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Abstract 

Although numerous database design models and solution algorithms 
have been developed, there has  been little work that  compares and 
evaluates these models. Lack of such work has  left u s  with several 
questions: Do the more comprehensive models actually result in better 
solutions than the simpler models? If so, what makes them better? Are 
they better under all conditions or only under certain conditions? Are 
there trade-offs between data redundancy and sophisticated operation 
allocation strategies? In this paper, we systematically compare and 
evaluate several distributed database design models in terms of total 
operating cost and average response time under various conditions. We 
vary the relative frequency of update queries and selectivities of queries. 
The results demonstrate that replication, join node selection, join order, 
and reduction by semijoin, all have significant impact on the efficiency 
of a distributed database system. Replication was most effective for 
retrieval intensive and high selectivity situations. Join node selection, 
join order, and reduction by semijoin were most effective for balanced 
retrieval/update and low selectivity situations. The results also suggest 
that  there are trade-offs between total operating cost and average 
response time design criteria. 
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1. INTRODUCTION 

With the emergence of commercial distributed database 
management systems [Ricciuti, 1993; Richter, 1994; The, 19941, 
geographically distributed database systems are becoming more 
common. Distributed database systems can provide users with 
transparent access to corporate databases that are maintained 
a t  different locations while retaining autonomy i n  local 
processing. 

Properly designed distributed databases can yield significant 
cost and performance advantages over centralized systems for 
geographically distributed organizations. However, the design of 
a distributed database is a n  extremely complex process. Given a 
computer network consisting of nodes with given processing and 
storage capacities and costs, connected by links with given data 
transmission capacities and costs, a distributed database design 
must allocate data to nodes, possibly with redundancy, so that 
retrieval and update operations can be efficiently carried out at  
run  time. Inappropriate placement of data or poor choices of 
data access or processing strategies can result in high cost and 
poor system performance [Edelstein, 1995a, 1995b, Ozsu and 
Valduriez, 199 11. 

The determination of units of data to allocate, termed file 
fragments, and the placement of copies of those units on nodes 
in the network is termed data allocation [Apers, 1988; Dowdy 
and Foster, 19821. The choice of when, where, and how retrieval 
and processing operations are performed is termed operation 
allocation or distributed query optimization [Apers, Hevner, and 
Yao, 1983;  Yu a n d  Chaing, 19841. A concurrency control 
mechanism [Bernstein, Shipman and Rothnie, 1980; Bernstein 
a n d  Goodman, 19811 insures  tha t  update  operations a re  
performed correctly and consistently. Having a n  efficient and 
effective concurrency control mechanism i s  particularly 
important when data is allocated redundantly. Collectively, 
operation allocation a n d  concurrency control a re  termed 
operating strategies. 

Data allocation and operation allocation are interdependent 
problems [Apers, 19881. The optimal set of file fragments and 
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their optimal allocation depend on how queries are processed 
(i. e., the operation allocation). However, the optimal operation 
allocation depends on where file fragments are located (i.e., the 
data allocation). Therefore, although operations are not actually 
allocated until run-time, an  ideal operation allocation strategy 
mus t  be developed a t  design time to obtain a n  effective 
distributed database design. Furthermore, designing an ideal 
operation allocation strategy enables queries to be pre-compiled 
and allows designers to optimize the overall system performance 
instead of optimizing the performance of singe queries in 
isolation [Drenick and Smith, 19931. The concurrency control 
mechanism is typically dependent upon the selected distributed 
database management system. 

Numerous distributed database design models and solution 
algorithms have been developed. Apers [1988], Blankinship et al. 
[ 199 11, and Cornell and Yu [19891, developed models for the 
combined data and operation allocation problem. However, none 
of this research considers the effects of data replication or 
upda te  queries and  the  requisi te  concurrency control 
mechanisms. 

Ram and Narasimhan (19941 and March and Rho (19951 
developed models which include da ta  replication and  a 
concurrency control mechanism. However, they ignore important 
aspects of operation allocation such a s  data reduction by 
semijoins, a major focus of distributed query optimization 
research [Apers, et al., 1983, Hevner and Yao, 1979, Yoo and 
Lafortune, 19891, and the determination of join order, a known 
determinant of query processing efficiency [Mishra and Eich, 
19921. Rho and March [2000] extend the approach of March and 
Rho [ 19951 to include these. 

Although numerous models have been developed, there has 
been little work that compares and evaluates these models. Lack 
of such work has left us  with several questions: Do the more 
comprehensive models actually result in better solutions than 
the simpler models? If so, what makes them better? Are they 
better under all conditions or only under certain conditions? Are 
there trade-offs between data redundancy and sophisticated 
operation allocation strategies? Systematic comparison of 
different models under various conditions can provide us with 
insights into such questions. 
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In this paper, we systematically compare and evaluate several 
distributed database design models. We compare designs 
produced by models based on the work of Ram and Narasimhan 
[1994], Cornell and Yu [19891, March and Rho [1995], and Rho 
and March [2000], in terms of total operating cost and average 
response time under various conditions. We vary the relative 
frequency of update queries and selectivities of queries. The 
results demonstrate that replication, join node selection, join 
order, and reduction by semijoin, all have significant impact on 
the efficiency of a distributed database system. Replication was 
most effective for retrieval intensive and high selectivity 
situations. Join node selection, join order, and reduction by 
semijoin were most effective for balanced retrieval/update and 
low selectivity situations. Their combination was effective under 
all conditions, although the additioial contribution of each one 
given the other was often limited. That is, when replication was 
effective, the additional contribdtion of the sophisticated 

I operation allocation strategies was very limited. Conversely, 
when sophisticated operation alloca "on strategies were effective, 'T 
the additional contribution of replication was very limited. 

The remainder of the paper is organized as  follows. In the next 
section,  we describe and  classify the  above mentioned 
distributed database design models. In the following section, we 
briefly present an  example problem and its variations solved 
using each model. We then present a comparison of the results. 
Finally, we discuss the insights gained in this research. 

2. DISTRIBUTED DATABASE DESIGN MODELS 

In this section, we first describe two aspects of distributed 
database design: data allocation and operation allocation. We 
then describe how different models treat each aspect. This 
produces a taxonomy of models for comparison and evaluation. 

2.1 Data Allocation 

Data allocation includes the determination of units of data to 
allocate, termed fragments, and the placement of copies of those 
units on nodes in the network. Data allocation produces a 
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subschema for each node of the distributed database system 
[Ceri et al., 19871. The process of determining units of data to 
allocate is termed fragmentation [Navathe et al., 19841. There are 
two types of fragmentations, horizontal and vertical. Horizontal 
fragmentation groups records that satisfy a selection condition 
[Ozsu and Valduriez, 199 lb]. Vertical fragmentation groups 
attributes that have a high probability of being accessed together 
[March, 1983, Navathe et al., 19841. 

Fragments must  then be allocated to nodes [Dowdy and 
Foster, 19821. Fragment allocation can be done either with or 
without replication. Operating costs and response time of 
retrieval requests can be reduced by replication. Redundantly 
allocating a copy of each fragment to each node that reference it 
allows all retrieval queries to be processed locally. However, such 
data replication increases the operating cost and response time 
of update queries since all copies of the affected fragment must 
be updated. The exact effect of replication on update costs is 
dependent upon the concurrency control mechanism [Ram and 
Marsten, 1991, Ram and Narasimhan, 19941, a component of 
the distributed database operating strategy. 

2.2 Operating Strategies 

As discussed above, there are two components to operating 
strategies, operation allocation and concurrency control. Each is 
described briefly below. Operation Allocation, or distributed 
query processing, involves three phases Wu and Chang, 19841: 
copy identification, reduction,  and  assembly.  In copy 
identflcation, also termed, materialization, one or more copies of 
each fragment required by the query is selected for processing. 

Reduction applies only to join queries when the fragments to 
be joined are stored at  different nodes. In it, semijoins [Bernstein 
and Chiu, 19811 are used to reduce the amount of data that 
must be transferred to accomplish join operations. To join two 
fragments stored at  different nodes, the required data from one 
of the fragments must be transmitted to the node at which the 
other is  s tored,  or the  required da ta  from both must  be 
transmitted to a third join node. However, if there are records in 
one fragment without corresponding records in the other 
fragment data can be transmitted unnecessarily. The use of 
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semijoins eliminates this unnecessary data transmission by 
identifying the records that have matching join values before 
they are transmitted as  follows. 

When two fragments are joined using a semijoin, one is 
designated as  the reducer and the other a s  the reducee. The 
unique join attribute values from the reducer fragment are 
transmitted to the node containing the reducee fragment. A 
record from the reducee is selected if its join attribute matches 
one of the transmitted join values. Only the selected records of 
the reducee are transmitted to the node a t  which the join is 
performed, typically the reducer node. A semijoin is effective if 
the cost of transmitting the join attribute values from the 
reducer node to the reducee node is exceeded by the reduction 
in the cost obtained by transmitting only selected records rather 
than  all records from the reducee node to the join node. 
Determining if semijoins are effective is a complex task [Yoo and 
Lafortune, 19891. 

In assembly, data are sent to the result node, if they are not 
already there,  and final processing such  a s  sorting and 
aggregations is  performed. In much of the  research on 
distributed query optimization it is assumed that all reduced 
fragments are sent  to the result node where all joins are 
performed in some predetermined order. Hence, the assembly 
phase included all join operations. In this research the solution 
algorithms determine the nodes at  which joins are performed 
and the order in which joins are performed. 

Concurrency Control mechanisms specify how update  
processing is  performed. In particular, they insure  tha t  
replicated data are kept consistent. A number of distributed 
concurrency control mechanisms have been proposed (e.g., two- 
phase locking [Mohan et al., 19861, timestamp-based [Bernstein 
et al., 19801, optimistic [Ceri and Owicki, 19811). Two-phase 
locking (2PL) is the most commonly implemented. Distributed 
2PL, one variation of 2PL, is used in this research [Ram and 
Narasimhan, 19941. 

2.3 Qpes of Models 

In order to systematically compare distributed database design 
models, we classify them based on their data and operation 
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allocation strategies. We consider two types of data allocation 
strategies: no replication (NR) and  replication (R). In the no 
replication strategy, each fragment is allocated to exactly one 
node, while in the replication strategy, each fragment may be 
allocated to more than  one node. We consider three types of 
operation allocation strategies. Operation allocation strategy 1 
(OAl) is based on the work of Ram and Narasimhan [1994]. It 
includes only copy identification. It ignores data reduction by 
semijoin and assumes that all joins are performed a t  the result 
node, in a predetermined order. Operation allocation strategy 2 
(OA2) includes join node selection as well as copy identification. 
Like OAl ,  however, i t  ignores reduct ion by semijoin a n d  
assumes that joins are performed in a predetermined order. It is 
based on the work of Cornell and Yu [19891 and March and Rho 
[ 19951. Finally, operation allocation strategy 3 (OA3) integrates 
copy identification, beneficid semijoinl) selection, join node 
selection, and join ordering. It is the model presented in Rho and 
March [2000]. The combination of two data allocation strategies 
and three operation allocation strategies results in six different 
d is t r ibuted  d a t a b a s e  design models  (see Figure 1.).  The  
distributed database design models of Ram and Narasimhan 
119941, Cornell and Yu [1989], March and Rho [1995], and Rho 
and March (20001 correspond to R-OA1, NR-OA2, R-OA2, and R- 
OA3, respectively. NR-OA1 is used as a base case and NR-OA3 is 
used to study the effects of replication for the comprehensive 
operation allocation strategy, OA3. 

We solved a set of problems for each model described above. 
Each problem was solved twice, once using a total operating cost 
minimization objective2) and once using a n  average response 
time minimization objective. Formulations for each objective are 
summarized in  Appendices 1 and 2, respectively. They are 

1) A semijoin is beneficial when its benefit (e.g., reduction in the cost of 
transmitting the reducee) outweighs its cost (e.g., cost of transmitting the 
join attributes of the reducer). 

2) Minimizing cost essentially results in a weighted minimization of required 
system resources, an  important consideration in establishing and 
conforming a distributed information system budgetary requirements. 
Presumably, minimizing the computing resources required by this 
distributed database makes those resources available for other applications 
and/or makes the purchase of additional resources unnecessary [Rho and 
March, 20001. 
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described in detail in Rho [1995]. The next section describes the 
example problem and its variations used in this study. The 
following section discusses our experimental results. 

Operation Allocation 
Strategy 

Copy Identification 
(0x41) 

+Join Node Selection 
(ox!) 

+Beneficial Semijoin & 
Join Order (OM) 

3. EXPERIMENTAL PROBLEMS 

Data Allocation Strategy 

No Replication (NR) Replication (R) 

NR-OA1 R-OA1 
case) (Ram & Narasirnhan, 1994) 

NR-OA2 R-OA2 
(Cornell & Yu, 1989) (March and Rho, 1995) 

NR-OA3 R-OA3 
(Rho and March, 2000) 

3.1 Basic Problem Description 

Figure 1. Types of Distributed Database Des&n Models 

Consider an  order processing system for a distribution 
company.3) Suppose the company has 4 regional offices (Regions 
1 through 4) and a headquarters (HQ) each having the same 
disk and CPU capacities and unit costs (e.g., 400 IOs/sec, 
$2.50/M 10s;  20 MIPS, $0.00005/MIPS; 1 Gbytes/disk, 
$lO.OO/Mbytes/month). Further, suppose that these are in a 
fully connected network, each link having the same capacity and 
unit cost (e.g., 56 Kbits/sec, $2.OO/Mbytes). 

Each regional office serves customers in that  region. A 
customer places an  order through a particular salesperson for a 
given quantity of a specific product that is to be shipped by a 
certain shipping date. Once the order is filled it is saved for 
future reference. The system keeps track of orders, customers, 
and salespeople and provides information for management 
decision making. 

The database  for th i s  application h a s  four relations: 
Salesperson, Customer, Order, and Product (Figure 2). Ten types 

3) The problem was created based on a real database system. It was simplified 
to ensure understandability and computablility. 
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Customer (240,000 instances) 

Salespemon ( 1,200 instances) Product (10,000 instances) 

Order (2,020,ooo instances) 

sales-id 

sales-name 

addr 

phone 

regno 

addr I Text 1 3 0  

Text 

Text 

Text 

Text 

Text 

cust-id 

cust-name 

order-no I Text 1 12 

6 prodno 

20 prod-type 

30 prod-name 

10 price 

2 quantity-on-hand 

Text 

Text 

phone 

company 
r e s o  

sales-id 

date I Date 1 6 

8 

20 

cust-id 8 - - 
sales-id Text 6 

Text 

Text 

Text 

Numeric 

Numeric 

Text 

Text 

Text 

Text 

10 

15 

20 

10.2 

10.2 

10 

20 

2 

6 

Figure 2. An Example Database 

prokno 

quantity 
total-price 

shippmgdate 

date-med 

of retrieval queries and five types of update queries are executed 
with varying frequencies and selection criteria at different nodes 
(see Appendix 3 and Table 1). 

Table 2 shows the fragments derived from the selection criteria 
stated in these queries plus implicit selection criteria specified 
for their execution (See, e.g., Ozsu and Valduriez [1991b]). 
Implicit selection criteria limit the  values for specified 
parameters in the queries. The values for order-no specified in 
R1, for example, are limited to unfilled orders for customers in 
the region from which the query originates. The Salesperson and 
Customer relations are fragmented by regions. The Product 
relation is not fragmented since each query needs to access the 
whole relation. The Order relation is first fragmented into 
unfilled and filled order fragments. Each of these is further 
fragmented by region. 

Considering differences in explicit and implicit selection 
criteria, regional offices and headquarters execute a total of 37 

Text 

Text 

Text 

Date 

Date 

10 

5 

10.2 

6 

6 
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Table 1. Frequencies of Retrieval and Updates h m  Each Node 

Ongmation Node 
-- 

HQ R q o n  1 Region 2 Region3 Region4 

Table 2. File Fragments (Instances) 

Relation Fragments 

Salesperson (1.2K) S1 (.45K) S 2  (. 15K) S3 (.25K) S 4  (.35K) 
Customer (240K) C1 (90K) C2 (30K) C 3  (50K) C4  (70K) 
Order (2,020K) U 0 1  (7K) U 0 2  (3K) U 0 3  (4K) U 0 4  (6K) 

F 0 1  (700K) F 0 2  (300K) F 0 3  (400K) F 0 4  (600K) 
Product (lOK) P (1OK) 

retrieval queries and 17 update queries. Table 3 and Table 4 
show the frequencies with which the fragments are accessed at  
each node for retrieval and update queries, respectively. These 
frequencies are derived from Table 1 based on origination nodes 
and selection criteria of the queries. 

3.2 Problem Variations 

To assess the performance of each model in a variety of 
environments, we varied the characteristic of the above problem 
along two dimensions: query mix and query selectivity. 
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Table 3. Frequency of Fragment Access (R1-R10) 

Query* Fragments 

C1, u01, P 
C2, u02 ,  P 
C3, U03, P 
C4, U04, P 
S1, C1, F01 
s2 ,  C2, m 2  
S3, C3, F03 
S4, C4, F04 

F01, P 
F02, P 
F03, P 
F04, P 

C1, u01 
C2, u 0 2  
C3, U03 
C4, u 0 4  
S1, u01 
s2 ,  u 0 2  
S3, U 0 3  
S4, u04 
S1, C1 
S2, C2 
S3, C3 
S4, C4 
UO 1 
u 0 2  
U03 
U04 
S1 
S2 
S3 
S4 
C1 
C2 
C3 
c 4  
P 

w o n  1 Region 2 Region 3 Region 4 
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Table 4. Frequency of magment Access (Ul-U5) 

N e ~ y  Fhgments HQ Region 1 Region2 Region3 Region4 

Query Mix. Query mix is the relative execution frequency of 
retrieval compared to update queries. The primary design 
decision affected by query mix is replication. In an  update 
intensive application, the retrieval advantages of replication can 
be outweighed by increases in update costs a s  all the copies of 
the data must be updated (how they are updated depends on the 
concurrency control mechanism). Three classes of query mix are 
considered: Balanced (B), Retrieval Intensive (RI), and Update 
Intensive (UI). Frequencies for the balanced problem are shown 
in Table 3 and Table 4. 

Query Selectivity: Query selectivity is the proportion of records 
selected by a query. When large proportions of the records are 
selected by retrieval queries, semijoins may not be beneficial. 
Two environments are considered: Low Selectivity (L) and High 
Selectivity (H). In a low selectivity environment, most retrieval 
queries require small proportions of the records (selectivities 
between .05 and .25). In a high selectivity environment, most 
retrieval queries require large proportions of the records 
(selectivities between .75 and .go). 

This results in 6 variations of the example problem as  shown 
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Table 5. Problem Variations 

Problem Query Mix Query Selectivity 

P1 B L 
P2 B H 
P3 RI L 
P4 RI H 
P5 UI L 
P6 UI H 

in Table 5. We solved each variation once to minimize total 
operating cost and once to minimize average response time for 
each model. The example problem has approximately 4.1 x 
possible solutions. Although some of these are infeasible due to 
constraints, exhaustive enumeration is not a viable solution 
method. Furthermore, due to the nature of the dependencies 
among decision variables, standard mathematical models such 
a s  integer programming are also infeasible. Hence, we have 
adopted the nested genetic algorithm developed in Rho [19951. 
While the genetic algorithm cannot guarantee optimality, it 
consistently generates extremely good solutions in a reasonable 
amount of computer time [March and Rho, 19951. 

The genetic algorithm is written in C++ and runs in UNIX or 
PC environments. Its run time depends on problem size and on 
algorithm parameters. The same problem and genetic algorithm 
parameters were used for the entire set of experiments to ensure 
comparability. We discuss the results of these experiments in 
the next section. 

4. EXPERIMENTAL RESULTS 

We first solved each problem variation to minimize total 
operating cost. Average response time was calculated for each 
solution. The minimum total operating costs and average 
response times for each model for each problem variation are 
shown in the first set of columns of Appendix 4. We then solved 
each problem to minimize average response time. Total operating 
cost was calculated for each solution. These are also shown in 
the second set of columns of Appendix 4. 
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4.1 Minimum Total Operating Cost 

Figure 3 i l lus t ra tes  t h e  overall effects of the  different 
distributed database design models when the design objective is 
to minimize total operating costs. Operating costs and response 
times are averaged over all problem variations and reported 
relative to the  base  case  NR-OA1. In Figure 3, each  ba r  
represents the average total operating cost of the best solution 
found for the model specified. Dotted lines represent the average 
response time for those solutions. 

As shown in Figure 3,  replication reduced the minimum 
operating cost significantly across all of the operation allocation 
strategies. However, its effect became smaller as  the operation 
allocation s t ra tegy became more comprehensive (a 30% 
reduction for OAl, a n  18% reduction for OA2, and a 12 % 
reduction for OA3). Join node selection (OA2) also reduced the 
cos t  significantly. I t s  effect was  more s ignif icant  when  
replication was not allowed (a 24% reduction without replication 
and a 11% reduction with replication). Semijoins and join order 
(OA3) further reduced the minimum operating cost significantly. 

1 2 3 

Operation Allocation Strategy 

Data Allocation Strategy 

ORep l ica t ion  

- - - .(Average Response Time-NR) 
/ + (Average R c ~ o n s e  T& 

Figure 3. Effects of Data and Operation Allocation Strategies on 
the Minimum Total Operating Cost [Overalu 
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Like join node selection, their effect was more significant when 
replication was not allowed (a further reduction of 11% without 
replication and 5% with replication). As expected, the average 
response time was reduced as  the minimum total operating cost 
was reduced (the dotted lines in Figure 3.). 

The comprehensive model proposed by Rho and March [2000] 
outperformed all other models including those by Ram and 
Narasimhan [I9941 (R-OA1) and Cornell and Yu [1989] (NR- 
OAl). Interestingly, NR-OA3 slightly outperformed Ram & 
Narasimhan [1994]. This suggests that sophisticated operation 
allocation strategies can be a s  effective a s  data replication in 
reducing system operating costs under certain conditions. 
Furthermore, given a design with replication or sophisticated 
operation allocation strategies, adding the other does not 
significantly contribute to performance. In the following, we 
discuss the results of two contrasting cases: retrieval intensive 
problems with high selectivity and update intensive problems 
with low selectivity, which are characteristic of decision support 
systems and on-line transaction systems, respectively. 

In retrieval intensive problems with high selectivity, the effect 
of replication was much  more significant t h a n  t h a t  of 
comprehensive operation allocation strategies. As shown in 
Figure 4, replication significantly reduced the minimum total 

OA 1 OA2 OA3 

Operation Allocation Strategy 

Data Allocation Strategy 

h@E@l No Repl~cation 

0 Replicalion 
(Average Response Time-NR] 

- - --(Average Response Time-R) 1 

Figure 4. Effects on the Minimum Total Operating Cost of P4 (RI. H) 
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operating cost across different operation allocation strategies. 
Join node selection (OA2) and reduction by semijoin and join 
order (OA3) reduced the  minimum total  operating cost  
significantly only when replication was not allowed, and even 
then not as  effectively as  replication alone. This is expected since 
sophisticated operation allocation strategies generally reduce the 
amount of data transmission needed to process a query while 
replication eliminates the need to transmit data at  all. If little or 
no data is transmitted, then sophisticated operation allocation 
strategies will not be very effective. In the extreme case when 
there is no update and data storage is relatively inexpensive, self 
contained nodes (i.e., nodes that contain a copy of all data 
needed a t  tha t  node) are ,  in fact, optimal and operation 
allocation is irrelevant. 

In update intensive problems with low selectivity, the opposite 
is true. As shown in Figure 5, the effects of join node selection, 
reduction by semijoin, and join order are much more significant 
than those of replication. Replication moderately reduced the 
minimum cost when only copy identification (OAl) was used but 
did not significantly reduce the cost for the other operation 
allocation strategies. This is reasonable since the problem is 
update intensive. Replication will lead to more increases in 
update costs in an  update intensive problem than in a retrieval 

OAl OA2 OA3 

Operation Allocation Strategy 

Data Allocation Strategy 

O R e p l i c a t i o n  
- - -(Average Response Time-NR) 

h v e r a g r a g e  Response Time-R) 1 

Figure 5. Effects on the Minimum Total Operating Cost of P5 (UI, L) 
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intensive problem, which makes replication less effective. 
Therefore, it is likely that fewer copies will be replicated in an  
update intensive problem. 

4.2 Minimum Average Response Time 

There are subtle interactions between response time and 
operating costs. Generally the minimum cost solution does not 
also minimize the average response time and conversely. We 
solved a set  of the problems discussed above to minimize 
average response time rather than total operating cost. The 
minimum average response times and total operating costs of 
the solutions for each model are reported in Appendix 4 and 
summarized in Figure 6. Opposite of Figure 3,  bars in Figure 6 
represent the average response time of the best solutions found 
for each model while the dotted lines represent the total 
operating cost for those solutions. Similar to Figure 3 these are 
reported relative to the base case NR-OA1. 

As shown in  Figure 6, da t a  replication and  operation 
allocation strategies have similar effects on the minimum 
average response time. However, their effects are  not a s  
significant as  on the minimum operating cost. 

OAl OA2 OA3 

Operation Allocation Strategy 

Data Allocation Strategy 

O Replication 
. .A - -(Total Operating Cost-NR) 

... ~ ~ . .. 

Figure 6. Effects of Data and Operation Allocation Strategies on 
the Minimum Average Response Time [Overall] 
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Replication moderately reduced the  minimum average 
response time across all of the operation allocation strategies. Its 
effect became smaller a s  the operation allocation strategy 
became more comprehensive (a 14% reduction for OAl, a 9% 
reduction for OA2, and an 8 percent reduction for OA3). Join 
node selection (OA2) also moderately reduced the minimum 
average response time. As expected, i t s  effect was more 
significant when replication was not allowed (a 9% reduction 
without replication and  4% reduction with replication). 
Semijoins and join order (OA3) further reduced the minimum 
average response time (a further reduction of 7% without 
replication and 6% with replication). 

The total operating costs were reduced a s  the minimum 
average response time was reduced.  Models with more 
sophisticated operation allocation strategies outperformed prior 
models in terms of average response time a s  well a s  total 
operating costs. As in the minimum total operating cost cases, 
NR-OA3 slightly outperformed R-OA1 [Ram and Narasimhan, 
19941. All but the base-case outperformed NR-OA2 [Cornell and 
Yu, 19891. This suggests that operation allocation strategies can 
be as  effective as data replication in reducing system response 
time a s  well a s  in reducing system operating costs. In the 
following we discuss the results for two contrasting problem in 
more detail. 

In retrieval intensive problems with high selectivity, the effects 
of replication were more significant than those of comprehensive 
operation allocation strategies. As shown in Figure 7, replication 
significantly reduced the minimum average response time across 
different operation allocation strategies. Join node selection 
(OA2) and reduction by semijoin and join order (OA3) reduced 
the minimum response time significantly only when replication 
was not allowed. They slightly reduced the response time when 
replication was allowed. This problem illustrates that reductions 
in the average response time do not necessarily result in 
reductions in the total operating cost. In this case join node 
selection (OA2) afforded reductions in the average response time 
but increased the total operating cost. This is explained by the 
fact that less expensive nodes or links may become congested, 
resulting in poor overall system response time. Join node 
selection enabled more balanced loads across the nodes but 
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Figure 7. Effects on the Minimum Average Response Time of P4 (RI, H) 

Data Allocation Strategy 

O R e p l i c a t i o n  
- - c. .(Total Operating Cost-NR) 

OAl  OA2 OA3 

operation Allocation Strategy 

Figure 8. Effects on the Minimum Average Response Time of P5 (UI, L) 

resulted in higher operating costs. 
In update intensive problems with low selectivity, the effects of 

comprehensive operation allocation strategies were much more 
significant than those of replication. As shown in Figure 8, 
replication moderately reduced the minimum response time 
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when only copy identification (OAl) was used and slightly 
reduced the response time for the other operation allocation 
strategies. In contrast, join node selection and semijoins and 
join order significantly reduced the minimum average response 
time both with and without replication. This supports our 
contention that for low selectivity problems, efficient operation 
allocation strategies are an effective way to gain efficiency. For 
OA2 and OA3, slight reductions in the average response times 
resulted in slight increases in the total operating costs. 

4.3 Discussion 

In our experiments, replication was effective for retrieval 
intensive problems with either high or low retrieval selectivities. 
It was generally not effective for update intensive problems. This 
is reasonable since replication gains its retrieval efficiencies by 
storing multiple copies of data where they are used. It thus 
reduces communication costs, but increases update and storage 
costs. Its efficiency is not dependent upon the selectivities of the 
retrievals. 

Comprehensive operation allocation strategies were effective 
for low retrieval selectivity problems, independent of the 
retrieval/update mix. They were only moderately effective for 
high selectivity problems (less so than replication). This is 
reasonable since operation allocation strategies focus on 
processing the existing data in the most efficient manner. Since 
they do not depend on data replication to be effective, update 
costs are generally not effected. However, if join queries have 
high selectivities, semijoins are not as  effective and join order 
will have limited effect. 

Considering problem variations, the following conclusions are 
drawn for the problems studied. For retrieval intensive problems 
with high retrieval selectivities, replication is more effective than 
operation allocation strategies. Their combination offers little, if 
any, improvement over replication alone. For update intensive 
problems with low retrieval selectivities, operation allocation 
strategies are more effective than replication. Their combination 
offers little improvement. 

To be effective over the widest range of problems, a distributed 
database design model must include both replication and a 



A Comparison of Distributed Database Design Models 21 

comprehensive set of operation allocation strategies. Hence, 
replication can be selected when it is efficient, and appropriate 
processing strategies can be used to determine a globally 
efficient design. 

Average response t imes were often reduced when the  
minimum total operating costs were reduced. This is reasonable 
since less processing and communication (i.e., lower cost) is 
likely to result in lower response time. However, the total 
operating costs were not necessarily reduced when the minimum 
average response times were reduced. This is explained by the 
fact that processing loads should be balanced in order to reduce 
the average response time. Congested nodes or links may be cost 
effective but are likely to result in poor overall system response 
time. Therefore, rather than congesting less expensive nodes or 
links, the minimization of average response time solution would 
balance loads which could result in higher operating costs. 

5. SUMMARY AND FUTURE RESEARCH 

In th is  paper, we systematically compared distributed 
database design models, including models posed by Ram and 
Narasimhan [1994], Cornell and Yu [1989], March and Rho 
119951, and Rho and March 120001 in terms of total operating 
cost and average response time under various conditions. The 
results demonstrate that replication, join node selection, join 
order, and reduction by semijoin have significant impact on the 
performance of a distributed database system. Replication was 
effective for retrieval intensive and high selectivity problems. 
Join node selection, join order, and reduction by semijoin were 
effective for balanced retrieval/update and low selectivity 
problems. Their combination typically offered only marginal 
improvement or, at best, moderate improvement, over the more 
effective strategy. The results also suggest that there are trade- 
offs between total operating cost and average response time. 

Comparison of models provides u s  with insights into the 
effects of different data and operation allocation strategies under 
various conditions. Such insights can be valuable for designers 
of distributed databases and for organizations who must  
purchase or develop a distributed database management 
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system. If, for example, an  application is known to be update 
intensive, the designer may decide to avoid replication. This 
reduces the complexity of the design process, greatly simplifying 
the task. If a majority of applications are update intensive, the 
organization may decide to purchase a DBMS that supports a 
wide range of operation allocation strategies in i ts  query 
optimizer rather than one that supports replication. 

There are several major areas for future research. First, the 
effects of data and operation allocation strategies on the 
efficiency of distributed database systems should be further 
analyzed under  various conditions using real bus iness  
problems. These include different types of networks with 
different performance parameters such as  wide area networks 
(WAN), local area networks (LAN), and asynchronous transfer 
mode (ATM) networks and different types of concurrency control 
mechanisms such a s  primary copy 2PL and asynchronous 
updates [e.g., store and forward). 

Second, the models must  be evaluated and verified in a 
realistic environment. Selected solutions should be implemented 
and their performance measured in a real organizational 
settings. Third, the effects of parallelism must be studied. 
Processing data on different nodes in parallel can significantly 
reduce the response time for a query. Current response time 
models simply add up the processing times and delays for all 
components of each query. Finally, a systematic sensitivity 
analysis should be performed to further define distributed 
database design guidelines and rules of thumb. 
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Appendix 1. Total Operating Cost 

Min Cost = C f (k)C (COM(k, m) + IO(k, m) + CPU(k, m)) + C STO(t) 
k m t 

where Jk) is the frequency of execution of query k per unit time, 
COM(k, m), IO(k, m), and CPU(k,m) are the respective costs of 
communication, disk I/O and CPU processing time for step m of 
query k, and STO(t) is the cost of storage a t  node t per unit time. 
Expressions for these cost components are summarized below. 

COM(k, m) = C C H(k, m, t, plc,,, 
t p t t  

where ctp is the communication cost per character from node t to 

P . 

For message steps of retrievals, 
H(k,m, t,p) = LM if t = node(k) and p = node(a(k,m)) 
H( k, m, t,p) = 0 otherwise 

where LM is the size of a message, node(k) is the origination node 
of query k, node(i) is the node a t  which file fragment i is located. 

For join steps, 
H(k,m,t,p) = Lalk,rn) + Lb(k,m) 

if t = node(a(k,m)) = node(b(k,m)) and p = node(k, m) 
H(k,nt,p) = La(,,) 

if t = node(a(k,m)) and t + node(b(k,m)) and p = node(k, m) 
H(k, m, t,p) = LI,(~,~) 

if t # node(a(k,m)) and t = node(b(k,m)) and p = node(k, m) 
H(k, m, t,p) = 0 otherwise. 

where Li is the size of file fragment i (in characters), a(k,m) and 
b(k, m) are the file fragment referenced by step m of query k, and 
node(k, m) is the node a t  which step m of query k is processed. 

For a final step, 
H(k, m, t,p) = La(k,m) if t = node(a(k, m)) and p = node(k) 
H(k, m, t,p) = 0 otherwise. 

For send-message steps of updates, 
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H(k, m, t,p) = LM if t = node(k) and copy(a(k,m), p) = 1 

H( k, m, t,p) = 0 otherwise 
where copy(i,t) i s  1 if fragment I is stored a t  node t, and  0 
otherwise. 

For receive-message steps of updates, 
H(k, m, t,p) = LM if copy(a(k,m), t) = 1 and p = node(k) 
H(k,m,t,p) = 0 otherwise. 

where dt is the cost per disk I/O a t  node t. 

For selection and projection steps, 
O( k, m, t) = Dkmt if t = node(a(k,m)) 
O(k,m,t) = 0 otherwise 

where Dkmt is the number of disk I/Os required to process step 
m of query k a t  node t. 

For join steps, 
O(k, m, t) = Fa(k,mlt 

if t f node(k, m) and t = node(a(k,m)) and t + node(b(k,m)) 
O(k, m, t) = Fb(k, m) t 

if t f node(k, m) and t # node(a(k,m)) and t = node(b(k,m)) 

O( k, m, t, = Fa(k. m) t + Fb(k, m) t 
if t # node(k, m) and t = node(a(k,m)) and t = node(b(k,m)) 

O( k, m, t) = Dkmt 

if t = node(k, m) = node(a(k, m)) = node(b(k,m)) 
O(k, m, t) = Dkmt + Ea(k, m) t 

if t = node(k,m) = node(b(k,m)) and t # node(a(k,m)) 
O(k, m, t) = Dkmt + Eb(k,m)t 

if t = node(k, m) = node(a(k,m)) and t # node(b(k,m)) 
O(k,m,t) = Dkmt + Ea(k,m)t + Eb(k,m)t 

if t = node(k,m) and t f node(a(k,m)) and t f node(b(k,m)) 
O(k, m, t) = 0 otherwise 

where Fa(k,m)t is the number of additional disk accesses needed a t  
node t in order to send a(k,m) from node t to another node after 
having retrieved it and En(k,m)t is the number of disk access 
required to receive and store a(k,m) a t  node t (typically a file 
write and the creation of needed indexes). 
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For final steps, 
O(k, m, t) = Ea(k,m)t if t + node(a(k, m)) and t = node(k) 

O(k,m,t) = Fdk,m)t if t = node(a(k,m)) and t f node(k) 
O(k,m,t) = 0 otherwise. 

For update requests, 
O(k, m, t) = Dkmt if copy(a(k, m), t) = 1 
O(k, m,t) = 0 otherwise 

where pt is the CPU processing cost per unit. 

For message steps, 
U(k, m, t) = St if t = node(k) and t + node(a(k,m)) 
U(k,m,t) = Rt if t + node(k) and t = node(a(k,m)) 
U(k,m,t) = 0 

where St and Rt are the expected CPU units required to send and 
receive a message. 

For selection and projection steps, 
U( k, m, t) = Wkrnt if t = node(a(k, m)) 
U(k, m, t) = 0 otherwise 

where Wkmt is the number of CPU units required to process step 
m of query k a t  node t 

For join steps, 
U(k,m,t) = Fa(k,rnlt 

if t + node(k, m) and t = node(a(k,m)) and t + node(b(k,m)) 
U(k,m,t) = Fb(k,rn)t 

if t + node(k, m) and t + node(a(k, m)) and t = node(b(k, m)) 

U( k, my t, = Fa(k,m) t + Fb(k.m) t 

if t # node(k, m) and t = node(a(k,m)) and t = node(b(k,m)) 
U(k, m, t) = Wkmt  

if t = node(k, m) = node(a(k,m)) = node(b(k,m)) 

U(k,mt) = Wkmt  + Ea(k,m)t 

if t = node(k, m) = node[b(k,m)) and t # node(a(k,rn)) 
U(k, m, t) = Wkmt  + E b ( k ,  m) t 

if t = node(k, m) = node(a(k,m)) and t # node[b(k,m)) 
U(k,m,t) = W k m t  + Ea(k,m)t  + Eb(k,rn)t 
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if t = node(k, m) and t # node(a(k,m)) and t f node(b(k,m)) 
U(k,m,t) = 0 otherwise 

where Fa(k,m)t and E'a(k,m)t are the number of CPU operations 
required to  send  a n d  receive a(k,m) from a n d  to node t, 
respectively. 

For final steps, 
U( k, m, t) = Edk,,,) if t # node(a(k, m)) and t = node( k) 
U(k, m, t) = Fa(k,m)t if t = node(a(k, m)) and t + node(k) 
U(k,m,t) = 0 otherwise. 

For send-message steps of updates, 

U(k, m, t) = 2 copy(a(k, m), p)S, if t = node(k) 
P t t  

U( k, m, t) = Rt if t # node(k) and copy(a(k,m), t) = 1 
U(k, m, t) = 0 otherwise 

For receive-message steps of updates, 

U(k,m,t) = St if t + node(k) and copy(a(k, m), t) = 1 
U(k,m,t) = 0 otherwise 

For update steps, 
U( k, m, t) = Wkmt if copy(a(k, m), t) = 1 
U(k,m,t) = 0 otherwise 

where st be the unit storage cost per unit time a t  node t. 
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Appendix 2. Average Response Time 

where RcoM(k), Rlo(k), and RCPU(k) are the times spent by query k 
in communication, disk I/O, and CPU, respectively. These 
response time components are summarized below. 

where UL(t,p) is the capacity of the communication link from 
node t to node p (bytes per unit time), TL(t,p) = f Jk) 2 H(k, m, t , ,  p) 

TL( t3p)  and N(k,m,t,p) is 1 if H(k,m, t,p) > 0 and it wt9p) = Xf(k)XN[k,rn,t,p) 
k rn 

is 0 otherwise. 

where UlO(t) is the disk 1/0 capacity a t  node t (number of disk 
I/O's per unit time) and TlO(t) = ZJk) O(k,m,t) is  the total 
number of disk I/O's a t  node t. 

where UCPU(t) i s  the  CPU capacity a t  node t (number  of 
instructions per unit time) and TCPU(t) = ZJk) O(k, m, t) is the 
total number instructions a t  node t. 
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Appendix 3. Queries 

Retrieval Queries 

R 1. Print invoices 
SELECT order-no, date, prod-no, prod-name, quantity, 

price, cust-id, cust-name, customer.addr, 
customer. phone, sales-id 

FROM customer, order, product 
WHERE customer.cust-id = order.cust-id 

AND order.prod-no = product.prod-no AND 
orderno = [specified] 

R2. Orders by customer and salesperson 
SELECT sales-id, sales-name, cust-id, cust-name, 

order-no, date, prod-no, quantity, price 
FROM salesperson, customer, order 
WHERE order.sales-id = salesperson.sales-id 

AND customer.cust-id = order.cust-id 
AND salesperson.reg_no = [specified] 
AND date-filled IS NOT NULL 

R3. New Orders by product 
SELECT prod-no, prod-type, prod-name, count(order-no), 

sum(quantity) 
FROM order, product 
WHERE order.prod-no = product.prod-no AND date 

> [specified] 
AND date-filled IS NOT NULL 

R4. Unfilled orders by customer 
SELECT cust-id, cust-name, order-no, date ,  

prod-no, quantity, 
price, shippincdate 

FROM customer, order 
WHERE customer.cust-id = order.cust-id AND 

date-filled IS NULL 
AND recno  = [specified] 
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R5. Unfilled orders by salesperson 
SELECT sales-id, sales-name, order-no, date ,  

prod-no, quantity, price, 
shippingdate 

FROM salesperson, order 
WHERE salesperson.sales-id = order.sales-id AND 

date-filled IS NULL 
AND regno = [specified] 

R6. Customers of a salesperson 
SELECT reg-id, sales-id, sales-name, cust-id, 

cust-name 
FROM salesperson, customer 
WHERE salesperson.sales-id = customer.sales-id 

AND sales-name = [specified] 

R7. Unfilled orders past their shipping dates 
SELECT prod-no, order-no, quantity, shipping-date 
FROM order 
WHERE shipping-date > [today] AND date-filled IS 

NULL 

R8. Salespersons 
SELECT sales-id, sales-name, addr, phone, regno 
FROM salesperson 
WHERE sales-id = [specified] 

R9. Customers 
SELECT cust-id, cust-name, addr, phone 
FROM customer 
WHERE cust-id = [specified] 

RlO. Products 
SELECT prod-no, prod-type, prod-name, price, 

quantity-on-hand 
FROM product 
WHERE prod-no = [specified] 
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Update Queries 

U 1. Maintain salesperson data 
UPDATE salesperson 
SET reg-no = [specified], addr = [specified], 

phone = [specifiedl 
WHERE sales-id = [specified] 

U2. Add a new customer 
INSERT INTO customer 
VALUES ('cust-id', ....... ") 

U3. Place a new order (including referential integrity check) 
INSERT INTO order 
VALUES ('order-no', ....... ") 

U4. Mark a n  order as filled 
UPDATE order 
SET date-filled = [specified] 
WHERE order-no = [specified] 

U5. Adjust inventory 
UPDATE product 
SET quantiwon-hand = [specified] 
WHERE prod-no = [specified] 
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Appendix 4. Minimum Total Operating Cost and Minimum 
Average Response Time 

Data 

Allocation 

Strategy 

Operation 

Allocation 

strategy 

1 Performance Objective 

Problem Minhk  Total Ope raw Cost 

7269.18 
4215.67 
3675.94 
6028.63 7.32 
4002.25 
3641.67 6.68 

- - 

Minimize Average Respom Time 

OAl 
oA2 
oA3 
OAl 
oA2 
oA3 

OAl 
oA2 
oA3 
OAl 
oA2 
OA3 


