
Seoul Journal of Business
Volume 8, Number I (June 2002)

A Comparison of Distributed Database Design
Models

Sangkyu Rho*
College of Business Administration

Seoul National University

Salvatore T. March
Owen Graduate School of Management

Vanderbilt University

Abstract

Although numerous database design models and solution algorithms
have been developed, there has been little work that compares and
evaluates these models. Lack of such work has left u s with several
questions: Do the more comprehensive models actually result in better
solutions than the simpler models? If so, what makes them better? Are
they better under all conditions or only under certain conditions? Are
there trade-offs between data redundancy and sophisticated operation
allocation strategies? In this paper, we systematically compare and
evaluate several distributed database design models in terms of total
operating cost and average response time under various conditions. We
vary the relative frequency of update queries and selectivities of queries.
The results demonstrate that replication, join node selection, join order,
and reduction by semijoin, all have significant impact on the efficiency
of a distributed database system. Replication was most effective for
retrieval intensive and high selectivity situations. Join node selection,
join order, and reduction by semijoin were most effective for balanced
retrieval/update and low selectivity situations. The results also suggest
that there are trade-offs between total operating cost and average
response time design criteria.

* This research was partially supported by Institute of Management Research,
College of Bus ines s Adminis t ra t ion , Seoul National Universi ty
(Corresponding author)

Seoul Journal of Business

1. INTRODUCTION

With the emergence of commercial distributed database
management systems [Ricciuti, 1993; Richter, 1994; The, 19941,
geographically distributed database systems are becoming more
common. Distributed database systems can provide users with
transparent access to corporate databases that are maintained
a t different locations while retaining autonomy i n local
processing.

Properly designed distributed databases can yield significant
cost and performance advantages over centralized systems for
geographically distributed organizations. However, the design of
a distributed database is a n extremely complex process. Given a
computer network consisting of nodes with given processing and
storage capacities and costs, connected by links with given data
transmission capacities and costs, a distributed database design
must allocate data to nodes, possibly with redundancy, so that
retrieval and update operations can be efficiently carried out at
run time. Inappropriate placement of data or poor choices of
data access or processing strategies can result in high cost and
poor system performance [Edelstein, 1995a, 1995b, Ozsu and
Valduriez, 199 11.

The determination of units of data to allocate, termed file
fragments, and the placement of copies of those units on nodes
in the network is termed data allocation [Apers, 1988; Dowdy
and Foster, 19821. The choice of when, where, and how retrieval
and processing operations are performed is termed operation
allocation or distributed query optimization [Apers, Hevner, and
Yao, 1983; Yu a n d Chaing, 19841. A concurrency control
mechanism [Bernstein, Shipman and Rothnie, 1980; Bernstein
a n d Goodman, 19811 insures tha t update operations a re
performed correctly and consistently. Having a n efficient and
effective concurrency control mechanism i s particularly
important when data is allocated redundantly. Collectively,
operation allocation a n d concurrency control a re termed
operating strategies.

Data allocation and operation allocation are interdependent
problems [Apers, 19881. The optimal set of file fragments and

A Corriparison of Distributed Database Design Models 3

their optimal allocation depend on how queries are processed
(i. e., the operation allocation). However, the optimal operation
allocation depends on where file fragments are located (i.e., the
data allocation). Therefore, although operations are not actually
allocated until run-time, an ideal operation allocation strategy
mus t be developed a t design time to obtain a n effective
distributed database design. Furthermore, designing an ideal
operation allocation strategy enables queries to be pre-compiled
and allows designers to optimize the overall system performance
instead of optimizing the performance of singe queries in
isolation [Drenick and Smith, 19931. The concurrency control
mechanism is typically dependent upon the selected distributed
database management system.

Numerous distributed database design models and solution
algorithms have been developed. Apers [1988], Blankinship et al.
[199 11, and Cornell and Yu [19891, developed models for the
combined data and operation allocation problem. However, none
of this research considers the effects of data replication or
upda te queries and the requisi te concurrency control
mechanisms.

Ram and Narasimhan (19941 and March and Rho (19951
developed models which include da ta replication and a
concurrency control mechanism. However, they ignore important
aspects of operation allocation such a s data reduction by
semijoins, a major focus of distributed query optimization
research [Apers, et al., 1983, Hevner and Yao, 1979, Yoo and
Lafortune, 19891, and the determination of join order, a known
determinant of query processing efficiency [Mishra and Eich,
19921. Rho and March [2000] extend the approach of March and
Rho [19951 to include these.

Although numerous models have been developed, there has
been little work that compares and evaluates these models. Lack
of such work has left us with several questions: Do the more
comprehensive models actually result in better solutions than
the simpler models? If so, what makes them better? Are they
better under all conditions or only under certain conditions? Are
there trade-offs between data redundancy and sophisticated
operation allocation strategies? Systematic comparison of
different models under various conditions can provide us with
insights into such questions.

4 Seoul Journal of Bunness

In this paper, we systematically compare and evaluate several
distributed database design models. We compare designs
produced by models based on the work of Ram and Narasimhan
[1994], Cornell and Yu [19891, March and Rho [1995], and Rho
and March [2000], in terms of total operating cost and average
response time under various conditions. We vary the relative
frequency of update queries and selectivities of queries. The
results demonstrate that replication, join node selection, join
order, and reduction by semijoin, all have significant impact on
the efficiency of a distributed database system. Replication was
most effective for retrieval intensive and high selectivity
situations. Join node selection, join order, and reduction by
semijoin were most effective for balanced retrieval/update and
low selectivity situations. Their combination was effective under
all conditions, although the additioial contribution of each one
given the other was often limited. That is, when replication was
effective, the additional contribdtion of the sophisticated

I operation allocation strategies was very limited. Conversely,
when sophisticated operation alloca "on strategies were effective, 'T
the additional contribution of replication was very limited.

The remainder of the paper is organized as follows. In the next
section, we describe and classify the above mentioned
distributed database design models. In the following section, we
briefly present an example problem and its variations solved
using each model. We then present a comparison of the results.
Finally, we discuss the insights gained in this research.

2. DISTRIBUTED DATABASE DESIGN MODELS

In this section, we first describe two aspects of distributed
database design: data allocation and operation allocation. We
then describe how different models treat each aspect. This
produces a taxonomy of models for comparison and evaluation.

2.1 Data Allocation

Data allocation includes the determination of units of data to
allocate, termed fragments, and the placement of copies of those
units on nodes in the network. Data allocation produces a

A Comparison of Distributed Database Design Models 5

subschema for each node of the distributed database system
[Ceri et al., 19871. The process of determining units of data to
allocate is termed fragmentation [Navathe et al., 19841. There are
two types of fragmentations, horizontal and vertical. Horizontal
fragmentation groups records that satisfy a selection condition
[Ozsu and Valduriez, 199 lb]. Vertical fragmentation groups
attributes that have a high probability of being accessed together
[March, 1983, Navathe et al., 19841.

Fragments must then be allocated to nodes [Dowdy and
Foster, 19821. Fragment allocation can be done either with or
without replication. Operating costs and response time of
retrieval requests can be reduced by replication. Redundantly
allocating a copy of each fragment to each node that reference it
allows all retrieval queries to be processed locally. However, such
data replication increases the operating cost and response time
of update queries since all copies of the affected fragment must
be updated. The exact effect of replication on update costs is
dependent upon the concurrency control mechanism [Ram and
Marsten, 1991, Ram and Narasimhan, 19941, a component of
the distributed database operating strategy.

2.2 Operating Strategies

As discussed above, there are two components to operating
strategies, operation allocation and concurrency control. Each is
described briefly below. Operation Allocation, or distributed
query processing, involves three phases Wu and Chang, 19841:
copy identification, reduction, and assembly. In copy
identflcation, also termed, materialization, one or more copies of
each fragment required by the query is selected for processing.

Reduction applies only to join queries when the fragments to
be joined are stored at different nodes. In it, semijoins [Bernstein
and Chiu, 19811 are used to reduce the amount of data that
must be transferred to accomplish join operations. To join two
fragments stored at different nodes, the required data from one
of the fragments must be transmitted to the node at which the
other is s tored, or the required da ta from both must be
transmitted to a third join node. However, if there are records in
one fragment without corresponding records in the other
fragment data can be transmitted unnecessarily. The use of

6 Seoul Journal o f Business

semijoins eliminates this unnecessary data transmission by
identifying the records that have matching join values before
they are transmitted as follows.

When two fragments are joined using a semijoin, one is
designated as the reducer and the other a s the reducee. The
unique join attribute values from the reducer fragment are
transmitted to the node containing the reducee fragment. A
record from the reducee is selected if its join attribute matches
one of the transmitted join values. Only the selected records of
the reducee are transmitted to the node a t which the join is
performed, typically the reducer node. A semijoin is effective if
the cost of transmitting the join attribute values from the
reducer node to the reducee node is exceeded by the reduction
in the cost obtained by transmitting only selected records rather
than all records from the reducee node to the join node.
Determining if semijoins are effective is a complex task [Yoo and
Lafortune, 19891.

In assembly, data are sent to the result node, if they are not
already there, and final processing such a s sorting and
aggregations is performed. In much of the research on
distributed query optimization it is assumed that all reduced
fragments are sent to the result node where all joins are
performed in some predetermined order. Hence, the assembly
phase included all join operations. In this research the solution
algorithms determine the nodes at which joins are performed
and the order in which joins are performed.

Concurrency Control mechanisms specify how update
processing is performed. In particular, they insure tha t
replicated data are kept consistent. A number of distributed
concurrency control mechanisms have been proposed (e.g., two-
phase locking [Mohan et al., 19861, timestamp-based [Bernstein
et al., 19801, optimistic [Ceri and Owicki, 19811). Two-phase
locking (2PL) is the most commonly implemented. Distributed
2PL, one variation of 2PL, is used in this research [Ram and
Narasimhan, 19941.

2.3 Qpes of Models

In order to systematically compare distributed database design
models, we classify them based on their data and operation

A Cornparison of Distributed Database Design Models 7

allocation strategies. We consider two types of data allocation
strategies: no replication (NR) and replication (R). In the no
replication strategy, each fragment is allocated to exactly one
node, while in the replication strategy, each fragment may be
allocated to more than one node. We consider three types of
operation allocation strategies. Operation allocation strategy 1
(OAl) is based on the work of Ram and Narasimhan [1994]. It
includes only copy identification. It ignores data reduction by
semijoin and assumes that all joins are performed a t the result
node, in a predetermined order. Operation allocation strategy 2
(OA2) includes join node selection as well as copy identification.
Like OAl , however, i t ignores reduct ion by semijoin a n d
assumes that joins are performed in a predetermined order. It is
based on the work of Cornell and Yu [19891 and March and Rho
[19951. Finally, operation allocation strategy 3 (OA3) integrates
copy identification, beneficid semijoinl) selection, join node
selection, and join ordering. It is the model presented in Rho and
March [2000]. The combination of two data allocation strategies
and three operation allocation strategies results in six different
d is t r ibuted d a t a b a s e design models (see Figure 1.). The
distributed database design models of Ram and Narasimhan
119941, Cornell and Yu [1989], March and Rho [1995], and Rho
and March (20001 correspond to R-OA1, NR-OA2, R-OA2, and R-
OA3, respectively. NR-OA1 is used as a base case and NR-OA3 is
used to study the effects of replication for the comprehensive
operation allocation strategy, OA3.

We solved a set of problems for each model described above.
Each problem was solved twice, once using a total operating cost
minimization objective2) and once using a n average response
time minimization objective. Formulations for each objective are
summarized in Appendices 1 and 2, respectively. They are

1) A semijoin is beneficial when its benefit (e.g., reduction in the cost of
transmitting the reducee) outweighs its cost (e.g., cost of transmitting the
join attributes of the reducer).

2) Minimizing cost essentially results in a weighted minimization of required
system resources, an important consideration in establishing and
conforming a distributed information system budgetary requirements.
Presumably, minimizing the computing resources required by this
distributed database makes those resources available for other applications
and/or makes the purchase of additional resources unnecessary [Rho and
March, 20001.

8 Seoul Journal of Business

described in detail in Rho [1995]. The next section describes the
example problem and its variations used in this study. The
following section discusses our experimental results.

Operation Allocation
Strategy

Copy Identification
(0x41)

+Join Node Selection
(ox!)

+Beneficial Semijoin &
Join Order (OM)

3. EXPERIMENTAL PROBLEMS

Data Allocation Strategy

No Replication (NR) Replication (R)

NR-OA1 R-OA1
case) (Ram & Narasirnhan, 1994)

NR-OA2 R-OA2
(Cornell & Yu, 1989) (March and Rho, 1995)

NR-OA3 R-OA3
(Rho and March, 2000)

3.1 Basic Problem Description

Figure 1. Types of Distributed Database Des&n Models

Consider an order processing system for a distribution
company.3) Suppose the company has 4 regional offices (Regions
1 through 4) and a headquarters (HQ) each having the same
disk and CPU capacities and unit costs (e.g., 400 IOs/sec,
$2.50/M 10s; 20 MIPS, $0.00005/MIPS; 1 Gbytes/disk,
$lO.OO/Mbytes/month). Further, suppose that these are in a
fully connected network, each link having the same capacity and
unit cost (e.g., 56 Kbits/sec, $2.OO/Mbytes).

Each regional office serves customers in that region. A
customer places an order through a particular salesperson for a
given quantity of a specific product that is to be shipped by a
certain shipping date. Once the order is filled it is saved for
future reference. The system keeps track of orders, customers,
and salespeople and provides information for management
decision making.

The database for th i s application h a s four relations:
Salesperson, Customer, Order, and Product (Figure 2). Ten types

3) The problem was created based on a real database system. It was simplified
to ensure understandability and computablility.

A Comparison of Distributed Database Design Models 9

Customer (240,000 instances)

Salespemon (1,200 instances) Product (10,000 instances)

Order (2,020,ooo instances)

sales-id

sales-name

addr

phone

regno

addr I Text 1 3 0

Text

Text

Text

Text

Text

cust-id

cust-name

order-no I Text 1 12

6 prodno

20 prod-type

30 prod-name

10 price

2 quantity-on-hand

Text

Text

phone

company
r e s o

sales-id

date I Date 1 6

8

20

cust-id 8 - -
sales-id Text 6

Text

Text

Text

Numeric

Numeric

Text

Text

Text

Text

10

15

20

10.2

10.2

10

20

2

6

Figure 2. An Example Database

prokno

quantity
total-price

shippmgdate

date-med

of retrieval queries and five types of update queries are executed
with varying frequencies and selection criteria at different nodes
(see Appendix 3 and Table 1).

Table 2 shows the fragments derived from the selection criteria
stated in these queries plus implicit selection criteria specified
for their execution (See, e.g., Ozsu and Valduriez [1991b]).
Implicit selection criteria limit the values for specified
parameters in the queries. The values for order-no specified in
R1, for example, are limited to unfilled orders for customers in
the region from which the query originates. The Salesperson and
Customer relations are fragmented by regions. The Product
relation is not fragmented since each query needs to access the
whole relation. The Order relation is first fragmented into
unfilled and filled order fragments. Each of these is further
fragmented by region.

Considering differences in explicit and implicit selection
criteria, regional offices and headquarters execute a total of 37

Text

Text

Text

Date

Date

10

5

10.2

6

6

10 Seoul Journal of Business

Table 1. Frequencies of Retrieval and Updates h m Each Node

Ongmation Node
--

HQ R q o n 1 Region 2 Region3 Region4

Table 2. File Fragments (Instances)

Relation Fragments

Salesperson (1.2K) S1 (.45K) S 2 (. 15K) S3 (.25K) S 4 (.35K)
Customer (240K) C1 (90K) C2 (30K) C 3 (50K) C4 (70K)
Order (2,020K) U 0 1 (7K) U 0 2 (3K) U 0 3 (4K) U 0 4 (6K)

F 0 1 (700K) F 0 2 (300K) F 0 3 (400K) F 0 4 (600K)
Product (lOK) P (1OK)

retrieval queries and 17 update queries. Table 3 and Table 4
show the frequencies with which the fragments are accessed at
each node for retrieval and update queries, respectively. These
frequencies are derived from Table 1 based on origination nodes
and selection criteria of the queries.

3.2 Problem Variations

To assess the performance of each model in a variety of
environments, we varied the characteristic of the above problem
along two dimensions: query mix and query selectivity.

A Comparison of Distributed Database Design Models

Table 3. Frequency of Fragment Access (R1-R10)

Query* Fragments

C1, u01, P
C2, u02 , P
C3, U03, P
C4, U04, P
S1, C1, F01
s2 , C2, m 2
S3, C3, F03
S4, C4, F04

F01, P
F02, P
F03, P
F04, P

C1, u01
C2, u 0 2
C3, U03
C4, u 0 4
S1, u01
s2 , u 0 2
S3, U 0 3
S4, u04
S1, C1
S2, C2
S3, C3
S4, C4
UO 1
u 0 2
U03
U04
S1
S2
S3
S4
C1
C2
C3
c 4
P

w o n 1 Region 2 Region 3 Region 4

12 Seoul Journal of Business

Table 4. Frequency of magment Access (Ul-U5)

N e ~ y Fhgments HQ Region 1 Region2 Region3 Region4

Query Mix. Query mix is the relative execution frequency of
retrieval compared to update queries. The primary design
decision affected by query mix is replication. In an update
intensive application, the retrieval advantages of replication can
be outweighed by increases in update costs a s all the copies of
the data must be updated (how they are updated depends on the
concurrency control mechanism). Three classes of query mix are
considered: Balanced (B), Retrieval Intensive (RI), and Update
Intensive (UI). Frequencies for the balanced problem are shown
in Table 3 and Table 4.

Query Selectivity: Query selectivity is the proportion of records
selected by a query. When large proportions of the records are
selected by retrieval queries, semijoins may not be beneficial.
Two environments are considered: Low Selectivity (L) and High
Selectivity (H). In a low selectivity environment, most retrieval
queries require small proportions of the records (selectivities
between .05 and .25). In a high selectivity environment, most
retrieval queries require large proportions of the records
(selectivities between .75 and .go).

This results in 6 variations of the example problem as shown

A Comparison of Distributed Datubase Design Models

Table 5. Problem Variations

Problem Query Mix Query Selectivity

P1 B L
P2 B H
P3 RI L
P4 RI H
P5 UI L
P6 UI H

in Table 5. We solved each variation once to minimize total
operating cost and once to minimize average response time for
each model. The example problem has approximately 4.1 x
possible solutions. Although some of these are infeasible due to
constraints, exhaustive enumeration is not a viable solution
method. Furthermore, due to the nature of the dependencies
among decision variables, standard mathematical models such
a s integer programming are also infeasible. Hence, we have
adopted the nested genetic algorithm developed in Rho [19951.
While the genetic algorithm cannot guarantee optimality, it
consistently generates extremely good solutions in a reasonable
amount of computer time [March and Rho, 19951.

The genetic algorithm is written in C++ and runs in UNIX or
PC environments. Its run time depends on problem size and on
algorithm parameters. The same problem and genetic algorithm
parameters were used for the entire set of experiments to ensure
comparability. We discuss the results of these experiments in
the next section.

4. EXPERIMENTAL RESULTS

We first solved each problem variation to minimize total
operating cost. Average response time was calculated for each
solution. The minimum total operating costs and average
response times for each model for each problem variation are
shown in the first set of columns of Appendix 4. We then solved
each problem to minimize average response time. Total operating
cost was calculated for each solution. These are also shown in
the second set of columns of Appendix 4.

14 Seoul Journal of Business

4.1 Minimum Total Operating Cost

Figure 3 i l lus t ra tes t h e overall effects of the different
distributed database design models when the design objective is
to minimize total operating costs. Operating costs and response
times are averaged over all problem variations and reported
relative to the base case NR-OA1. In Figure 3, each ba r
represents the average total operating cost of the best solution
found for the model specified. Dotted lines represent the average
response time for those solutions.

As shown in Figure 3, replication reduced the minimum
operating cost significantly across all of the operation allocation
strategies. However, its effect became smaller as the operation
allocation s t ra tegy became more comprehensive (a 30%
reduction for OAl, a n 18% reduction for OA2, and a 12 %
reduction for OA3). Join node selection (OA2) also reduced the
cos t significantly. I t s effect was more s ignif icant when
replication was not allowed (a 24% reduction without replication
and a 11% reduction with replication). Semijoins and join order
(OA3) further reduced the minimum operating cost significantly.

1 2 3

Operation Allocation Strategy

Data Allocation Strategy

ORep l ica t ion

- - - .(Average Response Time-NR)
/ + (Average R c ~ o n s e T&

Figure 3. Effects of Data and Operation Allocation Strategies on
the Minimum Total Operating Cost [Overalu

A Comparison of Distributed Database Design Models 15

Like join node selection, their effect was more significant when
replication was not allowed (a further reduction of 11% without
replication and 5% with replication). As expected, the average
response time was reduced as the minimum total operating cost
was reduced (the dotted lines in Figure 3.).

The comprehensive model proposed by Rho and March [2000]
outperformed all other models including those by Ram and
Narasimhan [I9941 (R-OA1) and Cornell and Yu [1989] (NR-
OAl). Interestingly, NR-OA3 slightly outperformed Ram &
Narasimhan [1994]. This suggests that sophisticated operation
allocation strategies can be a s effective a s data replication in
reducing system operating costs under certain conditions.
Furthermore, given a design with replication or sophisticated
operation allocation strategies, adding the other does not
significantly contribute to performance. In the following, we
discuss the results of two contrasting cases: retrieval intensive
problems with high selectivity and update intensive problems
with low selectivity, which are characteristic of decision support
systems and on-line transaction systems, respectively.

In retrieval intensive problems with high selectivity, the effect
of replication was much more significant t h a n t h a t of
comprehensive operation allocation strategies. As shown in
Figure 4, replication significantly reduced the minimum total

OA 1 OA2 OA3

Operation Allocation Strategy

Data Allocation Strategy

h@E@l No Repl~cation

0 Replicalion
(Average Response Time-NR]

- - --(Average Response Time-R) 1

Figure 4. Effects on the Minimum Total Operating Cost of P4 (RI. H)

16 Seoul Journal of Business

operating cost across different operation allocation strategies.
Join node selection (OA2) and reduction by semijoin and join
order (OA3) reduced the minimum total operating cost
significantly only when replication was not allowed, and even
then not as effectively as replication alone. This is expected since
sophisticated operation allocation strategies generally reduce the
amount of data transmission needed to process a query while
replication eliminates the need to transmit data at all. If little or
no data is transmitted, then sophisticated operation allocation
strategies will not be very effective. In the extreme case when
there is no update and data storage is relatively inexpensive, self
contained nodes (i.e., nodes that contain a copy of all data
needed a t tha t node) are , in fact, optimal and operation
allocation is irrelevant.

In update intensive problems with low selectivity, the opposite
is true. As shown in Figure 5, the effects of join node selection,
reduction by semijoin, and join order are much more significant
than those of replication. Replication moderately reduced the
minimum cost when only copy identification (OAl) was used but
did not significantly reduce the cost for the other operation
allocation strategies. This is reasonable since the problem is
update intensive. Replication will lead to more increases in
update costs in an update intensive problem than in a retrieval

OAl OA2 OA3

Operation Allocation Strategy

Data Allocation Strategy

O R e p l i c a t i o n
- - -(Average Response Time-NR)

h v e r a g r a g e Response Time-R) 1

Figure 5. Effects on the Minimum Total Operating Cost of P5 (UI, L)

A Cornpurison of Distributed Database Llesign Models 17

intensive problem, which makes replication less effective.
Therefore, it is likely that fewer copies will be replicated in an
update intensive problem.

4.2 Minimum Average Response Time

There are subtle interactions between response time and
operating costs. Generally the minimum cost solution does not
also minimize the average response time and conversely. We
solved a set of the problems discussed above to minimize
average response time rather than total operating cost. The
minimum average response times and total operating costs of
the solutions for each model are reported in Appendix 4 and
summarized in Figure 6. Opposite of Figure 3, bars in Figure 6
represent the average response time of the best solutions found
for each model while the dotted lines represent the total
operating cost for those solutions. Similar to Figure 3 these are
reported relative to the base case NR-OA1.

As shown in Figure 6, da t a replication and operation
allocation strategies have similar effects on the minimum
average response time. However, their effects are not a s
significant as on the minimum operating cost.

OAl OA2 OA3

Operation Allocation Strategy

Data Allocation Strategy

O Replication
. .A - -(Total Operating Cost-NR)

... ~ ~ . ..

Figure 6. Effects of Data and Operation Allocation Strategies on
the Minimum Average Response Time [Overall]

18 Seoul Journal of Business

Replication moderately reduced the minimum average
response time across all of the operation allocation strategies. Its
effect became smaller a s the operation allocation strategy
became more comprehensive (a 14% reduction for OAl, a 9%
reduction for OA2, and an 8 percent reduction for OA3). Join
node selection (OA2) also moderately reduced the minimum
average response time. As expected, i t s effect was more
significant when replication was not allowed (a 9% reduction
without replication and 4% reduction with replication).
Semijoins and join order (OA3) further reduced the minimum
average response time (a further reduction of 7% without
replication and 6% with replication).

The total operating costs were reduced a s the minimum
average response time was reduced. Models with more
sophisticated operation allocation strategies outperformed prior
models in terms of average response time a s well a s total
operating costs. As in the minimum total operating cost cases,
NR-OA3 slightly outperformed R-OA1 [Ram and Narasimhan,
19941. All but the base-case outperformed NR-OA2 [Cornell and
Yu, 19891. This suggests that operation allocation strategies can
be as effective as data replication in reducing system response
time a s well a s in reducing system operating costs. In the
following we discuss the results for two contrasting problem in
more detail.

In retrieval intensive problems with high selectivity, the effects
of replication were more significant than those of comprehensive
operation allocation strategies. As shown in Figure 7, replication
significantly reduced the minimum average response time across
different operation allocation strategies. Join node selection
(OA2) and reduction by semijoin and join order (OA3) reduced
the minimum response time significantly only when replication
was not allowed. They slightly reduced the response time when
replication was allowed. This problem illustrates that reductions
in the average response time do not necessarily result in
reductions in the total operating cost. In this case join node
selection (OA2) afforded reductions in the average response time
but increased the total operating cost. This is explained by the
fact that less expensive nodes or links may become congested,
resulting in poor overall system response time. Join node
selection enabled more balanced loads across the nodes but

A Cornpar.ison of Distributed Database Design Models

l2OOh 1

Data Allocation Strategy

I &Ta%B No Repl~cat!on
O R e p l i c a t i o n
. - *..(Total Operattng Cost-NR)

, - . .-(Total Operating Cost-R)

OAl OA2 OA3
Operation Allocation Strategy

Figure 7. Effects on the Minimum Average Response Time of P4 (RI, H)

Data Allocation Strategy

O R e p l i c a t i o n
- - c. .(Total Operating Cost-NR)

OAl OA2 OA3

operation Allocation Strategy

Figure 8. Effects on the Minimum Average Response Time of P5 (UI, L)

resulted in higher operating costs.
In update intensive problems with low selectivity, the effects of

comprehensive operation allocation strategies were much more
significant than those of replication. As shown in Figure 8,
replication moderately reduced the minimum response time

20 Seoul Journol of Business

when only copy identification (OAl) was used and slightly
reduced the response time for the other operation allocation
strategies. In contrast, join node selection and semijoins and
join order significantly reduced the minimum average response
time both with and without replication. This supports our
contention that for low selectivity problems, efficient operation
allocation strategies are an effective way to gain efficiency. For
OA2 and OA3, slight reductions in the average response times
resulted in slight increases in the total operating costs.

4.3 Discussion

In our experiments, replication was effective for retrieval
intensive problems with either high or low retrieval selectivities.
It was generally not effective for update intensive problems. This
is reasonable since replication gains its retrieval efficiencies by
storing multiple copies of data where they are used. It thus
reduces communication costs, but increases update and storage
costs. Its efficiency is not dependent upon the selectivities of the
retrievals.

Comprehensive operation allocation strategies were effective
for low retrieval selectivity problems, independent of the
retrieval/update mix. They were only moderately effective for
high selectivity problems (less so than replication). This is
reasonable since operation allocation strategies focus on
processing the existing data in the most efficient manner. Since
they do not depend on data replication to be effective, update
costs are generally not effected. However, if join queries have
high selectivities, semijoins are not as effective and join order
will have limited effect.

Considering problem variations, the following conclusions are
drawn for the problems studied. For retrieval intensive problems
with high retrieval selectivities, replication is more effective than
operation allocation strategies. Their combination offers little, if
any, improvement over replication alone. For update intensive
problems with low retrieval selectivities, operation allocation
strategies are more effective than replication. Their combination
offers little improvement.

To be effective over the widest range of problems, a distributed
database design model must include both replication and a

A Comparison of Distributed Database Design Models 21

comprehensive set of operation allocation strategies. Hence,
replication can be selected when it is efficient, and appropriate
processing strategies can be used to determine a globally
efficient design.

Average response t imes were often reduced when the
minimum total operating costs were reduced. This is reasonable
since less processing and communication (i.e., lower cost) is
likely to result in lower response time. However, the total
operating costs were not necessarily reduced when the minimum
average response times were reduced. This is explained by the
fact that processing loads should be balanced in order to reduce
the average response time. Congested nodes or links may be cost
effective but are likely to result in poor overall system response
time. Therefore, rather than congesting less expensive nodes or
links, the minimization of average response time solution would
balance loads which could result in higher operating costs.

5. SUMMARY AND FUTURE RESEARCH

In th is paper, we systematically compared distributed
database design models, including models posed by Ram and
Narasimhan [1994], Cornell and Yu [1989], March and Rho
119951, and Rho and March 120001 in terms of total operating
cost and average response time under various conditions. The
results demonstrate that replication, join node selection, join
order, and reduction by semijoin have significant impact on the
performance of a distributed database system. Replication was
effective for retrieval intensive and high selectivity problems.
Join node selection, join order, and reduction by semijoin were
effective for balanced retrieval/update and low selectivity
problems. Their combination typically offered only marginal
improvement or, at best, moderate improvement, over the more
effective strategy. The results also suggest that there are trade-
offs between total operating cost and average response time.

Comparison of models provides u s with insights into the
effects of different data and operation allocation strategies under
various conditions. Such insights can be valuable for designers
of distributed databases and for organizations who must
purchase or develop a distributed database management

22 Seoul Journal of Business

system. If, for example, an application is known to be update
intensive, the designer may decide to avoid replication. This
reduces the complexity of the design process, greatly simplifying
the task. If a majority of applications are update intensive, the
organization may decide to purchase a DBMS that supports a
wide range of operation allocation strategies in i ts query
optimizer rather than one that supports replication.

There are several major areas for future research. First, the
effects of data and operation allocation strategies on the
efficiency of distributed database systems should be further
analyzed under various conditions using real bus iness
problems. These include different types of networks with
different performance parameters such as wide area networks
(WAN), local area networks (LAN), and asynchronous transfer
mode (ATM) networks and different types of concurrency control
mechanisms such a s primary copy 2PL and asynchronous
updates [e.g., store and forward).

Second, the models must be evaluated and verified in a
realistic environment. Selected solutions should be implemented
and their performance measured in a real organizational
settings. Third, the effects of parallelism must be studied.
Processing data on different nodes in parallel can significantly
reduce the response time for a query. Current response time
models simply add up the processing times and delays for all
components of each query. Finally, a systematic sensitivity
analysis should be performed to further define distributed
database design guidelines and rules of thumb.

6. REFERENCES

Apers, P. M. G., "Data Allocation in Distributed Database Systems,"
ACM Transactions on Database Systems, Vol. 13, No. 3, September
1988, pp. 263-304.

Apers, P. M. G., Hevner, A. R., and Yao, S. B., "Optimization Algorithms
for Dis t r ibuted Quer ies ," IEEE Transact ions on Software
Engineering, Vol. SE-9, No. 1, January 1983, pp. 57-68.

Bernstein, P. A. and Chiu, D. W., "Using Semi-Joins to Solve Relational
Queries," Journal of the ACM, Vol. 28, No. 1, January 1981, pp. 25-
40.

Bernstein, P. A. and Goodman, N., "Concurrency Control in Distributed

A Comparison oj'Distributed Database Design Models 23

Database Systems," ACM Computing Surveys, Vol. 13, No. 2, June
1981, pp. 185-222.

Bernstein, P. A., Shipman, D. W., and Rothnie, J. B., "Concurrency
Control in a System for Distributed Databases (SDD-I)," ACM
Transactions on Database Systems, Vol. 5, No. 1, March 1980, pp.
18-51.

Blankinship, R., Hevner, A. R., and Yao, S. B., "An Iterative Method for
Distributed Database Design," Proceedings of the 17th International
Conference on Very Large Data Bases, Barcelona, Spain, September
1991, pp. 389-400.

Ceri, S . a n d Owicki, S . , "On the Use of Optimistic Methods for
Concurrency Control in Distributed Databases," Proceedings of 6th
Berkeley Workshop on Distr ibuted D a t a Management a n d
Communication Networks, Berkeley, CA, February 1982; pp. 117-
130.

Ceri, S., Pernici, B., and Wiederhold, G., "Distributed Database Design
Methodologies," Proceedings of the IEEE, Vol. 75, No. 5, May 1987,
pp. 533-546.

Cornell, D. W. and Yu, P. S., "On Optimal Site Assignment for Relations
in the Distributed Database Environment," IEEE Transactions on
Software Engineering, Vol. 15, No. 8, August 1989, pp. 1004-1009.

Dowdy, L. W. and Foster, D. V., "Comparative Models of the File
Assignment Problem," ACM Computing Surveys, Vol. 14, No. 2,
June 1982, pp. 287-314.

Drenick, P. E. and Smith, E. J . , "Stochastic Query Optimization in
Distributed Databases," ACM Transactions on Database Systems,
Vol. 18, No. 2, June 1993, pp. 262-288.

Edelstein, H., "The Challenge of Replication," DBMS, March 1995a, pp.
46-49, 52.

Edelstein, H., "The Challenge of Replication, Part 2," DBMS, April
1995b, pp. 62-70, 103.

Epstein, R., Stonebraker, M., and Wong, E., "Query Processing in a
Distributed Relational Database System," Proceedings of ACM
SIGMOD, Austin, TX, May 1978.

Hevner, A. R. and Yao, S. B., "Query Processing in Distributed Database
Systems," IEEE Transactions on Software Engineering, Vol. SE-5,
No. 3, May 1979, pp. 177-187.

March, S . T., "Techniques for Structuring Database Records," ACM
Computing Surveys, Vol. 15, No. 1, March 1983, pp. 45-79.

March, S. T. and Rho, S., "Allocating Data and Operations to Nodes in
Distributed Database Design," IEEE Transactions on Knowledge
and Data Engineering, Vol. 7, No. 2, April 1995, pp. 305-3 17.

Mishra, P. and Eich, M. H., "Join Processing in Relational Databases,"
ACM Computing Surveys, Vol. 24, No. 1, March 1992, pp. 63-1 13.

24 Seoul Journul of Business

Mohan, C., Lindsay, B., and Obermarck, R., "Transaction Management
i n the R* Distributed Database Management System," ACM
Transactions on Database Systems, Vol. 11, No. 4, December 1986,
pp. 378-396.

Navathe, S., Ceri, S., Wiederhold, G, and Dou, J . , "Vertical Partitioning
Algorithms for Database Design," ACM Transactions on Database
Systems, Vol. 9 , No. 4, December 1984, pp. 680-710.

Ozsu, M. and Valduriez, P., "Distributed Database Systems: Where Are
We Now?" IEEE Computer, August 1991a, pp. 68-78.

Ozsu, M. and Valduriez, P., Principles of Distributed Database Systems,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 199 1b.

Ram, S. a n d Marsten, R. E., "A Model for Database Allocation
Incorporat ing a Concurrency Control Mechanism," IEEE
Transactions on Knowledge and Data Engineering, Vol. 3, 1991, pp.
389-395.

Ram, S. and Narasimhan, S . , "Database Allocation in a Distributed
Environment: Incorporating a Concurrency Control Mechanism
and Queuing Costs," Management Science, Vol. 40, No. 8, August
1994, pp. 969-983.

Rho, S., Distributed Database Design: Allocation of Data and Operations
to Nodes in Distributed Database Systems, Unpublished Ph.D.
Thesis, University of Minnesota, May 1995.

Rho, S. and March, S. T., "A Decision Support Tool for Distributed
Database Design," Seoul Journal of Business, Vol. 6, No. 1 /2 ,
December 2000, pp. 71- 1 1 1.

Ricciuti, M., "DBMS Vendors Chase Sybase for Client/Server,"
Datamation, Vol. 39, July 1, 1993, pp. 27-28.

Richter, J., "Distributing Data," Byte, June 1994, pp. 139- 148.
The, L., "Distribute Data Without Choking the Net," Datamation, Vol.

40, January 7, 1994, pp. 35-36.
Yoo, H. and Lafortune, S., "An Intelligent Search Method for Query

Optimization by Semijoins," IEEE Transactions on Knowledge and
Data Engineering, Vol. 1, No. 2, June 1989, pp. 226-237.

Yu, C. T. and Chang, C. C., "Distributed Query Processing," ACM
Computing Sumeys, Vol. 16, No. 4, December 1984, pp. 399-433.

A Comparison of Distrib~ited Database Design Models

Appendix 1. Total Operating Cost

Min Cost = C f (k)C (COM(k, m) + IO(k, m) + CPU(k, m)) + C STO(t)
k m t

where Jk) is the frequency of execution of query k per unit time,
COM(k, m), IO(k, m), and CPU(k,m) are the respective costs of
communication, disk I/O and CPU processing time for step m of
query k, and STO(t) is the cost of storage a t node t per unit time.
Expressions for these cost components are summarized below.

COM(k, m) = C C H(k, m, t, plc,,,
t p t t

where ctp is the communication cost per character from node t to

P .

For message steps of retrievals,
H(k,m, t,p) = LM if t = node(k) and p = node(a(k,m))
H(k, m, t,p) = 0 otherwise

where LM is the size of a message, node(k) is the origination node
of query k, node(i) is the node a t which file fragment i is located.

For join steps,
H(k,m,t,p) = Lalk,rn) + Lb(k,m)

if t = node(a(k,m)) = node(b(k,m)) and p = node(k, m)
H(k,nt,p) = La(,,)

if t = node(a(k,m)) and t + node(b(k,m)) and p = node(k, m)
H(k, m, t,p) = LI,(~,~)

if t # node(a(k,m)) and t = node(b(k,m)) and p = node(k, m)
H(k, m, t,p) = 0 otherwise.

where Li is the size of file fragment i (in characters), a(k,m) and
b(k, m) are the file fragment referenced by step m of query k, and
node(k, m) is the node a t which step m of query k is processed.

For a final step,
H(k, m, t,p) = La(k,m) if t = node(a(k, m)) and p = node(k)
H(k, m, t,p) = 0 otherwise.

For send-message steps of updates,

26 Seoul Journal ofBusiness

H(k, m, t,p) = LM if t = node(k) and copy(a(k,m), p) = 1

H(k, m, t,p) = 0 otherwise
where copy(i,t) i s 1 if fragment I is stored a t node t, and 0
otherwise.

For receive-message steps of updates,
H(k, m, t,p) = LM if copy(a(k,m), t) = 1 and p = node(k)
H(k,m,t,p) = 0 otherwise.

where dt is the cost per disk I/O a t node t.

For selection and projection steps,
O(k, m, t) = Dkmt if t = node(a(k,m))
O(k,m,t) = 0 otherwise

where Dkmt is the number of disk I/Os required to process step
m of query k a t node t.

For join steps,
O(k, m, t) = Fa(k,mlt

if t f node(k, m) and t = node(a(k,m)) and t + node(b(k,m))
O(k, m, t) = Fb(k, m) t

if t f node(k, m) and t # node(a(k,m)) and t = node(b(k,m))

O(k, m, t, = Fa(k. m) t + Fb(k, m) t
if t # node(k, m) and t = node(a(k,m)) and t = node(b(k,m))

O(k, m, t) = Dkmt

if t = node(k, m) = node(a(k, m)) = node(b(k,m))
O(k, m, t) = Dkmt + Ea(k, m) t

if t = node(k,m) = node(b(k,m)) and t # node(a(k,m))
O(k, m, t) = Dkmt + Eb(k,m)t

if t = node(k, m) = node(a(k,m)) and t # node(b(k,m))
O(k,m,t) = Dkmt + Ea(k,m)t + Eb(k,m)t

if t = node(k,m) and t f node(a(k,m)) and t f node(b(k,m))
O(k, m, t) = 0 otherwise

where Fa(k,m)t is the number of additional disk accesses needed a t
node t in order to send a(k,m) from node t to another node after
having retrieved it and En(k,m)t is the number of disk access
required to receive and store a(k,m) a t node t (typically a file
write and the creation of needed indexes).

A Comparison of Distributed Database Design Models

For final steps,
O(k, m, t) = Ea(k,m)t if t + node(a(k, m)) and t = node(k)

O(k,m,t) = Fdk,m)t if t = node(a(k,m)) and t f node(k)
O(k,m,t) = 0 otherwise.

For update requests,
O(k, m, t) = Dkmt if copy(a(k, m), t) = 1
O(k, m,t) = 0 otherwise

where pt is the CPU processing cost per unit.

For message steps,
U(k, m, t) = St if t = node(k) and t + node(a(k,m))
U(k,m,t) = Rt if t + node(k) and t = node(a(k,m))
U(k,m,t) = 0

where St and Rt are the expected CPU units required to send and
receive a message.

For selection and projection steps,
U(k, m, t) = Wkrnt if t = node(a(k, m))
U(k, m, t) = 0 otherwise

where Wkmt is the number of CPU units required to process step
m of query k a t node t

For join steps,
U(k,m,t) = Fa(k,rnlt

if t + node(k, m) and t = node(a(k,m)) and t + node(b(k,m))
U(k,m,t) = Fb(k,rn)t

if t + node(k, m) and t + node(a(k, m)) and t = node(b(k, m))

U(k, my t, = Fa(k,m) t + Fb(k.m) t

if t # node(k, m) and t = node(a(k,m)) and t = node(b(k,m))
U(k, m, t) = Wkmt

if t = node(k, m) = node(a(k,m)) = node(b(k,m))

U(k,mt) = Wkmt + Ea(k,m)t

if t = node(k, m) = node[b(k,m)) and t # node(a(k,rn))
U(k, m, t) = Wkmt + E b (k , m) t

if t = node(k, m) = node(a(k,m)) and t # node[b(k,m))
U(k,m,t) = W k m t + Ea(k,m)t + Eb(k,rn)t

28 Seoul Journal of Business

if t = node(k, m) and t # node(a(k,m)) and t f node(b(k,m))
U(k,m,t) = 0 otherwise

where Fa(k,m)t and E'a(k,m)t are the number of CPU operations
required to send a n d receive a(k,m) from a n d to node t,
respectively.

For final steps,
U(k, m, t) = Edk,,,) if t # node(a(k, m)) and t = node(k)
U(k, m, t) = Fa(k,m)t if t = node(a(k, m)) and t + node(k)
U(k,m,t) = 0 otherwise.

For send-message steps of updates,

U(k, m, t) = 2 copy(a(k, m), p)S, if t = node(k)
P t t

U(k, m, t) = Rt if t # node(k) and copy(a(k,m), t) = 1
U(k, m, t) = 0 otherwise

For receive-message steps of updates,

U(k,m,t) = St if t + node(k) and copy(a(k, m), t) = 1
U(k,m,t) = 0 otherwise

For update steps,
U(k, m, t) = Wkmt if copy(a(k, m), t) = 1
U(k,m,t) = 0 otherwise

where st be the unit storage cost per unit time a t node t.

A Comparison of Distributed Database Design Models

Appendix 2. Average Response Time

where RcoM(k), Rlo(k), and RCPU(k) are the times spent by query k
in communication, disk I/O, and CPU, respectively. These
response time components are summarized below.

where UL(t,p) is the capacity of the communication link from
node t to node p (bytes per unit time), TL(t,p) = f Jk) 2 H(k, m, t , , p)

TL(t3p) and N(k,m,t,p) is 1 if H(k,m, t,p) > 0 and it wt9p) = Xf(k)XN[k,rn,t,p)
k rn

is 0 otherwise.

where UlO(t) is the disk 1/0 capacity a t node t (number of disk
I/O's per unit time) and TlO(t) = ZJk) O(k,m,t) is the total
number of disk I/O's a t node t.

where UCPU(t) i s the CPU capacity a t node t (number of
instructions per unit time) and TCPU(t) = ZJk) O(k, m, t) is the
total number instructions a t node t.

Seoul Journal of Business

Appendix 3. Queries

Retrieval Queries

R 1. Print invoices
SELECT order-no, date, prod-no, prod-name, quantity,

price, cust-id, cust-name, customer.addr,
customer. phone, sales-id

FROM customer, order, product
WHERE customer.cust-id = order.cust-id

AND order.prod-no = product.prod-no AND
orderno = [specified]

R2. Orders by customer and salesperson
SELECT sales-id, sales-name, cust-id, cust-name,

order-no, date, prod-no, quantity, price
FROM salesperson, customer, order
WHERE order.sales-id = salesperson.sales-id

AND customer.cust-id = order.cust-id
AND salesperson.reg_no = [specified]
AND date-filled IS NOT NULL

R3. New Orders by product
SELECT prod-no, prod-type, prod-name, count(order-no),

sum(quantity)
FROM order, product
WHERE order.prod-no = product.prod-no AND date

> [specified]
AND date-filled IS NOT NULL

R4. Unfilled orders by customer
SELECT cust-id, cust-name, order-no, date ,

prod-no, quantity,
price, shippincdate

FROM customer, order
WHERE customer.cust-id = order.cust-id AND

date-filled IS NULL
AND recno = [specified]

A Comparison of Distributed Database Design Models 31

R5. Unfilled orders by salesperson
SELECT sales-id, sales-name, order-no, date ,

prod-no, quantity, price,
shippingdate

FROM salesperson, order
WHERE salesperson.sales-id = order.sales-id AND

date-filled IS NULL
AND regno = [specified]

R6. Customers of a salesperson
SELECT reg-id, sales-id, sales-name, cust-id,

cust-name
FROM salesperson, customer
WHERE salesperson.sales-id = customer.sales-id

AND sales-name = [specified]

R7. Unfilled orders past their shipping dates
SELECT prod-no, order-no, quantity, shipping-date
FROM order
WHERE shipping-date > [today] AND date-filled IS

NULL

R8. Salespersons
SELECT sales-id, sales-name, addr, phone, regno
FROM salesperson
WHERE sales-id = [specified]

R9. Customers
SELECT cust-id, cust-name, addr, phone
FROM customer
WHERE cust-id = [specified]

RlO. Products
SELECT prod-no, prod-type, prod-name, price,

quantity-on-hand
FROM product
WHERE prod-no = [specified]

32 Seoul Journal of Business

Update Queries

U 1. Maintain salesperson data
UPDATE salesperson
SET reg-no = [specified], addr = [specified],

phone = [specifiedl
WHERE sales-id = [specified]

U2. Add a new customer
INSERT INTO customer
VALUES ('cust-id', ")

U3. Place a new order (including referential integrity check)
INSERT INTO order
VALUES ('order-no', ")

U4. Mark a n order as filled
UPDATE order
SET date-filled = [specified]
WHERE order-no = [specified]

U5. Adjust inventory
UPDATE product
SET quantiwon-hand = [specified]
WHERE prod-no = [specified]

A Comparison of Distributed Database Design Models 33

Appendix 4. Minimum Total Operating Cost and Minimum
Average Response Time

Data

Allocation

Strategy

Operation

Allocation

strategy

1 Performance Objective

Problem Minhk Total Ope raw Cost

7269.18
4215.67
3675.94
6028.63 7.32
4002.25
3641.67 6.68

- -

Minimize Average Respom Time

OAl
oA2
oA3
OAl
oA2
oA3

OAl
oA2
oA3
OAl
oA2
OA3

