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In economics the period of “long-run” often signifies the
length of time within which transient fluctuations disappear,
and a system comes back to an equilibrium state (or path).
Among some interesting cases of long run analysis, the concept
of cointegration is a relatively new concept of the long run
equilibrium. This paper discusses how to determine the length
of the long-run period for a cointegration relation. In an
application to a consumption-income relation for three countries,
U.S.. Germany and Japan, we found that the length of the
long-run period for the relation for these countries is about two
to three years.
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1. Introduction

The concept of cointegration defined by Engle and Granger (1987)
has become a useful concept for analyzing many linear dynamic
systems in economics. For a set of variables the existence of a
cointegration relation implies that there exists a long-run equilib-
rium that ties the series together. Thus, although disturbances to
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individual wvariable(s} have permanent effects, they have only
temporary effects on the system as a whole. When a shock is
given to a system, the system deviates from the initial equilibrium.
However, after a while, impacts of the shock are absorbed in the
system, and the system eventually comes back to the initial
equilibrium.

An interesting question we want to study in this paper is how
long it takes for a system to return to the long-run equilibrium
after a shock disturbs the system. A dynamic system seldom stays
in an equilibrium, if any, even for a very short period of time
because shocks are given to the system at each period of time and
they survive for a while. An equilibrium error is usually an
accumulation of current and past shocks to the system. Our study
in this paper is to find how long it takes for shocks given at one
period of time to disappear, that is, how long for shocks given at
one period survive. We consider the consumption-spending model
analyzed by Davidson, Hendry, Srba, and Yeo (1978) as an example
of a cointegrated system. For data from three countries, Germany,
Japan and U.S., we find that a shock to the system is shown to
survive for nine, ten and twelve quarters, respectively, in the
consumption-spending model. This implies that for the system of
consumption-income relation it takes about two to three years to
return to the state of long-run equilibrium after a shock disturbs
the system,

Our discussion in this paper goes as follows. Section II discusses
the methodology of our analysis. In section III we apply the method
to the model of consumption-spending and discuss implications of
our results. Mathematical proofs are provided in the appendix.

II. Methodology

Let x, be an n-vector of I(1) variables. Suppose that there exists a
cointegration relation among the variables. Then, there exists an
(nx 1) vector « such that

a'x=1uy (1)

is a stationary process. A cointegration relation such as (1) is often
interpreted as a long-run equilibrium relation among the variables.
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That is, there exists a stable relation among the variables over a
long period of time although there exist short-run fluctuations
around the stable long-run relation. The short-run fluctuation w
can be interpreted as an equilibrium error to the system. Usually
the error term wu; contains shocks given in current and past
periods.

Often the stationary error term u; is assumed to follow an AR
process:!

Ug=a-+ Pty + Golig 2+ -+ Ppligp+ &y 2)
where &,—~i.i.d.(O, 525) and E( &)< oo all roots of
1= iz goz’ + - + 2" =0

lie outside the unit circle. The stationary error term w, can be
written in MA(<c) representation as

w=pyut+teg+¥ ga+¥% g o+ (3)

This MA representation implies that i is an accumulation of the
current and past shocks ¢’s. The coefficient ¥s measures the level
of impacts of &- on wu for s-=-0,1,-,00. More formally, the
coefficient ¥s has the interpretation

5 ut “+8§
Yo —

7 &t

that is, ¥, evaluates the consequences of a one unit increase in the
shocks of the past s period on the current equilibrium error.
In practice we can get the estimate of ¥ by converting the

estimate of AR coefficient ¢’s. Such an estimate of ¥, ¥ =Y, ¢). has
the following sample property where 4 is the LS estimator of ¢:

Lemma 1 Assume that u, and g satisfy the conditions above in
(2) with all roots of the equation 1-— ¢,z+ PoZt+ ok ¢pz"=0 lying
outside the unit circle. Then, the estinator of ¥, ¥,=Ws &5), is such

'For example, in the augmented Dickey-Fuller test for cointegration we
assume that the error term is a stationary AR process.
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that
VT YN, o7 (%) (4)

where 02(‘1’5]265(025®Q_1)Gs', for Q=E(u i), ' =0t 1tti-2 )
and {Gs,s=1,2,-+} is obtained by iterating on

Gs= (0% ¥ 2 ¥s-p) + $1Gs-1+ #2Gs -2+ -+ 6,Gs p (5)
where Gs=0 for s<0, %=1 and ¥% =0 for s<O.
Now, we are interested in the following hypothesis
Ho:¥;=0 for s> ¢ and ¥ =0 for s<, (6)
which implies that the shock ¢ survives for r periods and after

that it either disappears or is absorbed into the system.2 We can
decide that the hypothesis is true for a given ¢ if

VTY, VT

|—F—— |<Ck for s> and | ———|>Ck for s<r. (7)
JLw) " i VIR ‘

for a given value Cyx, where s°(¥%) is the OLS estimate of o*(¥).
From (4) we know that Cy can be asymptotically approximated by a
critical value of the t distribution.

In many cases of practice the disturbance u, is not observed.
When u; is not observed, one may want to use an estimate of it,
for example, u= &'x, where & is an estimate of . Statistical
behavior of {;, however, is different from that of w, although
converges to w, as sample size gets larger.3 Thus, the above
asymptotic result may not be a good approximate for finite sample
analysis when 1 is used in place of w. In such a case we may
apply a re-sampling method such as the bootstrap method to get a

*The hypotheses in {6) can be generalized to He:|¥%| << for s> ¢ and |¥%]
>& for s< ¢ for a small €>0. In particular, it would be more appropriate
to employ this generalized setup when one considers conversion of the AR
coefficients to MA coefficients to get ¥. Our hypotheses in (6) approximate
this generalized setup with an infinitesimal value of €. This idea came out
of a comment from one of referees. [ appreciate the referee for it.

*Note that y=w+{é—alx and &~ a=0,T y, xt:Op(t”Z) for a coin-
tegrating vector « and a vector of I(1) variables x; without drift.
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critical value Cx.

III. An Example: A Consumption-Income Relation

We now consider an example of a cointegration relation to find
how long it takes for the system to return to its initial equilibrium
after a shock disturbs the system. The example we consider in this
section is a cointegration regression formed by two variables,
consumption and income, denoted by c¢ and y, respectively:

c= Bo+ Lyt iy (8)

The regression (8) is often studied in the literature of cointegration,
for example, Davidson, Hendry, Srba, and Yeo (1978).

We consider data from three countries, U.S., Japan, and
Germany. Data from U.S. are quarterly time series on real personal
consumption (¢) and real personal disposable income (y) from
1947:1 through 1994:1. Data from the other countries are quarterly
observations on real private consumption and real national income,
By an augmented Dickey-Fuller test the unit root null is not
rejected. at 5% level for both y and ¢ for data of all three countries.4
Also, for both an augmented Dickey-Fuller test and Phillips and
Ouliaris (1990) tests of cointegration we reject the null of no
cointegration at 5% level for the consumption-income relation.

Tables 3.1(a)-(c) provide values of the statistic ((s) ;-|\/’Tﬁ',;/

s’¥)| for s=1,2,-,16 for data of the three countries. Figures
3.1(a)-(c) exhibit the information in Tables 3.1(a)-(c) graphically.
From Table 3.1(a) and Figure 3.1(a) we find that for U.S. data the
period 7 with 11< <12 satisfies the condition (7) with the 5%
critical value 1.96. This result implies that for the U.S. case it
takes about 12 quarters for the consumption-income relation to
return to its initial equilibrium after a shock disturbs the system.
Also, from Tables 3.1(b)-(c) and Figures 3.1(b)-(c} we find that the
periods for the relation to return to its initial equilibrium are nine
and ten quarters, respectively, for Germany and Japan.

“The results of tests for a unit root and cointegration are available from
the author upon request.
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TABLE 3.1(a)
t(s)-VALUES, U.S.

s 1 2 3 4 5 6 7 8
t(s) 8.29 6.58 5.56 5.53 4.83 4.04 3.43 2.97
s 9 10 11 12 13 14 15 16
t(s) 2.61 2.32 2.09 1.89 1473 1.60 1.48 1.38

i(s)
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S
FIGURE 3.1(a)
TaBLE 3.1(b)
t{s)-VALUES, GERMANY

s 1 2 3 4 5 6 7 8
t(s) 7.97 4.84 5.03 4.55 3.49 3.03 2.47 2.05
s 9 10 11 12 13 14 15 16
t(s) 1.80 1.56 1.37 1.24 ) [ 1.02 0.94 0.87

9

8 -

7 -

45 t(s)

54+ s

‘(5)44- — e B98OV

3 r.

2 ______________

1 -

O T T T L‘:‘ T T T : T f f T T




MEASURING THE LENGTH OF PERIOD FOR THE LONG-RUN 77

TaBLE 3.1(c)
t(s)-VALUES, JAPAN

s 1 2 3 4 5 6 7 8

t(s) 7.67 4.44 4.79 4.72 3.67 3.21 2.76 2.36
S 9 10 11 12 13 14 15 16

t(s) 2.10 1.87 1.68 1.53 1.40 1.29 1.20 1.12
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FIGURE 3.1(c)

It would be interesting to explore economic reasons why there
exists such difference across countries in the length of the period
for the long-run equilibrium.5 This is an important subject to
study. However, it is beyond the scope of this paper and is set
aside for future research. The difference might have something to
do with differences in economic fundamentals or economic policies
across the countries.

Appendix A: Proof of Lemma 1:

The following proof is based on several lemmas and results
summarized in Hamilton (1994). Some of those lemmas or results
are also available elsewhere, for example White (1984).

Lemma A.1: Assume that u, satisfies conditions in Lemma 1. Let
x=(c, #1,--, ¥p) and 7zr be the OLS estimator of n based on the
sample of size T. Also, let 3% =T 'ST, &’ where & is the OLS

°A referee suggested to include this issue to better motivate the work of
this paper. [ appreciate the referee for it.
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estimate of &. Then, it is true that
@ T 'Sl vu B

®) e

A2 P 2
€) 6= "

@ VT 7— nBNO, 6%297.
Proof of Lemma A.1:

{a) The condition of all roots of 1-— dyz+ ¢222+---+¢pz":0 lying
outside the unit circle ensures that the MA(c) representation is
absolutely summable. Then, it follows that w is ergodic for the first
moment and for the second moment. Then. the conclusion of (a)
follows.

(b) It can be shown that Y= » g satisfies conditions for the
following law of large numbers for L'-mixingales by Andrews (1988):

Lemma A.2: Let |Y} be an L'-mixingale. If (Y} is uniformly
integrable and there exists a choice for {c} such that 1ir/nT7121T:Jcl<
o, then T ' %7 v,50. H

By Lemma A.2 the conclusion of (b) follows since 7= z+(T"'
23;1)/1 y[')fllT"Z,llw &). (c) 1t follows from the conclusion of (b} and
a law of large numbers.

(d) We will use the following result:

Lemma A.3: (Corollary 5.25 of White (1984, p. 130)). Let (Y-, be a
martingale difference sequence with ﬁz{l/ﬂZLY[. Suppose that (a)
E(Y")= o*>0 with (1/DZ/ 6~ 6°>0 (b) E|Yi|'<e for some r>2
and all t, and (c¢) (1/’DZLYE2——> o®. Then /TYr—N(©, ¢3).

Notice that

VR a—m) =TS ) T2 e
Also, notice that Y= 1 & is a martingale difference sequence with

finite fourth moments and E(Y,Y/)= 6°.®Q. It is not hard to show
that
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T2 vy S 6% 00.
Then, it follows from Lemma A.3 that
T2 Y ENO.( 5. 20).

Then, since T'IZLM w8 as is shown in (a), the conclusion of (d)
follows.
Now, as the final step we utilize the following result:

Lemma A.4: (Corollary 5.25 of White (1984, p. 130)). Let (X} be a
sequence of random (nx1) vectors such that +/TXr—c)2X and let
g:R"—>R™ have continuous first derivatives with G denoting the (m
n) matrix of derivatives evaluated at ¢:G= dg/dX |- Then, /T(g(X7)
—g())/>GX.

Now, let Xr= 7, ¢= n. and X~N(0, o> ®Q ). Also, let gs=Y so that
Gs= 9¥%( )/ on'. Then we have

VT~ W 2NO0.Gol 02 2Q )Gs).

The equivalence of Gs= 0%( x)/0x" and Gs in (5) can be shown by a
long but straightforward algebra. See Hamilton (1994, pp. 344-8).
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