time. Inappropriate placement of data or poor
data access strategies, however, can result in high cost and poor system per-
formance [Ozsu and Valduriez, 19911.

Distributed database design involves two interrelated problems, data a110 -

cation and operation allocation [Apers, 1988: Cornell and Yu, 1989:

Blankinship, et. al., 19911. Data allocation defines what data is allocated to

each node in the network (see [Dowdy and Foster, 19821 for a survey of
methods). To enhance retrieval efficiency, the same data can be redundantly
allocated to multiple nodes. However, such redundancy increases update
costs.

Opevation allocation defines where retrieval and processing operations (e.
g., join) are performed. Each retrieval operation must be allocated to a node
containing the required data Processing operations can be allocated to any
node, however, if the data are not located at the processing node, they must
be sent over the communication network Update operations must be done
at all nodes containing a copy of the effected data, although update
strategies can vary (e.g., delayed or "lazy* update).

Since data and operation allocation are interdependent, they must be
solved simultaneously [Apers, 19881. The optimal data allocation depends on
the processing schedules of all queries accessing that data (i.e., the oper-

ation allocation). However, the optimal processing schedules depend on
where data are located (i.e., the data allocation). Hence, to be effective a
distributed database design model must comprehensively treat both data
and operation allocation as a unified whole (see e.g., Apers [1988],
Blankinship et al., [1991], Cornell and Yu [1989], March and Rho [I9951 for
comprehensive distributed database design models).

One of the difficulties facing researchers in this area is tractability. Even

SEOUL JOURNAL OF BUSINESS 87

simplistic models treating only one of the above problems are NP-hard
[Eswaran, 1974: Hevner, 19791. Many algorithms have been developed for
various formulations and subproblems of the distributed database design

problem. These include integer mathematical programming [Cornell and Yu,

19891, exhaustive enumeration [Lohrnan, et. al., 19861, branch and bound
[Martin, et. al, 19901, dynamic programming [Lafortune and Wong, 19861,
simulated annealing [Martin, et. al., 19901, genetic algorithms [March and
Rho, 19951, and heuristic approaches [Chen and Yu, 19941.

A genetic algorithm has several advantages over other approaches. First,
genetic algorithms have been successfully applied to large, complex,

combinatoric, real-world problems (see, e.g., Davis [1991], Goldberg [1989a,
19941, Grefenstette [1993]). The genetic algorithm developed by March and
Rho [I9951 embeds a genetic algorithm for operation allocation within a gen-
etic algorithm for data allocation, thus addressing a comprehensive formu-
lation of the distributed database design problem1'. Second, genetic
algorithms are robust in that they work well even in discontinuous,
multimodal, noisy search spaces [Goldberg, 1989a] common in distributed
database design. Third, genetic algorithms result not only in a "best" sol-

ution, but also in a pool of good solutions. Thus from a practical perspective,
they result in a number of good solutions from which a design may be
chosen for implementation.

As with all heuristic procedures, the performance of a genetic algorithm
can be evaluated by (1) the goodness of its results (e.g., how close to opti-
mal) and (2) by its run time (e.g., computer resources required). While
these are problem dependent, they are also affected by the control
parameters used to define the genetic algorithm. These control parameters
include poolsize, number of iterations, crossover operator, and mutation rate
[Grefenstette, 19861. In a nested genetic algorithm these parameters may
vary independently for the outer (data allocation) and inner (operation allo-
cation) genetic algorithms.

In this paper we first briefly describe genetic algorithms and their control

1) The cost model and a brief description of the genetic algorithm are presented in [March and Rho,
19951, the algorithm is presented in detail, characterized, and experimentally evaluated in this

paper.

88 SEOUL JOURNAL OF BUSLNESS

parameters using data allocation as an example. We then describe the
nested genetic algorithm developed by March and Rho [I9951 for the

combined data and operation allocation problem and characterize it accord-
ing to its control parameters. Next we describe a set of experiments used to
analyze the effects of various control parameters on the performance of this
algorithm. Finally, we summarize our results and present directions for fu-
ture research.

2. GENETIC ALGORITHMS AND THEIR CONTROL PARAMETERS

Genetic algorithms [Holland, 1975: Goldberg, 1989al apply principles of
natural population genetics to a pool of candidate solutions, each of which is
likened to the genes of a living organism. Genetic algorithms produce new
solutions (offspring or children) by selecting solutions (parents) from the
pool and combining components (genes) from them using some crossover op-
erator. Some combination of parents and offspring are retained to keep the
poolsize constant for the next iteration (generation). Mutation introduces
random changes into the solution pool. Given a non-zero mutation rate, gen-

etic algorithms can, theoretically, guarantee optimality. That is, given an in-
finite number of generations, all possible solutions will be generated. How-
ever, to be practical, a genetic algorithm must have a stopping condition
(typically some number of generations). Thus, genetic algorithms can be
considered to be heuristic procedures.

In order to apply a genetic algorithm to an optimization problem, we must
(1) develop a gene-like representation of solutions, (2) determine the size of
the solution pool to maintain, (3) determine how and how many solutions
will be selected from the pool to be parents, (4) determine how and how
many children will be generated from parents (including the possibility of
mutation), (5) determine how solutions will be selected for the next gener-
ation, and (6) determine stopping conditions for the algorithm.

Consider the problem of allocating five data files each of 1 million
characters to four nodes in a fully connected computer network where all

nodes require access to all files at a rate of one access per day. Further, sup-
pose that the objective is to minimize the sum of storage and communication

SEOUL JOURNAL OF BUSLNESS 89

costs (as discussed briefly below, the cost model used in [March and Rho,
19951 is considerably more complicated). If the retrieval activities were such
that no two nodes request the same file, then the optimal solution is obvious
-- store each file at its retrieval node. When multiple nodes require the
same data, then tradeoffs must be evaluated. If files are replicated and
stored at each requesting node then communication costs are minimized but
storage costs are increased.

For illustrative purposes, an example genetic algorithm is described for
this problem corresponding to the above components.
(1) Represent a solution by five sets of four bits each, one set for each file.

The four bits in each set represent where a copy of the file is stored. For
example, the set loo0 stores the file at node 1, the set 1100 stores the file at
nodes 1 and 2, etc. The solution (0011 0101 1110 0111 0100) stores file 1 at
nodes 3 and 4: file 2 at nodes 2 and 4: file 3 at nodes 1, 2, and 3: file 4 at
nodes 2, 3, and 4: and file 5 at node 2. Thus, for this algorithm the gene
structure is defined as five sets of four bits each.
(2) Randomly generate an initial pool of 6 different solutions (likely a

poolsize of 6 is too small: poolsize is a control parameter as discussed
below). Figure 1 illustrates a possible initial pool.

(Figure 1) Example Solution Pool with Performance and Fitness

(3) Select two different solutions as parents (i.e., parent selection without

Solution

1111 1101 1010 0100 0100

oo010100 0010 loo0 1100

1011 1101 0110 1101 0101

0100 0010 1001 0111 0100

0010 0101 loo0 0100 0101

1010 0101 1111 1111 0111

Cost ($ / day)

911

1406

713

1208

1307

515

m

Fitness

.91

.86

.93

.88

.87

.95

5.40

Selection Probability

.I69

0.159

.I72

.I63

.I61

.I76

1.000

90 SEOUL JOURNAL OF BUSINESS

replacement) probabilistically based on the "fitnessn of the solution. Figure
1 shows the cost, fitness, and selection probability for each of the initial
solutions. As an example we calculate these values for the first solution in
Figure 1, (1111 1101 1010 0100 0100). This solution stores 11 physical files of 1

million characters each (i.e., file 1 is replicated at all four nodes: file 2 is
replicated at nodes 1, 2, and 4: file 3 is replicated at nodes 1 and 3: files 4
and 5 are stored only at node 2). Communication is required for each file not
stored at a node since we assumed that each node requests each file once
per day. Hence, 9 million characters must be transferred (each 0 in the gene
structure requires that fde to be transferred to that node). Node 1 requires
communication for files 4 and 5: node 2 for file 3: node 3 for files 2, 4, and 5:
and node 4 for files 3, 4, and 5. The cost is 11 million characters x s for data
storage (where s is the cost per character per day for storage) and 9 million
characters /day x t for data transfer (where t is the cost per character for

data transfer). If s is $.000001 /day and t is $.0001/ character, then the

total cost of this solution is $9ll/day (1 1 , 0 0 0 , 0 0 0 ~ . ~ 1 + 9,000,000~.0001).
Fitness is defmed to be one minus the solution's cost divided by a constant
(10,000). Hence, the fitness of this solution is (1 - 911 / 10000), or .91. The
total fitness of the pool is 5.40. Thus, the selection probability for the first
solution is .91/ 5.40 or .169. Cost, fitness, and selection probability are simi-
larly calculated for each of the other five solutions.

(4) Produce one child from the pair of parents selected using uniform
crossover with no mutations (i.e., the mutation rate is 0.00). In uniform
crossover the child inherits a value for each gene position from one parent
or the other randomly, i.e., with probability .5 (variations of the crossover
operator are discussed below). Thus, if the first two solutions in Figure 1

were selected as parents, the child would be: war1 xlOx xOlO xxOO xl00 where
the x positions have a .5 probability of being a 1 and a .5 probability of being
0. That is, positions 4, 6, 11, and 18 have a 1 in both parents - - the child will
inherit a 1 for those positions no matter which parent is selected. Positions
7, 10, 12, 15, 16, 19, and 20 have a 0 in both parents - - the child will inherit a
0 for those positions. In the remaining positions one parent has a 1 and the
other has a 0 -- the parent from which the child inherits a value for that
position is randomly determined.

(5) Select the best 6 solutions for the next generation. Including the newly

SEOUL JOURNAL OF BUSINESS 91

generated child, there are 7 solutions in the pool. To keep the poolsize con-
stant, remove the worst, leaving 6 solutions to survive into the next gener-

ation.
(6) Stop after 1000 generations. That is, repeat steps (2) through (5) nine

hundred ninety nine times.
Although greatly simplified, the above example provides insight into why

genetic algorithms are effective. As crossover combines solutions, a number
of partial solutions, termed schemata, having good performance begin to
emerge in multiple solutions. Solutions with good performance are expected
to contain some number of good schemata. If the selection of parents is
based on performance (i.e., fitness), such solutions are more likely to be
selected as parents than those with poor performance (which are expected

not to contain as many good schemata). Over successive iterations

(generations), the number of good schemata represented in the pool tends

to increase, and the number of bad schemata tends to decrease. Therefore,
the average performance of the pool tends to improve.

All genetic algorithms share the basic structure described above. How-
ever, there are numerous variations and control parameters that impact the

effectiveness and efficiency of a genetic algorithm.
In the rest of this section, we characterize the important variations and in-

troduce control parameters for each of the 6 steps of a genetic algorithm de-
scribed above. We present and characterize our distributed database design
algorithm in the following section.

2.1 Gene Structure

The most common gene structure for genetic algorithms is a set of bit
strings. Of course, we can arbitrarily group and order the bits. We could, for
example, have 4 sets of 5 bits each where each set represents a node and
each bit position in each set represents the allocation of a file to that node.
Alternately, we can use a non-binary gene structure where the value in each
position represents a solution component (e. g., as in genetic algorithms for
job shop scheduling [Uckun, et.al., 19931).

SEOUL JOURNAL OF BUSLNESS

2.2 Poolsize and the Initial Pool

Poolsize simcantly affects the effectiveness and efficiency of genetic
algorithms [Grefenstette, 1986]. Genetic algorithms do poorly with very
small poolsizes because a small pool is unlikely to contain sufficient genetic
material to effectively represent the solution space. A poolsize of 6 for the
data allocation problem described above is probably not large enough to ad-
equately simulate natural genetics. With such a small poolsize, solutions
would quickly become "inbredn. The algorithm would converge on a local
optima, failing to search significant portions of the solution space.
The pool should be large enough to insure a reasonable sample of the actual
solution space, but not so large as to make the algorithm approach exhaus-
tive enumeration. The five fde, four node data allocation problem, for
example, has 1,048,576 (i.e., 2") possible solutions (not all of which are feas-
ible). A poolsize of 1,048,576 generated without duplicates would guarantee
optimality. With such exhaustive enumeration, however, the genetic algor-
ithm is superfluous.

Genetic algorithms are, in fact, based on random sampling. A larger pool
is more likely to contain a better representation of the entire solution space
than a smaller one. Thus with a larger poolsize a genetic algorithm is more
likely to find good solutions since the genetic algorithm can perform a more
informed search. However, with larger poolsizes a genetic algorithm tends to
converge more slowly, thus requiring a larger number of iterations in order
to insure that a good solution is found. Goldberg [1989a] suggests that a
poolsize on the order of 100 is typically saicient for a solution space in the
billions.

Generation of the initial pool can require that all solutions be different, ie.,
generation without duplicates, or can simply generate solutions randomly
without regard to duplicates. Furthermore, the initial pool can be ^seededn
with solutions to insure a wide set of genetic material. Interestingly, the in-
itial pool often does not contain good solutions. In our experiments, for
example, the cost of the best solution in the initial pool was typically at least
an order of magnitude higher than that of the final solution selected.

SEOUL JOURNAL OF BUSINESS

2.3 Selecting Parents, Fitness, and Scaling

Genetic algorithms select some number of solutions to be parents in each
generation. Selection of parents can be random or probabilistic and can be
done with m without replacement. In a random selection method each sol-
ution in the pool has an equal probability of being selected. In a
probabilistic (or stochastic) selection method the probability of a solution be-
ing selected is based on the solution's fitness, where fitness is a measure of
the solution's conformance to the optimization criteria.

Selection with replacement means that a solution can be selected to be a
parent any number of times in a generation. Selection without replacement
means that a given solution can be selected to be a parent at most once in
any generation. Hence, in selection with replacement all solutions retain the
same selection probability for the selection of all parents in any generation.
In selection without replacement, a solution is given a selection probability
of zero after it is selected and the selection probabilities of all unselected
solutions are adjusted accordingly.

In the data allocation example, two solutions are selected probabilistically
without replacement The optimization criteria is cost minimization, Hence,
the fitness function is inversely related to cost. The probability of selecting a
solution is proportional to its fitness (i.e., its fitness divided by the sum of
the fitness over all solutions in the pool). The selection probabilities are
adjusted when selecting the second parent to account for the removal of the
solution selected to be the first parent

How fitness is defined and scaled can have significant effects on the per-
formance of a genetic algorithm. In the above example, fitness ranges from
.86 to .95 (see Figure 1) yielding only a .090 difference between the prob-
ability of selecting most fit solution and the probability of selecting the least
fit solution. As a genetic algorithm proceeds, the absolute range of fitness,
and therefore the range of selection probabilities becomes even smaller. The
fitness measure may not adequately distinguish "good" from "poor" solut-
ions. This can reduce the pressure toward selecting the better solutions as
parents, causing the algorithm to stagnate. One solution to this problem is to
dynamically scale fitness and selection probability as the search progresses.

For example, a constant equal to the fitness of the worst solution could ar-

94 SEOUL JOURNAL OF BUSINESS

bitrarily be subtracted from the fitness of each solution to provide a wider
variation in fitness and selection probabilities. Alternatively, fitness can be
scaled based on the rank of each solution in the pool [Davis, 1991: Whitley,
19881.

Scaling can increase the likelihood of selecting relatively more fit solutions
to be parents, thus avoiding the stagnation that can occur when less fit
solutions are selected. However, there is the danger of prematurely losing
genetic material from those less fit solutions and possibly settling on a
locally optimal solution (i. e., converge too quickly).

2.4 Generating Children

Children are generated from selected parents using two types of operators,
crossover and mutation. Crossover leads to a structured, yet randomized
exchange of genetic material between parents, with the possibility of gener-
ating "better" offspring. Traditionally crossover determines the point(s) at

which parent genes are split to form offspring.
Simple crossover has a single crossover point. Genes preceding the

crossover point are taken from one parent, genes after the crossover point

are taken from the other parent (i.e., a crossover point is between two
genes). In general, crossover may have more than one crossover point.
Genes are taken from alternating parents between crossover points. Unzyorm
crossover [Syswerda, 1989: Ackley, 19871, as discussed above, randomly
selects the parent for each gene position, i.e., the probability that its value is
taken from one parent is .5: the probability that it is taken from the other
parent is also .5. Crossover may generate one or two children. The second
child (if generated) has the opposite parent from the first for all crossover
points.

Depending on the method used to select solutions to survive into the next
generation, it may be desirable to reproduce a single parent (or both
parents) rather than to apply crossover to produce children. If, for example,
as discussed below, all parents are replaced by children in each generation,
it may be desirable to retain a portion of parents by completely reproducing
some of them in their children. Crossovev rate is the probability that
crossover is used to produce children from parents. A crossover rate of 1

SEOUL JOURNAL OF BUSINESS 95

always uses crossover to produce children. A crossover rate of 0 always
reproduces parents. Aside from the random variation introduced by mu-

tation, a genetic algorithm with a crossover rate of 0 would never produce
any new solutions, and hence, would not be an effective search method.
Typically crossover rates are above 0.6 [Goldberg, 1989al.

In order to assure a wide search of the solution space, genetic algorithms
typically include the concept of mutation. Mutation generates a new solution
by independently modifying one or more gene values of an existing solution,
selected at random. It serves to guarantee that the probability of searching a
particular subspace of the solution space is never zero.

Mutatim rate is the probability of applying mutation rather than crossover
when a solution is selected for a genetic operation. Mutation probability is
the probability of each gene of an individual being mutated when it is selec-
ted for mutation [Davis, 19911. These two parameters combined reflect the

probability of random variation in offspring allowing for a wide search of the
solution space. Mutation probabilities are typically quite low. Goldberg

[1989a] suggests mutation probabilities on the order of .001. When the mu-
tation rates and probabilities are very high, generic algorithms approach
random search.

2.5 Selecting Solutions for the Next Generation

A new generation is formed by adding all children generated by genetic
operators to the pool and then removing solutions to keep the poolsize con-
stant. The number of children generated in a generation can vary from 1 to
poolsize. For example, SGA [Goldberg, 1989a] generate poolsize children,
while 3, [Holland, 19'751 and GENITOR [Whitley 19881 generate one or two.
Once children are generated, solutions to be removed from the pool can
either include or exclude the children. Solutions can be removed either at
random or based on their fitness (e.g., only the fittest survive). As discussed
above, when the entire pool is replaced by children (i.e., no parents survive
into the next generation), it may be desirable to have a crossover rate less
than 1 so that some proportion of parents are reproduced in their children,
thus preserving at least some parent gene structures.

96 SEOUL JOURNAL OF BUSINESS

2.6 Stopping Conditions

The most common stopping condition for genetic algorithms is a maximum
number of iterations (generations). Other possible stopping conditions in-
clude: (1) limits on the number of generations with no improvement in the
best solution or no improvement in the total fitness of the pool and (2) limits
on the difference between the fitness of the worst and best solutions in the
pool.

The next section describes and characterizes our nested genetic algorithm
for distributed database design. The following section experimentally
analyzes the effects of varying selected control parameters on the solutions
obtained.

3. A NESTED GENETIC ALGORITHM FOR DISTRIBUTED DATABASE
DESIGN

3.1 Distributed Database Design

In general, distributed database design involves three steps [Cornell and
Yu,1989: March and Rho, 19951. First, the data is partitioned into a set of
file fragments for allocation. File fragments are typically defined based on
the selection and projection criteria of the set of known queries [Apers,
19881. Second, each query is decomposed into a set of query steps or
operations, each of which references at most two file fragments [Cornell and
Yu, 19891. Query steps include communication steps (i. e., sending messages
and result files) as well as data retrieval and processing steps (i.e., select,
project, join, union, and final processing). Third, data (file fragments) and
operations (query steps) are allocated to nodes to minimize a cost function,
subject to resource and intrinsic constraints. The cost f'unction should rep-
resent all appropriate system operating costs, including communication, disk
I / 0, CPU processing, and data storage. Resource constraints should include
disk I / 0, CPU processing, and storage capacities at each node and the com-
munication capacity of each link. Intrinsic constraints require that all data
be stored at least one node and that data is retrieved from a node only if it
is stored at that node.

SEOUL JOURNAL OF BUSINESS

3.2 A Genetic Algorithm for Distributed Database Design

As discussed in Section 1, data and operation allocation are interrelated
problems, each of which is NP-hard. To address the tractability problem, we
developed a nested genetic algorithm [March and Rho, 19951. A genetic al-
gorithm was chosen for several reasons. First, genetic algorithms have been
successfully applied to similar complex, combinatoric, real-world problems
such as communication network design [Coombs and Davis, 1989; Davis and

Coombs, 19891, job shop scheduling [Uckun et al., 19931, facility layout de-
sign [Tam, 19921, rule induction [Chung and Silver, 19921, and VLSI cell

placement [Shahookar and Mazumder, 19911.
Second, genetic algorithms are robust in that they work well even in dis-

continuous, multimodal, noisy search spaces [Goldberg, 1989al. Therefore,
more realistic cost models can be used in distributed database design

models. For example, very few models include the costs of queueing delays
in the network or in the nodes. Genetic algorithm based solution methods
can easily incorporate such costs.

Third, genetic algorithms result not only in a "best" solution, but also in a
pool of good solutions. This last point is important since the set of solutions
in the final pool provides significant intuition into the effects of design

alternatives. That is, solutions represent "good" schemata (partial solutions)
that the designer should be able to recognize from the final pool. For
example, if all solutions in the final pool store a given file at a particular
node, the designer would be reasonably conf5dent that it is important to
store that file at that node.

Our distributed database design algorithm contains a genetic algorithm
within a genetic algorithm. The outer genetic algorithm addresses data allo-
cation. The inner genetic algorithm addresses operation allocation A nested
approach is advantageous over a standard approach, because with a nested
approach the dependency between data allocation and operation allocation
can be handled relatively easily. As discussed before, the feasibility of an op-
eration allocation is dependent on the data allocation. That is, each retrieval
operation must be allocated to a node containing the required data. It is
very difficult to enforce this type of constraint with a standard approach.

Furthermore, a nested approach allows us to easily incorporate different

98 SEOUL JOURNAL OF BUSLNESS

operation allocation models. Such flexibility is desirable in distributed
database design, since different distributed database management systems
utilize different operation allocation models i . . , query optimization
models).

Our nested genetic algorithm operates as follows:
1. Generate initial pool of solutions:

1.a. Randomly generate a feasible data allocation (to be feasible, each
file (fragment) must be allocated to at least one node),

1.b. Use the (nested) operation allocation genetic algorithm (see below)

to allocate operations for this data allocation, thus producing a com-
plete solution for this data allocation,

1.c. Evaluate the cost of this solution,
1.d. Repeat until the initial solution pool is generated.

2. Iterate through successive generations :
2.a. Probabilistically select two parent solutions from the solution pool,
2.b. Produce a new data allocation (child) by applying crossover or mu-

tation,
2.c. Use the (nested) operation allocation genetic algorithm (see below)

to allocate operations for this data allocation (child), thus produc-

ing a complete solution for this data allocation,
2.d. Evaluate the cost of this solution,
2.e. If the new solution is better than the worst solution in the solution

pool, add it to the pool and remove the worst solution,
2.f. Repeat for N generations, where N is a maximum number of

iterations.
The genetic algorithm to allocate operations for a given data allocation,

used in steps 1. b. and 2. c. , is similar:
3. Generate initial pool of operation allocations:
3.a. Randomly generate a feasible operation allocation for the given

data allocation (to be feasible all retrieval operations must be
assigned to nodes at which the required data is stored),

3.b. Evaluate the cost of this solution,
3.c. Repeat until the initial operation allocation pool is generated.

4. Iterate through successive generations :
4.a. Probabilistically select two parent solutions from the operation all-

SEOUL JOURNAL OF BUSINESS

ocation pool,
4.b. Produce a new operation allocation (child) by applying crossover or

mutation,
4.c. Evaluate the cost of this solution,
4.d. If the new solution is better than the worst in the operation allo-

cation pool, add it and remove the worst,
4.e. Repeat for M generations, where M is a maximum number of

iterations.

3.3 Characterization of the Genetic Algorithm

Table I summarizes the characteristics of our genetic algorithm and

compares it with the simple genetic algorithm (SGA) in Goldberg [1989a].
The cost model and constraints used in the genetic algorithm are
summarized in Appendices 1 and 2.

(Table I) Characterization of a Nested Genetic Algorithm

* Two solutions are NOT generated randomly
" For minimization problems

Operation Allocation
(Inner) GA
integer w /
constraints
parameter
random
stochastic w / o
replacement
1 -cost / constant
none
uniform
1
1

parameter
1

best among pool
and offspring
max # of generation

Data Allocation
(Outer) GA
binary w /
constraints
parameter
random*
stochastic w / o
replacement
1 -cost / constant
none
uniform
1

1

parameter
1

best among pool
and offspring
max # of generation

Characteristics

Gene structure

Poolsize
Initial pool generation
Parent selection

Fitness Function"
Scaling
Crossover
Crossover rate
of offspring / crossover
Mutation rate / probability
of offspring / generation
Next generation selection

Stopping condition

Simple GA
[Goldberg, 19891

binary

parameter
random
stochastic w / o
replacement
constant-cost
none
single point
parameter
2

parameter
poolsize
pool replaced w /
offspring
max # of generation

100 SEOUL JOURNAL OF BUSRVESS

The gene structure contains two sections, one for data allocation and one
for operation allocation. In the data allocation stage, file fragments are
allocated to nodes in the network. In the cost model, summarized in Appen-
dix 1, the decision variable Xu represents the data allocation. It has a value

of 1 if file fragment i is allocated to node j. It has a value of 0 otherwise. In
the gene stmcture for the genetic algorithm, as discussed above, each file
fragment is represented by a set of n bits, where n is the number of nodes in
the network. Hence, the gene structure for data allocation is simply a bit
structure representing the decision variables Xu in file fragment order.

In the operation allocation stage, operations are allocated to nodes. Re-
trieval operations must be allocated to nodes containing the required data.
Join operations can be allocated to any node, however, if the data needed

for the join operation is not stored at the node, it must be communicated to
the join node. The decision variables Zkit and Ybt are used to represent the
operation allocation in the cost model (Appendix 1). These are represented
in the gene structure by a set of s integers where s is the number of query
steps for all queries. The integer value in each position is the node to which
the operation is allocated. Hence, a complete solution for a five file (frag-
ment), four node problem with 10 query steps would look as follows :

The data allocation is represented by five sets of four bits (file 1 is stored
at all four nodes; file 2 at nodes 1, 2, and 4; file 3 at nodes 1 and 3; file 4 at
node 2; file 5 at node 2). The intrinsic constraint that all files must be
allocated to some node is enforced by disallowing solutions in which all bits
for a file are 0. The operation allocation is represented by 10 integers
representing the node at which the operation is performed. Thus, operation
1 is performed at node 3, operation 2 at node 2, etc. The intrinsic constraints
requiring a file to be accessed only from nodes at which it is stored need
only to be enforced when the initial pool is produced and when mutation is
performed.

Poolsize is a parameter for each of our genetic algorithms and is analyzed
in our experiments. The initial pool is randomly generated and allows the
possibility of generating duplicates in the initial pool for both data and oper-

SEOUL JOURNAL OF BUSINESS 101

ation allocation. However, it also seeds the initial pool for data allocation
with a solution in which all files are stored at each node and with another in
which each file is stored at only one node (to guarantee that these extreme
solutions are considered).

Parents are selected probabilistically (i.e., stochastic selection without re -
placement) in each genetic algorithm. Fitness is calculated as:

Fitness = (1 - Solution Cost / Constant).
The solution cost is a complex function including communication, disk

I / 0 , CPU processing, and data storage, as illustrated in Appendix 1. The
selection probability is calculated for each solution as the solution's fitness
divided by the total fitness of the pool. Fitness scaling techniques are not
used.

Each algorithm produces one child per generation using uniform crossover
with a crossover rate of 1 (two-point crossover is also analyzed in our
experiments). The mutation rate and mutation probability are parameters
(they were set at 0.01 throughout the experiments). As only one child is
produced in each generation (a so called, steady-state approach) only one sol-
ution needs to be removed to keep the poolsize constant Each algorithm
removes the least fit solution including the newly produced child (if multiple
solutions tie for the worst fitness, one of them is selected arbitrarily).

The stopping condition employed is a maximum number of iterations
(generations). Unless otherwise stated, the maximum number of iterations
for the outer algorithm was set at 3,000 while that for the inner algorithm at
5,000.

The genetic algorithm is written in C++ and runs in a MS-DOS or UNIX
environment. To demonstrate the feasibility of this approach and its effec-
tiveness we solved a series of 13 small problems (3 nodes, 3 file fragments
and 12 to 18 query steps) with a pool size of 40. We then compared the
results to the optimal solution obtained by exhaustive enumeration. The
genetic algorithm found the optimal solution for all 13 problems. The run
time for the genetic algorithm was four to eight minutes on an IBM-compat-
ible PC with a 33Mhz 80386 processor.

102 SEOUL JOURNAL OF BUSINESS

4. EXPERIMENTAL ANALYSIS

It is important to find good control parameters for a genetic algorithm as a
genetic algorithm is applied to a new domain [Davis, 19911. In this section,
we experimentally analyze the effects of poolsize and crossover operator on
our nested genetic algorithm. Although such analyses can not provide the
"best" parameters for a genetic algorithm in a domain, we can gain some
insights into what constitutes "good" control parameters.

This study extends prior studies in several ways. First, prior studies that

analyzed the effects of control parameters in genetic algorithms were limited
in domain. Most studies are based on the standard De Jong test suite [De
Jong, 19751. Most functions in the prior studies involve continuous variables
(i.e., real numbers) and these variables are encoded as bits. Therefore, the
empirical results from the prior studies may not hold for combinatoric, in-

teger optimization problems, specifically distributed database design
problems. Furthermore, none of the prior studies analyzed the effects of
control parameters on nested genetic algorithms.

Second, prior studies were limited in methodology [De Jong, 1975:

Grefenstette, 1986: Uckun, et al., 19931. First of all, very few prior studies
used statistical methods to analyze their results. They relied on graphical
presentations. Although graphs are useful and intuitive, they may lead to
unwarranted conclusions, especially in the analyses of randomized algor-
ithms such as genetic algorithms. Furthermore, prior studies analyzed con-
trol parameters independently. They fail to include interaction effects
among control parameters. This study employs a factorial design to detect
the interaction effects between some of the control parameters and uses
Analysis of Variance (ANOVA), a standard statistical method, to analyze
the experimental results.

The distributed database design problem used in the experiments is a
variation of that described in [March and Rho, 19951. It has 4 nodes, 9 file
fragments, 93 retrieval query steps, and 24 update query steps. This results
in excess of lo3' possible solutions (not all of which are feasible). The
experiments were conducted on a UNIX workstation.

We conducted three experiments. The first investigated the relationship
between poolsize, number of iterations, and crossover operator (two-point

SEOUL JOURNAL OF BUSJWESS 103

vs. uniform) of the inner algorithm on its performance. The second exper-
iment analyzed how poolsize of the outer algorithm and that of the inner al-
gorithm affect the performance of the algorithm. The last experiment

investigated how crossover operator of the outer algorithm affect its per-
formance.

4.1 Experiment 1 : Effects of Poolsize, Number of Iterations, and Crossover

Operator

Previous studies indicate that a larger poolsize leads to better solutions
(closer to optimal) [De Jong, 19751, that uniform crossover outperforms
two-point crossover in some cases while the opposite is true in other cases
[Syswerda, 1989: Davis, 19911, and that uniform crossover is more suitable

for small poolsize [Srinivas and Patnaik, 19941.
Few studies have analyzed the interaction effects among poolsize, number

of iterations, and crossover operator. We do so by employing a 5x2~2 fac-
torial design with repeated measures on number of iterations (see Appendix

3). We vary poolsize from 50 to 500 (5 levels) and employ two types of
crossover: two-point and uniform (2 levels). For each level of poolsize and

crossover, we performed 3 runs. We kept the number of iterations constant
at 15,000 and recorded the minimum cost for each run at F 000 and 15,000

iterations (2 levels).
As Figure 2 and Table I1 indicate, poolsize has sigflicant effects on the

goodness i . . , cost) of the solution found (p = 0.000). For uniform
crossover, as shown in Figure 2. a, the cost of the best solution decreases
dramatically as the poolsize increases. The cost levels off when the poolsize
becomes sufficiently large (around 200). This is reasonable since with a
small poolsize there is insufficient genetic material to adequately represent
the solution space and the algorithm converges to locally optimal solutions.
As more genetic material is added, more of the solution space is made ac-
cessible and better solutions are found. Eventually, smcient genetic ma-
terial is available to enable the algorithm to locate very good solutions (opti-
mal or very close to it). At this point, the pool is "saturated" with genetic
material and additional increments to the poolsize do not result in improved
solutions.

104 SEOUL JOURNAL OF BUSINESS

As illustrated in the solid curve in Figure 2. a, however, the cost of the
best solution increases when the poolsize becomes very large (i.e., 500) and
the number of iterations is held constant at 5,000. Although this may seem
counter-intuitive, it is not unexpected. A larger poolsize leads to slower con-
vergence, i.e, requires more iterations to converge. Hence, a very large
poolsize is likely to lead to poorer performance unless the number of
iterations is increased (since it likely has not yet converged). Analysis of the
costs at 15,000 iterations (the dotted curve in Figure 2.a) supports this con-
tention The minimum cost solution of a very large poolsize (La, 500) levels
off instead of going up when the number of iterations is increased to 15,000.
Similar results were obtained for two-point crossover (Figure 2.b).

(Table 11) ANOVA: Effects of Poolsize, Crossover Operator, and Number of
Iterations of the Inner Algorithm on its Minimum Cost

Source of Sum of Degrees of Mean of
Variation Squares (SS) Freedom(DF) Squares(MS) F P

Between Subjects :
Poolsize (P)

Crossover (C)
PXC

Error Between
Within Subject :

Iterations (I)
PXI
CXI

PXCXI
Error Within

SEOUL JOURNAL OF BUSINESS 105

(Figure 2.a) Effects of Poolsize and Number of lterations of the Inner
Algorithm on its Minimum Cost (Uniform Crossover)

60000

0
0 1 00 200 300 400 500

Inner Poolsize

lnner Number
of Iterations

(Figure 2.b) Effects of Crossover Operator of the Inner
Algorithm on its Minimum Cost

100000

0
0 100 200 300 400 500

lnner Poolsize

lnner
Crossover Operator

106 SEOUL JOURNAL OF BUSINESS

The inner algorithm performed significantly better with uniform crossover
than with two-point crossover across all levels of poolsize (p = .000), as
illustrated in Figure 2.b and Table II. That is, uniform crossover out-

performed two-point crossover even when poolsize is large, contrary to the
results described by Srinivas and Patnaik [1994]. There are no interaction
effects between crossover operators and poolsize (p = 0.179).

Poorer performance by two-point crossover can be attributed to its less

explorative nature. While two-point crossover can preserve more schemata
than uniform crossover, it cannot obtain certain combinations of schemata in
parents [Davis, 1991: Syswerda, 19891. In our algorithm, or generally in

steady state approach algorithms, parents survive into the next generation
unless they are the worst solutions. Therefore, virtually all the schemata in
the parents are preserved. In such an approach, two-point crossover may
not be explorative enough to search significant portions of the solution
space.

Another factor that might have contributed to the poorer performance of

two-point crossover is its tendency to degenerate into reproduction of a
parent when the pool becomes more homogeneous. When two parents are
similar and the crossover points fall so as to exchange an identical segments,
offspring will be identical to one of the parents (i.e., reproduction) [Booker,
19871. This is a lost opportunity to sample new schemata and may lead to

premature loss of diversity in the pool. Suppose, for example that the follow-
ing operation allocations were selected as parents:

11212 22113 22331
22131 22113 32313

If, in two-point crossover, the two crossover points are after the fifth and
before the eleventh genes, then the offspring would be identical to one of its
parents, i.e., the sixth through the tenth genes of each parent are the same
(22113). Uniform crossover is less likely to degenerate into reproduction of a
parent.

4.2 Experiment 2: Effects of Poolsize of Inner and Outer Algorithms

Experiment 2 analyzed the effects of independently varying inner and
outer poolsizes. Five levels were used for the outer poolsize (10, 25, 50, 100,

SEOUL JOURNAL OF BUSLNESS 107

and 200): three levels were used for the inner poolsize (50, 100, and 300),

which resulted in a 5 x 3 factorial design (See Appendix 3.b). As shown in

Figure 3 and Table m, the outer poolsize has significant effects (p = .000).

The inner poolsize also has significant effects (p = .000). There are no sig-

nificant interaction effects between outer and inner poolsizes (p = .393).

When the inner poolsize is small (i.e., 50), increasing the outer poolsize

from 10 to 200 has inconsistent effects on the minimum cost solution (the

solid curve in Figure 3., labeled 50). When the inner poolsize is larger (100

and 300), increasing the outer poolsize from 10 to 200 consistently improves

(or at least maintains) the minimum cost solution. As discussed above, with

a constant number of iterations, the expected results for a given inner

poolsize are a decrease in the minimum cost solution until the poolsize

becomes too large for the number of iterations, after which the minimum

cost solution should increase.

(Table m) ANOVA: Effects of Poolsize on the Minimum Cost

Source of Sum of Degrees of Mean of

Variation Squares (SS) Freedom(DF) Squares(MS) F P

Outer Poolsize (0) 4124.990 4 1031.248 13.96 0.000
Inner Poolsize(I) 2524.160 2 1262.080 17.09 0.000

OX1 647.910 8 80.989 1.10 0.393
Error 2215.610 30 73.854

Total 9512.670 44 216.197

108 SEOUL JOURNAL OF BUSINESS

(Figure 3) Effects of Poolsize of the Outer and Inner Algorithms on the Minimum Cost

130000.0

Inner Poolsize

Outer Poolsue

Results for the larger inner poolsizes (100 and 300) are consistent with the
expected results, assuming that 3000 iterations is sufficient to assure conver-
gence for an outer poolsize of 200. We would expect the minimum cost to in-
crease for these inner poolsizes if the number of iterations is kept constant
and the outer poolsize is increased significantly. In addition, as expected,
larger inner poolsizes consistently find better solutions than smaller inner
poolsizes for a given outer poolsize. As discussed earlier, further increasing
the inner poolsize is likely to have detrimental effects (assuming the number
of iterations is kept at 5000).

The results for the small inner poolsize are explained as follows. With a
small inner poolsize, the inner algorithm will quickly converge, likely on
suboptimal operation allocations. The outer algorithm may generate a very
good (or even the optimal) data allocation, but the inner algorithm may not
find a good operation allocation for it. As a result, this data allocation may
not survive and its good schema may be lost. Hence, a small inner poolsize
can mislead the outer algorithm in its search for good data allocations. When
the outer poolsize is also small, these effects are exacerbated as the outer al-
gorithm is not likely to generate many good data allocations. As the outer

SEOUL JOURNAL OF BUSIUESS 109

poolsize grows, more of the data allocation space is searched, making it
more likely that the outer algorithm will generate good data allocations.
Even with inconsistent operation allocations, the effects of a wider search of
the data allocation space are significant when the outer poolsize is small (i.
e., 10 to 25). However, when the outer pool grows (50 to 100) the effects of a
wider search of the data allocation space cannot compensate for inconsistent
operation allocations.

The increase in the minimum cost when the outer poolsize is 200 is largely
due to slow convergence as discussed above. When the number of iterations
of the outer algorithm was increased from 3000 to 5000 the minimum cost was
equal to that obtained with an outer poolsize of 100 (within 1.4%).

Interestingly, with a small inner poolsize, the outer poolsize also affected
the ability of the inner algorithm to fmd good operation allocations. To illus-
trate this point, minimal cost operation allocations were determined for the
data allocations selected with an inner poolsize of 50 (i.e., the selected data
allocation for each of the trials with an inner poolsize of 50) for each of the
outer poolsizes. These are shown in the dotted curve in Figure 3 (labeled
50*). When the outer poolsize is small (10 and 25), the minimal cost oper-
ation allocation for the given data allocation was found. However, as the
outer poolsize grows, the selected operation allocation becomes worse (the
difference between the solid curve labeled 50 and the dotted curve labeled
W increases). This is explained as follows. When the outer poolsize is small,
the algorithm quickly converges. Hence the outer pool contains a large pro-
portion of identical or at least very similar data allocations. Thus it is likely
that the same data allocation is given to the inner algorithm many times. Re-
peated execution of the operation allocation algorithm for the same data al-
location increases the likelihood of finding a very good, if not optimal, oper-
ation allocation for that data allocation. As the outer poolsize grows it is less
likely that operation allocation algorithm is executed for the same data allo-
cation, thus lowering the likelihood of finding a good or near optimal oper-
ation allocation for it.

In conclusion, an inadequate inner poolsize can cause dficulties for the
outer algorithm as well as for the inner algorithm. This suggests that it is
crucial to optimize control parameters of the inner algorithm before
optimizing those of the outer algorithm.

110 SEOUL JOURNAL OF BUSLNESS

4.3 Experiment 3: Effects of Crossover Operator

Experiment 3 compared uniform crossover to two-point crossover for the
outer algorithm. Although we compared uniform and two-point crossover for
the inner algorithm in Experiment 1, there are several differences between
the outer and inner algorithms that warrant additional experimentation.

First of all, the gene structures for the two algorithms are different. The

outer algorithm uses a set of bits while the inner algorithm uses a set of

integers. Second, for the outer algorithm, the degeneration of crossover into
reproduction is not necessarily bad as reproduction may improve the oper-
ation allocation for small inner poolsizes.

We varied the poolsize of the outer algorithm for each crossover operator
from 10 to 100 (4 levels) to analyze the interaction effects, thereby resulted
in 2x4 factorial design (See Appendix 3.c). For the inner algorithm, uniform

crossover was used and the poolsize and number of iterations were set at 300
and 5,000, respectively.

As illustrated in Figure 4 and Table N, although the uniform crossover
operator consistently resulted in lower costs than the two-point crossover
operator, the differences were not statistically significant (p = .715). As

expected, the poolsize affects the performance significantly for both types of
crossover operators (p = .036).

(Table N> ANOVA: Effects of Crossover Operator and Poolsize
of the Outer Algorithm on the Minimum Cost

Source of Sum of Degrees of Mean of
Variation Squares(SS) Freedom(DF) Squares(MS) F* P

Crossover (C) 14.610 1 14.610 0.14 0.715
Poolsize (P) 1148.500 3 382.833 3.63 0.036

C X P 17.620 3 5.873 0.06 0.982
Error 1688.540 16 105.534
Total 23 0.000

SEOUL JOURNAL OF BUSWESS

(Figure 4) Effects of Crossover Operator and Poolsize
of the Outer Algorithm on the Mnimum Cost

1 10000.0

80000.0
0 20 40 60 80 100

Outer Poolsize

Outer
Crossover Operator

-c Uniform

5. CONCUJSION AND FUTURE RESEARCH

In this paper, we have described and analyzed a nested genetic algorithm
to solve a comprehensive formulation of the distributed database design
problem. The outer genetic algorithm addresses data allocation while the in-
ner genetic algorithm addresses operation allocation.

We have described control parameters for genetic algorithms and
characterized our distributed database design algorithm according to them.
We have analyzed the effects of poolsize and crossover operator on the good-
ness of the solution found (i.e., its cost). The minimum cost of the best sol-
ution decreases dramatically as the poolsize increases until the pool becomes
"saturated" with genetic material. At this point, the solution space is ad-
equately represented and the algorithm finds a globally optimal solution (or
one very close to it). Beyond this point, increases in the poolsize may have
an adverse effect if the number of iterations is not large enough for the al-

gorithm to converge. Our experiments further indicate that when the inner
poolsize is inadequate or the inner algorithm is not performing well, increas-

112 SEOUL JOURNAL OF BUSLNESS

ing the outer poolsize is not an effective way to improve the overall perform-
ance of the algorithm. Finally, uniform crossover outperformed two-point

crossover in both inner and outer algorithms at all poolsizes.
Future research will progress in several direction. First, we will further

analyze the effects of different parameters and fine-tune these parameters
for distributed database design problems. Our goal is to understand the re-
lationship between problem parameters (e.g., number of nodes, number of
query steps) and genetic algorithm parameters (e.g., poolsize, mutation
rate). We plan to analyze a number of different distributed database design
problems and to vary different genetic algorithm parameters (e.g., mutation
rate, fitness scaling technique). Furthermore, theoretical analysis will also
be performed (e. g., old berg [1989b]).

Secondly, future research will compare the performance of our genetic al-
gorithm with alternate algorithms. As mentioned above, the genetic algor-
ithm can treat more realistic cost functions than standard optimization
approaches. Furthermore, it can easily enforce constraints, a difficulty with
strictly numerical approaches. However, there are several other approaches
that could compete with genetic algorithms. Among them are: branch and
bound algorithms, simulated annealing, switching heuristics, and randomized

hill - climbing approaches.
Finally, we are considering parallelization of our genetic algorithm (See,

e.g., Petty and Leuze [1989], Petty et al. [1987], Tanese [1987]). In general,
genetic algorithms are conducive to parallelization when multiple offspring
are produced in a given generation. Furthermore, since our algorithm is
nested, additional parallelism can be achieved. We anticipate that the use of
parallelism will result in orders of magnitude speedup in execution time.

REFERENCES

Ackley, D. H., "An Empirical Study of Bit Vector Function Optimization, "
Davis, L. (ed.), Genetic Algm'thms and Simulated Annealing, Morgan
Kaufmann, 1987, pp. 170 -204.

Apers, P.M. G., "Data Allocation in Distributed Database Systems," ACM
T~amactions on Database Systems, Vol. 13, No. 3, September 1988, pp.
263 -304.

SEOUL JOURNAL OF BUSLNESS 113

Blankinship, R., Hevner, A R., and Yao, S. B., "An Iterative Method for

Distributed Database Design, " Proceedings of the 17th International
CorGfwmce on Vvery Large Data Bases, 1991, pp. 389-400.

Booker, L., "Improving Search in Genetic Algorithms," in Davis, L. (ed.),

Genetic Algorithms and Simulated Annealing, Morgan Kaufmann,

1987, pp. 61-73.

Chen, M. S. and Yu, P. S., "A Graph Theoretical Approach to Determine a
Join Reducer Sequence in Distributed Query Processing," IEEE
Transactions on Knowledge and Data Enginewing, Vol. 6, No. 1,
February 1994, pp. 152-165.

Chung, H. M. and Silver, M. S., "Rule-Based Expert Systems and Linear

Models: An Empirical Comparison of Learning-By-Example Meth-

ods," Decz'sion Sciences, Vol. 23, No. 3, May / June 1992, pp. 687-707.

Cornell, D. W. and Yu, P. S., "On Optimal Site Assignment for Relations in

the Distributed Database Environment," IEEE Transactions on
Software Engineering, Vol. 15, No. 8, August 1989, pp. 1004-1009.

Coombs, S. and Davis, L., "Genetic Algorithms and Communication Link De-

sign : Constraints and Operators," Proceedings of the 2nd I&ernational
CorGfwence on Genetic Algm'thms, 1987, pp.

Davis, L., ed., Handbook of Genetic Algom'thms, Van Nostrand Reinhold,

New York, 1991.

Davis, L. and Coombs, S., "Genetic Algorithms and Communication Link De-

sign: Theoretical Considerations," Proceedings of the 2nd Intw-
national Conference on Gbwtic Algorithms, 1987.

De Jong, K. A , Analysis of the behavior of a class of genetic adaptive systems,
Ph. D. thesis, University of Michigan, 1975.

Dowdy, L. W. and Foster,D. V., "Comparative Models of the File Assign-
ment Problem," ACM Cmwting Surueys, Vol. 14, No. 2, June 1982,
pp. 287-314.

Eswaran, K. P., "Placement of Records in a File and File Allocation in a
Computer Network, " in I r l fm t ion Processing '74, Stockholm, 1974,

pp. 304-307.

Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison -Wesley, 1989a.

114 SEOUL JOURNAL OF BUSINESS

Goldberg, D. E., "Sizing Populations for Serial and Parallel Genetic Algo-

rithms," Proceedings of the 3rd I n t a w a t i d Cortference on Genetic

Algorithms, June 4-7, 1989b, pp. 70-79.
Goldberg, D. E., "Genetic and Evolutionary Algorithms Come of Age," Com-

munications of the ACM, Vol. 37, No. 3, March 1994, pp. 113-119.
Grefenstette, J. J., "Optimization of Control Parameters for Genetic Alg-

orithms," IEEE Transactions on Systems, Man, and Cybernetics, Vol.

SMC -16, No. 1, January / February 1986, pp. 122-128.

Grefenstette, J. J., Guest Editor, "Genetic Algorithms," Special issue of

IEEE Expert, October, 1993.

Hevner, A., The Optimization of Quay Processing on Distributed Database

Systems, PhD Thesis, Purdue University, 1979.

Holland, J. H., Adaptation in Natural and Artgicial Systems, University of

Michigan Press, Ann Arbor, MI, 1975.

King, J. L., "Centralized versus Decentralized Computing : Organizational

Considerations and Management Options, " ACM Cmnputing Surveys,

Vol. 15, No. 4, December 1983, pp. 319-349.
Lafortune, S. and Wong, E., "A State Transition Model for Distributed

Query Processing," ACM Transactions on Database Systems, Vol. 11,

No. 3, September 1986, pp. 294-322.
Lohrnan, G. M., Mohan, C., Haas, L. M., Daniels, D., Lindsay, B. G.,

Selinger, P. G., and Wilms, P. F., "Query Processing in R*," in Kim,

W. et al. (eds.) Quay Processing in Database Systems, Spring-Verlag,
Berlin, 1985, pp. 31-47.

March, S. T. and Rho, S., "Allocating Data and Operations to Nodes in

Distributed Database Design," IEEE Transactions on Knowledge and

Data Engineering, Vol. 7, No. 2, April 1995, pp. 305-317.

Martin, T. P., Lam, K. H., and Russell, J. I., "Evaluation of Site Selection

Algorithms for Distributed Query Processing," Computer Journal, Vol.

33, No. 1, February 1990, pp. 61-70.
Ozsu, M. and Valduriez, P., Przrzmples of Distributed Database Systems, Pren -

tice-Hall, Inc., 1991.

Petty, C. B. and Leuze, M. R., "A Theoretical Investigation of a Parallel
Genetic Algorithm," Proceedings of the 3rd Intermtional Co~wence

on Genetic Algorithms, 1989, pp. 398 -405.

SEOUL JOURNAL OF BUSINESS 116

Petty, C. B., Leuze, M. R., and Grefenstette, J. J., "A Parallel Genetic Al-

gorithm," Proceedings of the 2nd International Wereme on Genetic
AZgm'thms, 1987, pp. 155-161.

Shahookar, K. and Mazumder, P., "VLSI Cell Placement Techniques," ACM
Computing Surueys, Vol. 23, No. 2, June 1991, pp. 143-220.

Srinivas, M. and Patnaik, L. M., "Genetic Algorithms: A Survey," Computer,

June 1994, pp. 17-26.
Syswerda, G., "Uniform Crossover in Genetic Algorithm," Proceedings of the

3rd International Cortference on W i c AZgm'thms, 1989, pp. 2-9.
Tam, K. Y., 'Genetic Algorithms, Function Optimization, and Facility Lay-

out Design," European Jouml of Opevational Research, VoL 63, No. 2,
December 10, 1992, pp. 322-346.

Tanese, R., "Parallel Genetic Algorithms for a Hypercube," Proceedings of
the 2nd Internatiml Cortference on Onzk Algm'thms, 1987, pp.
177 - 183.

Thomas, G, Thompson, G. R., Chung, C. W., Barkmeyer, E., Carter, F.,
Templeton, M., Fox, S., and Hartmen, B., "Heterogeneous Distributed

Database Systems for Production Use," Computing Survws, Vol. 22,

No. 3, September 1990, pp. 237-266.
Uckun, S. Bagci, S., Kawamura, K., and Miyabe, Y., "Managing Genetic

Search in Job Shop Scheduling," IEEE E m , October, 1993, pp.
15 -25.

Whitley, D., "GENITOR : A Different Genetic Algorithm," Pmceedings of the
Rocky Mountain Werrerzce on Onifictal Intelligence, 1988.

SEOUL JOURNAL OF BUSINESS

Appendix 1.
Decision Variables and Cost Model Used in the Distributed Database Design

Algorithm [March and Rho, 19951

Decision Variables:

Xit = 1 if file fragment i is stored at node t
0 otherwise

Zkit = 1 if query k uses fde fragment i from node t
0 otherwise

Yht = 1 if step m of query k is done at node t
0 otherwise

Cost Function:

Min Cost =C f(k,j) (COM(k,j,m)+IO(k,j,m)+CPU(k,j,m))+~ STO(t)
k i m t

where f(k,j) is the frequency of execution of query k originating at node j

per unit time, COM(k,j,m), I 0 (k,j,m), and CPU(k, j,m) are the respective

costs of communication, disk I / 0, and CPU processing time for step m of
query k originating at node j, and STO(t) is the cost of storage at node t per
unit time.
Communication Costs: COM(k,j,m) =

M C Zk,a(k,m).t L Cjt for message steps of retrieval
t

C C Zka(k.m).t Ykmp La(k.m) ctp for selection and projection steps
f P

C C Ykmp ctp (Yk(m-3)t La(k,m)+Yk(m-1)t Lb(k,m)) for combine fragment steps
t P

C Yk(m-l)t La(k,m) Cjt for final steps
1

C ~tttr,)t LM Cjt for message steps of update
t

where a(k,m) and b(k,m) are the file fragments referenced by step m of query
k: Li and L' are the size of file fragment i and the size of a message, respect-
ively; and ct, is the communication cost per character from node t to p.

Disk 110 Costs: IO(k,j,m) =C O(k,j,m,t) dt
t

where O(k,j,m,t) is the disk I / 0 load at node t due to step m of query k

origination at node j and dt is the cost per disk I / 0 at node t. O(k,j,m,t) for
each step is defined as follows:

SEOUL JOURNAL OF BUSllVESS

O(k,j,m,t) = Yht Dkmt+ (1-Ykmt) Zk,a(k.m).t Fa (k ,m) t

+Ykmt(l-Zk,a(ic,m),t) Ea(k.m)t for selection and projection steps

Ykmt Dht+ (I-Yht) (Yk(m-3)t F a (t m) t + Y k (m - ~) t Fb(k.m)t) +Yht ((l-Yt(m-s)t)
Ea(k.m)t+(l-Yk(m-1)t) Eb(k,m)t) for Combine fragment steps

Yk(m-l)t Fa(k ,m) t if j # t, and

(l-Yk(m-l)t) Ea(k,m)t if j = t for final steps

&(krn)t Dkmt for update steps

where Dkmt is the number of disk I / 0 s required to process step m of query k
at node t, F a (k P m I t is the number of disk I / 0 s needed at node t to send a(k,
m) from node t to another node, and Ea(k,m)t is the number of disk I /Os
required to receive and store a(k,m) at node t

CPU Costs: CPU(k,j,m) = C U(k,j,m,t) pt
1

where U(k,j,m,t) is the number of CPU processing units expended at node t
for local processing and communication for step m of query k originating at
node j and pt is the CPU processing cost per unit U(k,j,m,t) for each step is

defined as follows:

U(k,j,m,t) = (l-Zka(k.m)t) St if j = b and

Zka(krn)t Rt i f j # t for message steps of retrieval
Ykmt Wht+ (l-ykmt) Zk,a(k,m).t F f a (k m) t

+Ykmt(l-Zka(em).t)E)a(k.m)t f~r~electi~nandpr~jectionsteps
Y k m t W k m t + (1 - Y k m t) (Yk(m-3)t F'a(k,m)t+Yk(m-l)t F b (t m) t) +Ybt ((l -Yk(m-3)t)

Z a (k . m) t + (1-Yk(m-~)t) E'tn(tm)t) for combine fragment steps

(1-Yk(m-l)t) E9a(k.m)t if j = k and

Yk(m-l)t F 9 a (k m) t if j # t for final steps

C Xa(k,rn)p St i f j = t, and
P #t

Xa(k,m)t Rt if j # t for send-message steps of update

X a (l m) t St if j # t for receive-message steps of update
&(krn)t Wkmt for update steps

where Wht is the number of CPU units required to process step m of query
k at node t: St and Rt are the expected CPU units required to send and re-
ceive a message: and F)a(k,m)t and E9a(k,m)t are the number of CPU operations
required to send and receive a(k,m) from and to node t, respectively.

118 SEOUL JOURNAL OF BUSLNESS

Data Storage Costs: STO(t) = G(t) st
where G(t) = C Xit L and st is the unit storage cost per unit time at node t.

i

SEOUL JOURNAL OF BUSINESS

Appendix 2.
Intrinsic and Resource Constminis Used in the Distributed Database Design

Algorithm [March and Rho, 19951

Intrinsic Constraints:

Xit> 1 for all file fragments, i=l, 2, ... , no. of fragments (all file
t

fragments must be stored at one or more nodes)

&it Xit for all queries, k = 1, 2, ... , no. of queries for all file fkagments,
i = 1, 2, ... , no. of fragments for all nodes, t = 1, 2, ... , no. of

nodes (a file fragment cannot be accessed from a node unless it
is stored at that node)

Ykmt=l for all queries, k = 1, 2, ... , no. of queries for all steps m, m =

1, 2, ... , no. of steps for query k (all query steps must be
processed at some node).

Resource Constraints:

Disk 1/0 Capadty Constraints

C C f(k,j) O(k,j,m,t) <UIO(t) for each node, t = 1, 2, ... , number of nodes
k i

where UIO(t) is the disk I / 0 capacity at node t
CPU Capacity Constraints

C f(k,j) C U(k,j,m,t) <UCPU(t) for each node, t = 1, 2, ... , number of
k i m

nodes

where UCPU(t) is the CPU processing capacity at node t.
Storage Capacity Constraints
G(t) <US(t) for each node, t = 1, 2, ... , number of nodes

where US(t) is the storage capacity at node t.
Communication Link Capacity Constraints

C C f(k,j) C ~(k,j,m,t,p)<UL(t,p) for each link (tp) , t = 1, 2, ... , no of
k i m

nodes: p = 1, 2, ... , no of nodes.

where H(k,j,m,t p) is the amount of communication on the link connecting
nodes t and p due to step m of query k originating at node j and UL(t,p) is
the communication capacity of link from node t to p. H(k,j,m,tp) for each
step is defined as follows:

120 SEOUL JOURNAL OF BUSLNESS

H(k,j,m,f p) = Zka(k,m)p L M i f j = t
M

Zka(k.m)t L if j p
0 otherwise for message steps of retrieval
Laccm)(Zkack,m)t Yhp+zka(k,m)p Ybt) for selection and projection steps
La(k.m) (Yk(m-3)tykmp+Yk(m-3)pYkmt)

+Lb~k,m)(Yk(m-1)~hp+Yk(m-l)pYkmt) for combine fragment step
Yk(m-l)pLa(k,m) if j = t
Yk(m-l) tLa(k,m) if j = P
0 otherwise
Xa(krn)p L~ i f j = t
L (k m) t LM i f j = p
0 therwise

for final steps

for both send-message steps and
receive-message steps

SEOUL JOURNAL OF BUSINESS

Appendix 3.
Awrage Minimum Cost

a. Average Minimum Cost by Poolsize, Crossover w a t o r , and Number of
Iterations of the Inner Algorithm (n = 3)

b. Average Minimum Cost by Outer and Inner Poolsize (n = 3)

c. Average Minimum Cost by Crossover Operator and Poolsize of the Outw
Azgm-thm (n = 3)

Crossover

of iterations

Uniform Two -point

Inner

Poolsize

Outer

Poolsize

5000

53097.5

20235.6

14366.1

13933.7

21571.6

24640.9

Average

5000

90214.2

69523.1

31012.2

25421.1

39770.4

51188.2

50

100

200

300

500

Average

Inner Poolsize

10

25

50

100

200

Average

15000

53097.5

20235.6

14362.6

13697.3

13689.6

23016.5

5000

71655.9

44879.4

22689.2

19677.4

30671.0

37914.6

15000

90214.2

69523.1

31012.2

24111.0

19451.2

46862.3

50

127512.7

102478.7

102607.9

100603.9

105274.7

102741.3

Outer

Poolsize

15000

71655.9

44879.4

22687.4

18904.2

16570.4

34939.4

Outer Crossover Operator

10

25

50

100

Average

100

107636.0

99872.2

95311.5

94951.5

95197.6

96333.2

Two -point

105284.6

97390.1

96453.2

93801.2

98232.3

300

105215.8

96219.2

93801.2

93801.2

93801.2

94405.7

Uniform

105215.8

96219.2

93801.2

93801.2

97259.4

Average

113454.8

99523.3

97240.2

96452.2

98091.2

97826.7

Average

105250.2

96804.7

95127.2

93801.2

97745.8

