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induced by gold nanoparticle aggregation, and we apply it to the logic-based detection
of biomolecules. Our results demonstrate its effectiveness in both DNA-based logical
computation and logic-based biomolecular detection.
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1. Introduction

Ever since DNA was used for computing based on molecular recognition affinity [1], it

has been applied to various computational problems such as satisfiability problems [2, 3],

logical game problems [4, 5, 6], traveling salesman problems [7], maximal clique problems

[8], and associative memories [9]. Although the instances tackled by DNA computing are

rudimentary when compared with those solved by conventional electronic computers,

it has shown potential as a new computing paradigm. DNA computing can also be

used as an interface to biological systems for logic-based control of biological events

[10, 11, 12]. Biological application requires various advanced technologies including those

to monitor processes or to detect outputs produced by DNA computing. In such cases,

the conventional detection procedures for DNA computing such as gel electrophoresis

and fluorescence spectroscopy may not be appropriate because they are time consuming,

laborious and often require expensive instruments.

The aggregation of gold nanoparticles (Au-NPs) shows a visible color change and is

controllable by oligonucleotides attached to the Au-NPs [13, 14]. Au-NPs have a well-

established methodology beyond DNA detection, and the high stability and high activity

after conjugating biomolecules make them more attractive than other nanoparticles

[15, 16]. In addition, the detection steps, time, and costs associated with the instruments

can be reduced because the color change of Au-NPs is quick and noticeable to the naked

eye [13, 14]. Therefore, Au-NPs can be an alternative tool to visualize DNA computing

results. Here, we utilize the color change of Au-NPs in a DNA computing algorithm to

solve a logical problem known as resolution theorem proving and to show its potential

for logic-based biomolecular detection.

2. Experimental details

2.1. Sequence preparation

The nucleotide sequences used are shown in table 1. Case A demonstrates the

visualization of DNA computing processes using Au-NP aggregation. Case B shows

the application to logic-based biomolecular detection. All sequences used in case A

were designed using the evolutionary DNA sequence optimization program, Nucleic

Acid Computing Simulation Toolkit (NACST) [17] to minimize cross-hybridization and

self- or hetero-dimerization. In case B, special care was taken to avoid undesired

hybridizations which might be caused by the highly conserved regions in microRNAs

(miRNAs) and non-canonical base pairing. The cross-hybridization or non-canonical

base pairing, if any, will be highly unstable unless the neighbors form consecutive base

pairings, which is very unlikely in our sequence design. To simplify sequence design,

we used the same thiol-modified sequences attached to Au-NPs [14] for both cases. All

DNA sequences used were purchased from Bioneer (Dajeon, Korea) and stored at -20◦C
until use. Each DNA sequence was brought to a stock concentration 100 µM in TE

buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0), and RNA sequences were hydrated in
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Table 1. Sequences in experiments.a

Case A Case B
Name Sequence Name Sequence

A1 ∨B1 tagcgtgggtgagtacggtggttggtgtgt A1 ∨B1 (X1) caaagugcuuacagugcagguagub

A2 ∨B2 (X2) uauugcacuugucccggccugc

A3 ∨B3 (X3) ugugcaaaucuaugcaaaacugad

A0 ∨B0 atggcaacctcttcttcatcctt A0 ∨B0 (LE3-1) atggcaacggagagagag
C agtcgttt-thiol C (LE3-2) agtcgttt-thiol
¬A0 gttgccat-thiol ¬A0 (LE3-3) gttgccat-thiol
¬B0 ∨ ¬A1 tactcacccacgctaaaggatgaagaagag ¬B0 ∨ ¬A1 (LE3-4) tgtaagctgtttgctctctcc
¬B1 ∨ ¬C aaacgactacacaccaaccaccg ¬B1 ∨ ¬A2 (LE3-5) gacttgtgcaataactacctgcac

¬B2 ∨ ¬A3 (LE3-6) atagatttggtcacaggcttg
¬B3 ∨ ¬C (LE3-7) aaacgacttcagttttgc

a All sequences are shown in the 5’ to 3’ direction.
b hsa-miR-17-5p (mirBASE accession no. MIMAT0000070).
c hsa-miR-92-1 (mirBASE accession no. MIMAT0000092).
d hsa-miR-19a (mirBASE accession no. MIMAT0000073).

diethylpyrocarbonate (DEPC)-treated RNase-free water.

To cleave disulfide bonds among thiol-modified oligonucleotides, the modified

sequences were treated with 100 mM dithiothreitol (DTT) (Sigma, USA) for 10 min.

DTT was removed by extracting three times with four volumes of ethyl acetate (Sigma,

USA). The mixture was vortexed for 5 min and centrifuged for 5 min at 12,000 rpm.

After discarding the supernatant, the solutions were dried for 1 h at 37◦C to remove

the ethyl acetate completely. Water was added to a final concentration of 100 µM.

We then immediately added thiol-tagged oligonucleotides to Au-NPs to avoid disulfide

dimerizations of free-sulfhydryl groups. The final concentration of thiol-modified

sequences was 1 µM in colloidal Au-NP solution. The colloidal gold nanoparticles (13

± 2 nm; 1.4 × 1012 particles/m`) were purchased from BBInternational (London, UK).

The mixtures were incubated for 24 h at room temperature with gentle agitation. They

were then incubated for 40 h in aging buffer (0.1 M NaCl, 0.1 M sodium phosphate).

The remaining sequences were removed by centrifugation (13,200 rpm, 30 min, 2 times).

The DNA-Au-NP complexes were dissolved in aging buffer to the final concentrations

(about 400 strands per particle) and were stored at 4◦C until use. The solution can be

kept for several months without observing any instability.

2.2. Hybridization and visualization

The other sequences were added to 100 µ` of DNA-Au-NP complex, and NaCl was

added in 200 µ` PCR tubes. The final concentration of each sequence was 1 µM, and

the final NaCl concentration was 0.2 M. The reaction mixture was incubated at 80◦C for

10 min, and the temperature was steadily lowered to 25◦C at 1◦C/30 sec using a thermal

cycler (Bio-Rad, USA). The mixture was then incubated at room temperature for 4 h.
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All reactions were performed in triplicate with independent sample preparation, and the

reliability of solutions was tested by repeating heating and cooling cycles. The result

from DNA computation was characterized by ultraviolet-visible (UV/Vis) spectrometry

(Nanodrop, USA) and ultra high resolution scanning electron microscopy (UHR-SEM).

3. Results and discussion

3.1. DNA computing process for resolution theorem proving

We solved a classical logic problem of resolution theorem proving by DNA computing

and visualized the results using the Au-NP aggregation color change. The goal of the

problem is to determine the consistency of a given set of logic formulae using resolution

deduction [18]. In Boolean logic, a clause is defined as a disjunction (logical OR, ∨)

of Boolean variables. The resolution operates with two clauses sharing one Boolean

variable and its negation (logical NOT, ¬), such as A ∨ B and ¬A ∨ C. From these

two clauses, we can deduce a new clause that is a union of the two clauses, except

for the shared variable. In the previous example, B ∨ C is deduced from A ∨ B and

¬A ∨ C. If the set of clauses is inconsistent, repeating the resolution operation will

eventually produce a special clause (an empty clause, Nil). If this does not happen, we

can conclude that the original set is logically consistent. Depending on the class of the

problem, resolution theorem proving may require exponential run time [19]. However,

by representing a negation of a Boolean variable as the complementary sequence of the

variable, the hybridization between two strands, representing the clauses, can be used

for resolution theorem proving in a parallel way [20].

Here, we introduce a simple resolution theorem proving problem. Consider a set of

formulae ∆ = {¬A0, A0 ∨B0, A1 ∨B1, Ai ∨Bi, An ∨Bn,¬B0 ∨¬A1,¬B1 ∨¬A2,¬Bi−1 ∨
¬Ai,¬Bn−1 ∨¬An,¬Bn ∨¬C,C} (i = 1, 2, . . . , n). Figure 1(a) shows an example when

n = 1. As shown in figure 1(c), ∆ is inconsistent, and an empty clause (Nil) can be

reached by resolution. The DNA computing process to solve this problem can be realized

using the following principles: each different Boolean variable is encoded as a DNA

sequence, its negation as a complementary sequence, and clauses as the concatenation

of sequences representing the variables and negations (figure 1(a)). The hybridization

of two sequences represents resolution of the two clauses. If ∆ is inconsistent, the DNA

hybridization will build a complete double-stranded structure (figure 1(b)). Therefore,

the formation of the double-stranded structure indicates the inconsistency of ∆.

3.2. Visualizing DNA computing process using Au-NP aggregation

The results can be easily visualized using Au-NP aggregation. Here, the sequences for

¬A0 and C are thiol-modified and attached to Au-NPs. The double-stranded structure,

if formed, would trigger the aggregation of attached Au-NPs and show a visible color

change from dark red to purple [14]. If any of the clauses in ∆ are missing, the empty
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Figure 1. Schema of the proposed DNA computing process for resolution theorem
proving. (a) The clauses in the example case and the encoding of clauses. A different
sequence is assigned to each Boolean variable, and a negation of the variable is
represented by its complementary sequence. A clause corresponds to the concatenation
of the variables. (b) The final hybridized structure based on the formulae in (a). (c)
Resolution theorem proving process for the set of clauses, ∆, in (a). The formula
connected by lines is derived from the two above by the resolution operation. For
example, B0 is derived from A0∨B0 and ¬A0 by the resolution. An empty clause (Nil)
is derived by resolution among input clauses. (d) Visualization of the proposed DNA
computing process to solve the resolution theorem proving problem using Au-NPs.
DNA sequences are hybridized by complementarity–the DNA computing process–and
the result indicating the empty clause induces a large three-dimensional aggregation of
Au-NPs visualized by colorimetric changes. The circle indicates the Au-NP attached
to thiol-modified DNA. By replacing Ai∨Bi as the target molecules, the same method
can be applied to detect other biomolecules.
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Figure 2. Visualization of DNA computing results using Au-NP aggregation. (a)
The experimental results from resolution theorem proving for various cases. The top
image indicates the expected structure when the given set of formulae is inconsistent.
The corresponding sequences are given in table 1 (case A). Column 1 shows the control
case where all sequences except for those attached to Au-NPs do not exist. The second
row shows whether the clause shown on the left exists (1) or not (0). The last row
shows the visualization result: no aggregation (0) and positive aggregation (1). (b)
UV/Vis spectrometry results. The numbers denote the three cases in (a). Only case 3
shows the expected spectrum change. (c) The color responses of three cases in (a) over
time; the tubes immediately after hybridization (left) and the same tubes after 4 h at
room temperature (right). The numbers correspond to the three cases in (a). (d) The
UHR-SEM analysis. The three cases in (a) are illustrated in the first row. The second
and third rows show the UHR-SEM images under magnifications of 100K and 500K,
respectively. Bars indicate 100 nm. The massive aggregation can be observed only in
case 3 (image 3-1). The aggregation shows a uniform distance between nanoparticles
possibly caused by the double-stranded DNA structures (image 3-2).

clause cannot be drawn; thus the aggregation of Au-NPs and the colorimetric change

will not occur. This process is summarized in figure 1(d).

3.3. Experimental results

We validated our method on a simple resolution theorem proving problem as shown in

figure 1(a). It can be shown (figure 1(c)) that resolving the clauses eventually draws

the empty clause (Nil), implying that the given set of clauses is logically inconsistent.
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The expected hybridization structure can be seen in figure 2(a). The corresponding

sequences are given in table 1 (case A). However, if any of the clauses, for example

A1 ∨ B1, is missing from ∆, ∆ is not inconsistent, and it is impossible to draw the

empty clause. Therefore, depending on the consistency of ∆, the color change of Au-

NP aggregation may or may not be observed. The experimental results are shown in

figure 2(a). Column 1 indicates the control case when only Au-NPs and the attached

sequences exist. The middle row indicates whether the clause A1 ∨B1 exists (1) or not

(0), and the bottom row (answer row) shows whether the empty clause can be drawn

(1) or not (0). The tubes below the answer row show the aggregation results. We can

observe that Au-NPs aggregate only when the empty clause can be drawn (column 3,

the rightmost tube in figure 2(a)). Figure 2(b) shows the color changes of Au-NPs by

UV/Vis spectrometry. Here, the peaks of cases 1 and 2 appear in the range of 515–525

nm, the characteristic plasmon peak of the dark red colloidal Au-NPs (∼13 nm), while

case 3 shows a large spectrum shift. Figure 2(c) shows the color change over time. The

left image was taken shortly after hybridization, and tube 3 shows a different color from

the others. After 4 h at room temperature (right image), the aggregation proceeds,

and it appears as a clear solution because of the precipitation of large DNA-Au-NP

complexes.

A more detailed analysis using UHR-SEM (figure 2(d)) confirms the results in

figure 2(c). The results from DNA computing for resolution theorem proving can

be categorized into three classes. The first class consists of only Au-NPs conjugated

with thiol-tagged DNAs where no resolution can be applied, and consequently, the

aggregation is impossible. The second is the case when the set of clauses is consistent

because some clauses needed to draw the empty clause are missing. This case is also

unable to aggregate and shows no colorimetric changes because the missing DNAs cause

a defect in hybridization. The third class is when there is no missing clause. Here,

the DNAs can be fully linked and form large Au-NP aggregates, indicating that the

resolution process produced an empty clause. For figure 2(a), the first class corresponds

to the control case (column 1), the second to column 2 and the third to column 3.

For the first and second classes, such large networks of Au-NPs are not observed (1-1

and 2-1 in figure 2(d)), and the interparticle distance is almost zero (1-2 and 2-2 in

figure 2(d)). For the third class, the image shows an extensively cross-linked network

of Au-NPs (3-1 in figure 2(d)). With an enlarged view (3-2 in figure 2(d)), the network

consists of the close-packed Au-NPs with uniform distances produced by hybridization

of DNAs attached to nanoparticles [14, 21]. The size of this network grows significantly

after 4 h and causes precipitation as shown in figure 2(c).

3.4. Application to biomolecular detection

As mentioned in section 3.2, the aggregation of Au-NPs will not happen if the clauses in

∆ necessary to deduce the empty clause are missing (∆ is not inconsistent). Using this

property, we applied the same procedure to detect multiple target molecules. Depending
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Figure 3. Application of resolution theorem proving to logic-based biomolecular
detection. (a) With each target molecule (Xi) as a clause, we construct a simple
problem where the empty clause (double-stranded structure) is produced only when
all targets exist. (b) The experimental results for three target miRNAs. The left
figure indicates the expected structure when all targets exist. The corresponding
sequences are given in table 1 (case B). Column C shows the control case where all
sequences, except for those attached to Au-NPs, do not exist. The second row shows
that the target molecule shown on the left exists (1) or not (0). The last row shows the
visualization result: no aggregation (0) and positive aggregation (1). The existence of
multiple targets can be visualized in one tube.

on the number of targets, we constructed ∆ so that it was consistent if any of the targets

was missing. Suppose we have n targets, X1, X2, . . . , Xn. The left and right half of each

Xi can be used as Boolean variables Ai and Bi, respectively, and consequently, Xi can be

interpreted as encoding Ai ∨Bi. The other clauses in ∆ are coded into DNA sequences

according to Xi’s. In this way, the absence of any target would make ∆ consistent

and prevent the aggregation of Au-NPs. Therefore, one can judge the coexistence of

all targets from the aggregation of Au-NPs (figure 3(a)). Among the various types of

nucleic acids, we chose miRNA as a target for its small size (∼22 nt) and the importance

of its role as a genetic regulator [22, 23]. They are also expressed polycistronically and

act cooperatively to regulate mRNA translation [24, 25]. Considering these points,

detecting multiple miRNAs based on logic can improve analysis efficiency. Recently,
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miRNA recognition through DNA-based digital logic circuit operation was reported [12],

which implies the possibility and usefulness of a logic-based smart analyzing system. In

addition, our approach is not limited to miRNAs and can overcome the conventional

analysis techniques that have many difficulties in handling small nucleic acids with

cooperative expression behavior.

We used three miRNAs in the miR-17-92 cluster [24] as targets. In the cluster,

there are seven miRNAs, and their expression level is increased in human B-cell

lymphomas [24]. In cancer sample, all miRNAs would exist, and consequently, the

Au-NP aggregation would be observed. We used only three miRNAs (miR-17-5p (X1),

miR-92-1 (X2) and miR-19a (X3)) of the seven to minimize the cross-hybridization

between miRNA sequences. In this case, eight combinations were possible from three

miRNAs. Figure 3(b) shows that the Au-NP aggregation was observed only when all

three miRNAs existed (column 8). The sequences of the miRNAs and related DNAs

are shown in table 1 (case B). Although we cannot identify the missing miRNA by

the result, we can still benefit from the short detection time (within 5 min by UV/Vis

spectrometry) and the efficiency of handling multiple targets simultaneously.

3.5. Discussion

We have shown that the proposed method is applicable to a problem of 3 targets and

7 logical elements (a total of 10 fragments to induce aggregation). In [26] we have

additionally verified that our method can be extended to the size of 5 targets and 9 logical

elements (a total of 14 fragments to induce aggregation). Several ways can be taken to

further increase the problem size. One way is to minimize the cross-hybridization among

the involved sequences so that more targets can be handled simultaneously. Although

the cross-hybridization can happen more often for larger applications, various techniques

and tools studied in fields of bioinformatics [27, 28] and DNA computing [17, 29, 30]

can be used to keep the undesired hybridization to a reasonable level. Another way

is to partition the targets into several groups so that the cross-hybridization inside

each group is minimized and to apply separate aggregation process for each group of

targets. In this way, assuming 5 or 6 targets in each group, 5n or 6n (n denotes

the number of groups) can be dealt by the proposed method. The number of targets

handled in each group can be increased further either by designing sequences carefully

or by utilizing various modified nanoparticles. Yet another approach is to develop an

automated system using, for example, lab-on-a-chip technology to partition the targets

into non-hybridizing groups by design. If the problem structure allows this partitioning,

the size of the problem to be solved can further be increased.

4. Conclusion

We showed that Au-NP aggregation induced by DNA hybridization and the resulting

colorimetric change can visualize the results of DNA computation. Compared with the
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conventional method in DNA computing, our method reduces the monitoring time for

the computation results and improves the efficiency by using a colorimetric reporter.

With careful sequence design, the suggested method can be applied to a larger problem

than reported here. We also demonstrated that the same technique could be used to

detect multiple miRNAs simultaneously. Nanoparticles have recently been used for

multiplexed assays with various fluorescent dye conjugation or size-based nanoparticle

coupling [31, 32, 33, 34]. However, the multiplexibility of these techniques depends on

how many types of modified nanoparticles are available rather than the number of target

biomolecules to be assayed. On the other hand, advantages in the multiplexibility of

input molecules over the number of nanoparticle variations are observed by applying

concepts of logic and computation to analysis strategies. In this respect, our study

broadens the application area of Au-NPs to a visualization tool for DNA computing

and multiplexed biological assays combined with DNA computing.
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