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Abstract 

As we are cognizant of only a fraction of the available visual inputs at any given time, how is 

information selected for access to consciousness? In particular, does the personal significance of 

stimuli influence perceptual selection? Given that self-relevant information is prioritized during 

various stages of processing, here we hypothesized that self-association may privilege access to 

awareness under continuous flash suppression (CFS). The results supported this prediction. Compared 

with geometric shapes referenced to either a friend or stranger, those previously associated with self 

were prioritized in visual awareness. To establish the basis of this effect, the processes underlying task 

performance were investigated using a hierarchical drift diffusion model approach. These analyses 

showed that self-prioritization mapped onto both the decisional (i.e., starting value, z) and non-

decisional (i.e., t0) parameters of the diffusion model. The implications of these findings are 

considered.  
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Public Significance 

As a core psychological construct, the self influences how people make sense of the world 

around them. Extending research of this kind, here we explored the possibility that the self also 

impacts visual processing — specifically, the ease with which information gains access to 

consciousness. Our results supported a linkage between the self and visual awareness. Compared with 

objects (i.e., geometric shapes) coupled with either a friend or stranger, those associated with self 

gained prioritized access to consciousness (i.e., people could report the identity of self-relevant 

objects faster than objects associated with other individuals). In other words, self-relevance enhanced 

visual awareness. This result further underscores how a sense of self helps us to navigate the 

intricacies of everyday life. 
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Extending an extensive literature documenting how self-relevance impacts judgment (Mezulis, 

Abramson, Hyde, & Hankin, 2004), attention (Shapiro, Caldwell, & Sorensen, 1997) and memory 

(Conway, 2005; Heatherton, Macrae, & Kelley, 2004; Symons & Johnson, 1997), recent research has 

highlighted the beneficial effects of self-referential processing on perceptual matching (Sui & 

Humphreys, 2015; Humphreys & Sui, 2015; Sui, He, & Humphreys, 2012). Specifically, after 

coupling arbitrary geometric shapes with person-related labels (e.g., circle = you, triangle = friend, 

square = stranger), perceptual-matching judgments are fastest and most accurate for shape-label pairs 

associated with self (vs. friend or stranger) — the so-called self-prioritization effect (Sui et al., 2012; 

Sui, Liu, Mevorach, & Humphreys, 2013). As powerful cues for attention, self-relevant stimuli are 

believed to influence perception in an obligatory manner that mimics the effects of physical saliency 

(Sui & Humphreys, 2015). 

Whilst the self-prioritization effect supports a range of important outcomes (e.g., perceptual 

binding, memory integration, see Humphreys & Sui, 2015), perhaps its most significant contribution 

may reside in the influence it exerts during perceptual selection. As we are cognizant of only a 

fraction of the available visual inputs at any given time, a fundamental question focuses on how 

stimuli are selected for access to visual awareness. Although prior research is suggestive that self-

relevance may facilitate this process (Sui et al., 2012, 2013), a recent study does not support this 

hypothesis. Using a breaking continuous flash suppression (b-CFS) paradigm to investigate stimulus 

prioritization (Ocampo & Kahan, 2016), Stein, Siebold, and van Zoest (2016) observed no effect of 

self-association on the time taken for stimuli (i.e., Gabors) to overcome interocular suppression. 

Interestingly, however, they did report a self-prioritization effect in a prior perceptual-matching task 

using the same stimuli. 

The experiment reported here — conducted simultaneously with, but without knowledge of, 

Stein et al. (2016) — also explored the effects of self-relevance on b-CFS. It did so, however, in a 

complementary way, using previously established stimulus materials and a different measure of visual 
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awareness. In exploring the effects of self-relevance on b-CFS, Stein et al. (2016) deviated from the 

standard self-referencing methodology in which participants associate labels with geometric shapes 

(Sui et al., 2012), requiring them instead to pair referents (i.e., you, stranger) with Gabor patches at 

different orientations. As they conceded when discussing their findings however, this reduction is 

stimulus complexity may have undermined the emergence of a self-prioritization effect in visual 

awareness. Fortuitously, here we adopted Sui et al.’s (2012) shape-label, associative-learning 

procedure after which b-CFS was used to investigate the potency of the stimuli to gain access to 

awareness (Gayet, Van der Stigchel, & Paffen, 2014; Jiang, Costello, & He, 2006; Yang, Brascamp, 

Kang, & Blake, 2014). Specifically, while each shape was presented to one eye, high contrast dynamic 

patterns were presented to the other eye, resulting in initial suppression of the shape from 

consciousness.  

Contrasting Stein et al’s (2016) Gabor detection task (i.e. participants reported the detection of 

Gabors at one of 4 possible locations), participants in the current investigation were required to 

identify (i.e., classify) geometric shapes (i.e., shapes pertaining to self or friend or stranger) under 

CFS (Kang, Blake, & Woodman, 2011), thereby enabling their responses to be modeled to identify the 

processes underlying decision-making. This distinction between stimulus detection and identification 

(i.e., where vs. what) may be important as, at least to date, self-prioritization effects have only been 

reported in tasks in which participants respond to the meaning of the stimuli (Humphreys & Sui, 2015; 

Sui & Humphreys, 2015). Indeed, Stein et al. (2016) demonstrated just such an effect with Gabor-

label associations in a perceptual-matching task. It is possible therefore that self-prioritization effects 

in visual awareness may be restricted to tasks in which stimulus identification is required (Yang & 

Blake, 2012), thereby mirroring the emergence of this effect in the literature on perceptual matching 

(Stein et al., 2016; Sui et al., 2012). We explored this possibility in the current experiment.  

Although argued to be a perceptual phenomenon (Sui & Humphreys, 2015), other processes 

may trigger self-prioritization. For example, just as self-relevance may bias perceptual operations (e.g., 
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information uptake), so too it may influence decisional processes (e.g., response bias) when 

information is encountered in ambiguous settings (Ditto & Lopez, 1992). Of theoretical importance, 

therefore, is the ability to decompose task performance and isolate the processes that underlie self-

prioritization effects. In the context of binary decision tasks, diffusion models afford just such an 

opportunity (Ratcliff, 1978; Voss & Voss, 2007).  

A variant of continuous sampling approaches, diffusion models parse behavioral data (i.e., 

accuracy and response times) into a set of latent parameters (perceptual and decisional) that underlie 

the decision process as it unfolds over time. Whereas the drift rate (v) estimates the rate of information 

acquisition (i.e., larger drift rate = faster information uptake), thus is interpreted as a measure of 

perceptual processing during decision-making; the distance between response thresholds (a) 

represents the deployment of different decisional strategies (i.e., conservative vs. liberal) and the 

starting point of the information accumulation process (z) reflects an a priori decisional bias for one 

response over another. Finally, the duration of all non-decisional processes (e.g., stimulus encoding, 

response execution) is given by the parameter t0. These parameters are useful in the current context as 

they separate perceptual (v) and decisional (z/a) influences on task performance (Voss, Rothermund, 

& Brandtstädter, 2008), thereby potentially elucidating the basis of the self-prioritization effect. As 

such, the current data were submitted to a hierarchical drift diffusion model (HDDM) analysis 

(Wiecki, Sofer, & Frank, 2013). 

Method 

Participants and Design 

 Forty-five adults (30 females, mean age = 27.33, SD = 6.53) took part in the study, for which 

they received £5 (~ $7.50).1 Recruitment was via an advert on the University of Aberdeen virtual 

notice board. All participants had normal or corrected-to-normal visual acuity. Informed consent was 

                                                        
1 Based on a small-to-medium effect size (Almeida, Mahon, & Caramazza, 2010), G*Power 3 (f = .17,  = .05, power = 

0.8) revealed a requirement of 39 participants (an additional 10% were recruited to allow for drop out).  
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obtained from participants prior to the commencement of the experiment and the protocol was 

reviewed and approved by the Ethics Committee at the School of Psychology, University of Aberdeen. 

The experiment had a 3 (Shape Association: self or friend or stranger) X 2 (Trial Type: target or non-

target) repeated-measures design. 

 

Materials and Procedure 

 Participants were greeted by a male experimenter and told they would be performing a 

perception task. The experiment had two phases. Following Sui et al. (2012), the first phase comprised 

a learning task in which participants were required to associate specific geometric shapes (i.e., circle, 

triangle, square) with 3 targets: self, a named best friend, and an unfamiliar stranger (see Sui et al., 

2012). The shapes were not presented at this stage. The learning phase lasted for approximately 60 

seconds and shape-target associations were counterbalanced across the sample. 

 Next, participants performed a detection task in which the previously learned shapes were 

rendered invisible using CFS. Prior to the task, sighting eye dominance was determined using the 

Miles test (Miles, 1930). On the basis of this test, 12 participants were identified to be left-eye 

dominant and 33 right-eye dominant. The target stimuli (geometric shapes) and Mondrian patterns 

were displayed on two 19˝ Dell monitors (1440 x 900 pixels, 60 Hz refresh rate), presented using E-

prime (Psychological Software Tools, Pittsburgh, PA). Dichoptic rivalry was achieved via two mirrors 

angled at 45° between two computer monitors and a stationary chin- and forehead-rest at a viewing 

distance of 40 cm. The stimuli were presented on a 16.2° x 16.2° gray background (50 cd/m-2) on each 

screen. Both areas were surrounded by a 0.8° noise border which was identical in each eye to aid 

stable convergence. A fixation cross was presented in the center of each screen between trials. Target 

shapes (i.e., circle, square, triangle) subtended 3.25° x 3.25°, with a 0.12° grey border and a uniform 

inner area. The Mondrian patterns consisted of randomly generated colored squares between 0.1° and 

0.8° in size presented in each participant’s dominant eye (see Figure 1). Trial order was randomized 
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for each participant. After the start of each trial, there was a random delay of 1000 to 2000 ms 

between the mask and target stimulus onset. The target shape started at 0% contrast and increased in 

1.2% Michelson contrast increments, every 200 ms, up to a maximum of 30% contrast (25 equal 

steps), after which the contrast remained unchanged until a further 5 seconds had elapsed (or a 

response had been made). Therefore, the maximum duration for a response in each trial was 10 

seconds. Trials with an incorrect or missing response were discarded (i.e., 2.4% of the data). 

 Participants performed a practice session comprising 6 trials, followed by the 3 main 

experimental blocks (60 trials per block). In each block, participants were required to report, by means 

of a key press, the presence (or absence) of a specified shape as soon as a stimulus became visible (i.e., 

the target shape was present on 1/3 of the trials). Thus, the working memory load in each block was a 

single item. Block order and stimulus-response key mappings were counterbalanced across 

participants. 

 

 

 

Figure 1. A schematic representation of an experimental trial. Depicted is an example of a single trial 

for a right-eye dominant participant. On each trial, a shape was gradually introduced to the 

participant’s non-dominant eye, while Mondrian patterns were presented to the dominant eye using 

CFS.  
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Results 

b-CFS  

 One participant (female) failed to follow the instructions during CFS, thus was excluded from 

the analysis. Table 1 shows the accuracy and response time data. Participants’ mean suppression times 

were submitted to a 3 (Shape Association: self or friend or stranger) x 2 (Trial Type: target or non-

target) repeated measures analysis of variance (ANOVA). As predicted, the results revealed an effect 

of Shape Association on the time taken to overcome interocular suppression, F(2,86) = 3.98, p = .022, 

ηp
2 = .08 (see Figure. 2). In particular, whereas suppression durations were shorter for shapes 

associated with self compared to both friend (t(43) = 1.74, p = .04, Cohen’s d = .26) and stranger 

(t(43) = 2.63, p = .006, Cohen’s d = .40), breakthrough times for stimuli associated with friend and 

stranger did not differ significantly, t(43) = 1.16, ns. Neither the main effect of Trial Type [F(1,43) < 

1, ns] nor the Shape Association x Trial Type interaction [F(2,86) < 1, ns] were significant. Thus, for 

otherwise meaningless geometric shapes, self-relevance facilitated access to visual awareness. 

 

 

Table 1. Mean reaction times (RTs) and accuracy as a function of Trial Type and Shape Association.  

 

Trial Type  Shape Association  Mean RT (ms)  Accuracy 

Target    Self   1983 (792)  .98 (.14) 

    Friend   2170 (837)  .94 (.24) 

    Stranger  2408 (1180)  .96 (.18) 

Non-Target   Self   2005 (644)  .95 (.22) 

    Friend   2297 (912)  .98 (.12) 

    Stranger  2325 (923)  .95 (.21) 

Note. Standard deviations appear in parentheses. 
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Figure 2. Mean b-CFS times as a function of shape association. Error bars represent the upper 95% 

confidence intervals.  

 

 

Diffusion Modeling 

To explore the constituent processes that contribute to the emergence of the self-prioritization 

effect, data were submitted to a HDDM analysis (Wiecki et al., 2013). Parameter estimation is 

hierarchical because both participant- and group-level parameters are estimated simultaneously in a 

single model, such that group-level parameters form the prior distributions from which individual 

participant estimates are sampled. Separate drift rates (v), starting values (z) and non-decisional 

processes (t0) were estimated for each shape association and trial type. Bias (z) was modeled as a 

function of goal state (i.e., looking for self, friend, or stranger); non-decision time (t0) as a function of 

shape association (i.e., self, friend, or stranger); and drift rate (v) as a function of the combination of 

goal state and shape association. Bayesian posterior distributions were modeled using a Markov Chain 

Monte Carlo (MCMC) with 10,000 bootstraps (following 1,000 burn in samples). Prior to analysis, 
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trials with latencies faster than 200 ms were removed, and the HDDM software removed the 5% of 

trials with the longest response latencies (Radcliff & Tuerlinckx, 2002).2 

 

Table 2. Deviance Information Criterion (DIC) Values for Each Model. 

 

  Model Parameterization   DIC  

    v     16998 

   v, z     16916 

   v, t0     16782 

   v, z, t0     16780 

Note. v = drift rate, z = starting point, t0 = non-decision processes. A DIC difference of 2 is positive 

evidence for a model, greater than 10 is strong evidence for a model (Kass & Raftery, 1995). 

 

  

 To determine the adequacy of this model, three additional models were tested for comparison. 

For the first model, only the drift parameter (v) was estimated. For the second and third models, the 

bias (z) and non-decision (t0) parameters were also estimated. As can be seen in Table 2, the model 

that included all three parameters yielded the best fit (i.e., smallest DIC value). Interrogation of the 

posterior distributions revealed evidence of a decisional bias (z), such that the starting point of 

evidence accumulation was higher prior to responding to shapes associated with self than either friend 

(pBayes(self > friend) = .994) or stranger (pBayes(self > stranger) = .959; respective Ms: .531 vs. .508 

vs. .488; Figure 3 panel A). In addition, a comparison of the non-decision times (t0) across shape 

                                                        
2 When screened in this way, analysis of the b-CFS reaction times yielded effects identical to those reported previously. A 

main effect of Shape Association was observed (F(2,86) = 14.81, p < .001, ηp
2 = .257), such that suppression durations 

were shorter for shapes associated with self compared to both friend (t(43) = -19.93, p < .001, Cohen’s d = 3.00) and 

stranger (t(43) = -4.56, p < .001, Cohen’s d = .69), breakthrough times for stimuli associated with friend and stranger did 

not differ significantly, t(43) = -1.06, p = .293, Cohen’s d = 0.16.        
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associations indicated faster responses for self than both friend (pBayes(self > friend) = .972) and 

stranger(pBayes (self > stranger = .942; respective Ms (seconds): .379 vs. .485 vs. .467, Figure 3 panel 

B). Conceptually, this may be linked to enhanced encoding and response execution for self-relevant 

stimuli. Finally, inspection of the drift parameter (v) indicated that the rate of information uptake was 

sensitive only to whether the target shape was present or absent (see Figure 3 panel C).  

 

 

 

 

 

 

 

 

 

Figure 3. Mean posterior distributions across shape-label associations. Distributions show the 

posterior probability of: (A) mean starting point (z) as a function of goal state (z was re-centered by 

subtracting 0.5, such that 0 represents no bias); (B) non-decision processes (t0) as a function of shape 

association; and (C) drift (v) as a function of goal state and shape association.    

    C 

 

A B 

Starting point (z) Non-decision processes (t0) 
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General Discussion 

 An emerging literature has revealed pervasive self-related biases in perceptual matching  (Sui 

et al., 2012, 2013; Sui, Sun, Peng, & Humphreys, 2014). Developing this line of inquiry, here we 

demonstrated the effects of self-relevance on an earlier stage of processing — perceptual selection. 

Compared with items referenced to either a friend or stranger, those previously associated with self 

remained suppressed for shorter periods of time. As such, at least in the context of complex geometric 

shapes (vs. Gabors) and a target identification (vs. detection) task (cf. Stein et al., 2016), self-tagging 

enabled people to imbue otherwise neutral stimuli with personal significance, an operation that 

facilitated access to awareness. 

 But how exactly does self-relevance prioritize access to visual awareness? In research to date, 

self-prioritization is considered to be a perceptual phenomenon. Noting how early stages of perception 

can seemingly be penetrated by cognitive factors — including desires, beliefs, and values (Clark, 

2013; Collins & Olson, 2014; Dunning & Balcetis, 2013; Lupyan, 2015) — self-relevance is believed 

to exert a comparable influence on stimulus processing (Sui & Humphreys, 2015). Not everyone 

would agree, however. Indeed, a competing viewpoint suggests that self-relevance likely influences 

decisional processes, notably the adoption of different response criteria when judging self-relevant (vs. 

non-relevant) information (Firestone & Scholl, in press). In an attempt to evaluate these competing 

hypotheses, the current data were submitted to a diffusion model analysis. The results revealed that 

self-prioritization in visual awareness mapped onto the decisional (i.e., starting value, z) parameter of 

the diffusion model, thereby demonstrating that participants had a prepotent bias to self-related stimuli. 

Critically, self-relevance did not modulate the rate of information uptake (v) during the decision-

making process. What these preliminary findings suggest is that, at least in the current task context, 
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the prioritization of self-relevant information in visual awareness reflects the operation of a decisional 

bias (Firestone & Scholl, in press; Pylyshyn, 1999).3  

 Complementing existing research (Stein et al., 2016; Sui et al., 2012), here we demonstrated 

that self-relevance facilitates access to visual awareness for arbitrary geometric shapes under CFS. In 

addition, rather than modulating the rate of information uptake during decision-making (Humphreys 

& Sui, 2015; Sui & Humphreys, 2015), self-prioritization influenced the decisional processes that 

underlie response generation. Whether, of course, this is the case for other classes of stimuli and 

measures of visual awareness remains to be seen.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
3 Self-relevance did, however, influence non-decisional processes (t0) that include stimulus encoding. Thus, while it is 

possible that self-relevance impacted perceptual operations, this effect did not occur during the critical evidence-gathering 

(v) phase of the decision-making process. Indeed, it is just as likely that self-relevance influenced t0 by facilitating 

response execution.  
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