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ABSTRACT 

 

Nonpoint Source Pollution Control Using a Multi-Objective Optimization Tool for Best 

Management Practices Selection and Spatial Placement in the Lower Bear River 

Watershed, Utah 

 

by 

Ali A. Salha, Doctor of Philosophy 

Utah State University, 2020 

 

Major Professor: Dr. David K. Stevens 

Department: Civil and Environmental Engineering 

 

Agricultural best management practices (BMPs) are effective in reducing the 

transport of nonpoint source pollutants to receiving water bodies. However, selection of 

BMPs for placement in a watershed requires optimization of the available resources, 

associated costs and regulation end-points to obtain maximum possible pollution 

reduction. Optimization methodologies are needed to select and place BMPs in a 

watershed to provide solutions that are both economically and environmentally effective. 

The approaches developed here utilize a watershed simulation tool (Soil Water and 

Assessment Tool (SWAT)) to reproduce the movement of flows and to simulate the 

sediments and total phosphorus loads for identifying the nonpoint source areas. The 

approaches use agricultural BMP databases to provide information on their types, 

pollution reduction efficiencies, and cost information of implementation. Two 

optimization frameworks were developed to help watershed managers evaluate optimal 
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solutions generated from combining certain BMPs in selected NPS areas. Total 

phosphorus load from the watershed, and cost of implementing the required agricultural 

BMPs were the two objective functions during the optimization process. The first 

optimization approach consisted of a combination tool developed in Python to combine 

given agricultural BMPs with selected NPS areas identified by SWAT. The approach was 

tested and provided multiple solutions for conservation programs that can maximize load 

reduction set under specified budgets in the Lower Bear River (LBR) watershed located 

in Box Elder County in northern Utah. The other optimization approach, using a 

multiobjective genetic algorithm (AMALGAM) in combination with the output of the 

SWAT and the available agricultural BMPs data, was developed and tested for nonpoint 

source pollution control in the LBR watershed. The optimal solutions provided a trade-

off between the two objective functions for phosphorus reduction. The results indicated 

that the proposed combination control plans of combining agricultural BMP (such as 

cover strips, tillage management, and different buffer strips) with the identified NPS 

areas resulted in effective reduction of the nonpoint source pollutants under budget 

constraints across the LBR watershed. 

                                  (162 pages) 
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PUBLIC ABSTRACT 

 

Nonpoint Source Pollution Control Using a Multi-Objective Optimization Tool for Best 

Management Practices Selection and Spatial Placement in the Lower Bear River 

Watershed, Utah 

 

Ali A. Salha 

 

This dissertation presents a set of approaches to help address water quality 

problems related to total phosphorus loads in water bodies. Water quality degradation is 

caused by many nonpoint sources such as agricultural runoff, fertilizers applications, and 

bank erosion. Three studies present methodologies for water quality protection from 

degradation in watersheds. The first study demonstrates the application of a watershed 

simulation tool that can quantify flows in the watershed, the amount of released 

pollutants and identify the areas contributing to the pollutants’ release in the watershed. 

The second study presents a simple combination tool that can pair potential management 

practices with the identified nonpoint sources areas to generate cost-effective 

combinations of management practices for reducing excess phosphorus loading to water 

bodies. The last study develops an optimization framework that recommends the area 

optimum sizes that are available for implementing management practices. These studies 

were applied to real-case problems to reduce excess nutrients within the Lower Bear 

River Watershed in northern Utah and expected to improve the management of nutrient 

control plans under the allocated funds.  
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INTRODUCTION 

 

The U.S. Environmental Protection Agency (USEPA) 2006 – 2011 Strategic Plan 

maintains the five goals that were described in the 2003 - 2008 Strategic Plan: (i) clean 

air and global climate change; (ii) clean and safe water; (iii) land preservation and 

restoration; (iv) healthy communities and ecosystems; and (v) compliance and 

environmental stewardship [1]. Within that context, water quality management is a 

critical component of overall integrated water resources management (IWRM). Most 

users of water depend on adequate levels of water quality. Water bodies that do not meet 

water quality standards are required to have loading limits to restore the water body to a 

healthy state. These are called Total Maximum Daily Loads (TMDLs) and are defined 

after intensive study of watershed characteristics as some are done with detailed 

modeling. States will often use models to determine the potential effect of policy 

mechanisms on pollutant loadings to the watershed, making them an important 

component to setting TMDLs and aiding decision-making [2]. 

Agricultural sources are responsible for 46% of the sediment, 47% of total P (TP) 

and 52% of total nitrogen (N) discharged into US waterways, making agricultural runoff 

a major contributor of pollutants to aquatic systems [3, 4]. That said, nonpoint source 

(NPS) pollution of streams and lakes has created a critical concern throughout the United 

States as a main water pollution contributor. Agricultural activities have been identified 

as the primary non-point source (NPS) in our research case study in the Lower Bear 

River (LBR) watershed of Northern Utah, USA [5]. Point source loads (e.g., wastewater 

treatment plants (WWTPs)) are monitored and regulated through Utah Pollutant 
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Discharge Elimination System (UPDES) permits set by the Utah Department of 

Environmental Quality (UDEQ). It is relatively easy to quantify and to evaluate the 

impact permitted point discharges because their effluent re-enters the hydrologic cycle at 

a single identifiable location that can be sampled. In addition, the Clean Water Act 

(CWA) has been successful at reducing pollution discharges from industries and 

municipalities (point sources) such that the single largest source of water contamination 

today comes from NPS pollution. NPS pollution can damage aquatic habitat, harm 

aquatic life, and reduce the capacity of rivers, streams, lakes, and wetlands to be used for 

drinking water and recreation. NPS pollution (surface runoff, grazing, agricultural return 

flows, and others) is not regulated through a permitting procedure.  Regulation requires 

participatory and voluntary implementation of management activities, the impacts of 

which are difficult to identify, measure, and estimate. What characterizes NPS pollution 

is that there is no identifiable point where all discharge takes place, so pollution sources 

generally cannot be directly controlled. The CWA proposed and implemented 

precautionary measures, called best management practices (BMPs) to protect water 

bodies from NPS pollution. The use of BMPs was introduced by the U.S. government 

through many incentive programs in the 1980s to reduce agricultural runoff and erosion. 

More than 40 percent of Section 319 CWA grants have been used to control NPS 

pollution from farms and ranches. 

Once a TMDL study is released for a specific watershed, several management 

practices are proposed to reduce the sources of pollution within the watershed. In 

agricultural watersheds TMDLs target NPS pollution from agricultural activities and 

propose watershed nutrient control plans to reduce the N, TP and TSS loads to protect 
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water quality. Implementing such agricultural management practices cannot achieve the 

load reduction immediately after implementation due to resident nutrients in the system.  

This poses a challenge for the proposed watershed nutrient control plans in terms of 

setting a timeframe needed to achieve the pollution management goals. 

An additional challenge is that these practices cannot be monitored on a regular 

basis because of cost and time concerns.  This poses a question with regard to the impact 

of these practices through time in terms of their performance and effectiveness, and 

whether they were the right practice to be used to achieve water quality goals. There is an 

increasing interest to further evaluate implemented BMPs and their effectiveness in 

reducing NPS pollution and to investigate proper BMP selection and location 

arrangement at a watershed scale in a cost-effective solution to provide a means for 

adaptively managing water resources and mitigating key sources of pollution.  In the end, 

questions remain with respect to the accurate location and quantification of the key 

nonpoint sources to watershed quality degradation. In most cases, the spatial interactions 

among BMPs are not considered when establishing a targeting strategy and pollutant 

control plan; a BMP that is selected based on given targeting conditions could, or might 

not, be the most cost-effective BMP at a watershed scale. Few studies have evaluated the 

impact of BMPs implementation impact over temporal and spatial sediment and nutrient 

loads at the watershed scale in the Intermountain West region. Such studies shall help 

track BMPs implementation in reducing NPS pollution and in developing approaches for 

quantifying the links between BMPs implementation and water quality improvements.  

Water quality assessment at the watershed scale is accomplished using watershed 

monitoring and modeling techniques. Watershed modeling has emerged as an important 
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scientific research and management tool, particularly in efforts to understand and control 

water pollution [6]. Watershed characteristics represented in a model are stream flows, 

seasonal variations in precipitation with wet winters and dry summers, land use and land 

cover, soil characteristics, topography, and point and nonpoint sources of pollution. 

Watershed models can be a tool for quantifying sediment and nutrient loads that originate 

from point and nonpoint sources during the period of pre- and post-BMP implementation. 

Such models that capture the variability in soils, climatic conditions, land use/cover and 

management conditions over extended periods of time are a primary means for estimating 

pollutant loads at watershed scales.  On the other hand, continuous water quality 

monitoring at many locations within a watershed to evaluate the effectiveness of BMP 

implementation is in many cases time consuming, costly, and spatially infeasible at the 

watershed level, in particular when dealing with nonpoint source pollution to collect 

continuous data within a watershed [6, 7]. 

The watershed model applied in this research is the Soil and Water Assessment 

Tool (SWAT).  It was used to estimate the changes in water quantity and quality within 

an agricultural watershed located in the Intermountain West region of the U.S.  Climatic 

conditions and agricultural activities can be simulated and their impacts on water quality 

can be assessed using SWAT as a process model. SWAT is one of the most capable 

models to simulate the effects agricultural activities since it involves a large number of 

simulated components that can be used to predict over long periods of time the impact of 

management practices in watersheds with variations in soil type, land use, agricultural 

practices, and application of fertilizers and pesticides [8-11]. SWAT has been adopted as 

part of USEPA’s Better Assessment Science Integrating Point & Nonpoint Sources 
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(BASINS) software package and is being applied by the U.S. Department of Agriculture 

(USDA) researchers for the Conservation Effects Assessment Project (CEAP) [12-14]. 

Official program records (i.e., 319(h) sections) are sources of BMPs information 

at the landscape scale. The records use spreadsheets to determine BMP load reduction at 

the site (i.e., Spreadsheet Tool for Estimating Pollutant Loads (STEPL) model). After a 

year of implementing BMPs, monitoring whether the conservative practice established at 

the site did reduce the pollutant loads or not is neither consistent nor continued. Thus, a 

watershed modeling approach can be used to: quantify NPS contamination (which allows 

for continuous/long-term simulation); locate optimal sites for BMPs; identify areas of 

high pollution risk; and evaluate the long-term impact of implemented and the proposed 

BMPs on nutrient and sediment loads. This approach supports validating official 

documents and reports regarding implemented BMPs in any given watershed. 

 The success of the implementation of BMPs and any conservation programs in 

protecting watersheds from NPS pollution depends on available planning tools (e.g., 

decision support systems) that can assist in identifying the most cost-effective watershed 

management processes. Selection of the most effective BMPs for placement in a 

watershed requires identification of critical areas, optimization of available resources, and 

minimization of associated costs in obtaining the maximum possible pollution reduction 

in efforts to meet water quality end-point requirements. Therefore, this research answers 

the question of “how can we optimize the placement of BMPs in an agriculturally 

dominated watershed to achieve maximum pollutant reduction at lowest cost?” The 

answer is to apply new optimization methods for deriving watershed-scale nutrient 

control plans for NPS pollution that can generate the suitable combination of BMPs that 
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are both environmentally and economically effective. 

The methods combine the use of a calibrated and validated process watershed 

model (SWAT) to define the critical NPS areas (i.e., areas of the watershed contributing 

significant NPS contaminants/constituents of concern), representation of agricultural 

BMPs (databases regarding types, reduction rates, and cost information), a combination 

tool written in Python [15], and a multi-objective genetic algorithm called A Multi-

Algorithm Genetically Adaptive Multi-objective Method (AMALGAM) [16, 17] using 

MATLAB software [18]. The methods are unique because they do not only simulate the 

effects of combining agricultural BMPs in selected NPS areas on water quality targets, 

but help to determine the most feasible combination that watershed managers or users can 

choose to decide based on their budget constraints at a watershed scale. The combination 

tool proposes numerous solutions of pairing both the agricultural BMPs and the NPS 

areas along with their total phosphorus reduction and implementation cost. The 

AMALGAM algorithm ensures an effective, fast, dependable, and computationally 

efficient solution to multi-objective optimization problems compared to other algorithms 

such as Strength Pareto Evolutionary Algorithm (SPEA2) [18] and Non-dominated 

Sorted Genetic Algorithm-II (NSGA-II) [19]. 

The LBR watershed was used as the case study area where data such as Digital 

Elevation Model (DEM), land use/land cover (LULC), soil profiles and climate data for 

10 years (2000-2010) were available as inputs to quantify streamflow, nutrient and 

sediment yields. Pollutant loading rates coming out of the hydrological response units 

from the SWAT simulation were spatially projected to a parcel map to ensure that the 

field scale is well represented for effective implementation of agricultural BMPs. 
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Optimization methods utilize SWAT model outputs to provide tools for watershed 

managers to optimize the cost and placement of BMPs within agricultural watersheds.  

 

Research Objective  

The overall objective of this research was to propose different approaches for 

managing, evaluating and optimizing the effectiveness of agricultural BMPs implemented 

for sediment and nutrient reduction within an agricultural watershed with a snowmelt-

driven hydrology in the Intermountain West region. The research aimed to increase the 

knowledge of how to achieve the optimal selection and location of agricultural BMPs, 

and to quantify the impact of agricultural BMPs on the budget available for 

implementation and the water quality at a watershed scale.  This would support better 

decision making on the feasibility and sustainability of agricultural BMPs, including the 

financial resources allocated for agricultural BMPs implementation. The following 

specific objectives in this research were used to address the challenges associated with 

the approach described above: 

Objective 1: Apply a spatially distributed version of the SWAT model in a 

mountainous, agricultural watershed with snowmelt-driven hydrology using publicly 

available input data (e.g., DEM, land use, soil map, and weather and climate data): 

Assess the performance of using the SWAT model to simulate streamflow along with 

nutrients and sediments loads in an agricultural watershed under semi-arid conditions 

such as in the Intermountain West region. Examine using the SWAT model in the LBR 

watershed in the period from 2000 to 2010 as a case study to characterize watershed 

hydrology and to assess TP and TSS loads. Apply the SWAT model to identify the 
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critical areas contributing to watershed quality pollution to simulate appropriate 

management scenarios targeting these critical areas. 

Objective 2: Build a Combination Tool for selecting Agricultural Best 

Management Practices Package (BMPs) and Nonpoint Sources Areas under specific 

budget constraints. Find applicable agricultural BMPs that can be implemented within an 

agricultural watershed in the Intermountain West region. To provide knowledge 

regarding a comprehensive BMP database (e.g., type, cost, reduction rate, life span). 

Simulate high phosphorus loading rates NPS areas using calibrated and validated SWAT 

model (as selected in objective one). The combination tool works as an iteration process 

to join multiple BMPs in the proposed NPS areas to allocate the combination of BMPs 

that provide the maximum reduction solution under given budget. 

Objective 3: Development of an optimization approach to implement multi-

objective genetic algorithm (AMALGAM) for optimization and incorporate: 1) output 

from SWAT model (e.g., critical areas for NPS loading) under Objective 1 and 2) BMPs 

database under Objective 2 to find optimum feasible areas for BMPs implementation to 

control TP loads under different scenarios. Under this objective, different constraints 

such as TMDL water quality regularities, available budget, identified critical areas and 

areas where BMPs can be implemented are studied and analyzed. The hypothesis to 

identify most cost-effective combination of BMPs to populated sizes areas of NPS is 

tested to achieve the required phosphorus load reduction target.  

 

Research Significance 

It is expected that the research and its outcomes will contribute to the watershed 
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and engineering community regarding the modeling of SWAT, implementation, and 

evaluation of agricultural BMPs in an agricultural watershed in the Intermountain West 

region. 

This research is compatible with the National Water Quality concerns that 

agricultural nonpoint source (NPS) pollution is the leading source of water quality 

impacts on streams, rivers and lakes. This new research approach leverages optimization 

approaches to create a better understanding of the links between environmental variables 

and the selection and placement of BMPs within agricultural watersheds for better water 

quality management under implementation budget constraints. Further, using this 

optimization approach along with reported documentation will help close the feedback 

loop between the field level and watershed level. Documentation is for watershed 

managers and federal agencies to help validate results, redirect programs, provide 

progress to decision makers, assist with economic evaluations and obtain program funds. 

Local consultation and data collection were carried out with local watershed and 

land managers who are responsible for meeting water quality goals and implementing 

water quality programs on agricultural land. The feedback and recommendation enhanced 

the evaluation process of BMPs’ effectiveness and identified the proper location for each 

agricultural BMP based on their experience. This will advance the understanding of the 

relation between Land Use and selected BMPs. Others who can benefit from the research 

work include conservation districts; the agricultural services community; and the 

environmental and community organizations. 

The research can be beneficial to farmers and local and federal agencies. It can 

assist watershed managers and planners through using calibrated and validated 
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parameters in evaluating of proposed watershed nutrient control projects, quantifying 

potential impacts on watershed quality, providing a guide to where to apply conservation 

practices, and optimizing public investments in improving water quality in agricultural 

watersheds driven by snowmelt and climatic conditions existing in the Intermountain 

West region of the U.S. 

 

Dissertation Organization 

Seven chapters are contained in this dissertation. The main body of the 

dissertation consists of three separate but inter-related chapters (Chapter 2-4). The first 

chapter presents a general introductory description about the main body of the 

dissertation. The second chapter describes the application of Soil and Water Assessment 

Tool (SWAT) model in LBR Watershed. The third chapter demonstrates the combination 

tool used for generating best management practices for reducing phosphorus load 

reduction in LBR watershed. The fourth chapter addresses optimization of NPS control 

practices in LBR Watershed. Finally, the last chapter of this dissertation (Chapter 5) 

summarizes what was done and accomplished in the dissertation. Moreover, further 

research directions are suggested in Chapter 6. 
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APPLICATION OF THE SOIL AND WATER ASSESSMENT TOOL (SWAT) 

MODEL IN THE LOWER BEAR RIVER (LBR) WATERSHED 

 

Abstract 

This chapter describes the hydrological assessment of an agricultural watershed in 

Northern Utah as part of Intermountain West region of the United States through the use 

of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) 

model was applied to the Lower Bear River watershed, located in Box Elder County. The 

inputs to the model were obtained from several sources such as Utah Division of Water 

Quality and USGS database systems, meteorological input (precipitation and temperature 

from generated weather engine), and measured streamflow data at the watershed outlet 

(USGS 10126000 near Corrine), were used in the simulation. Model calibration, 

facilitated by SWAT-Calibration and Uncertainty Programs (SWAT-CUP) that offered 

the sensitivity analysis for list of calibrated parameters that are sensitive to stream flow, 

sediments and total phosphorus, was performed for the period 2002 through 2005, and 

validation was performed for 2006 through 2010. The model was found to reproduce the 

movement of water, sediments and total phosphorus across the watershed. It performed 

well with statistical measures of goodness-of-fit R2 = 0.83, NSE = 0.67 and RMSE = 0.36 

m3/sec for flow simulation. Total phosphorus simulation showed good prediction ability 

with the observations at R2 = 0.59, NSE = 0.54 and RMSE = 0.01 mg/L, while sediment 

simulation was reasonably represented with R2 = 0.74, NSE = 0.44 and RMSE = 1.61 

mg/L. This hydrologic modeling will facilitate future applications using SWAT in the 

Lower Bear River watershed for various watershed analyses, including defining the 
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critical areas diffusing sediments and nutrient loads to the receiving water bodies in the 

watershed and proposing proper location and types of management practices to conserve 

the watershed water quality. 

 

Introduction 

Watershed models are essential for quantifying sediment and nutrient loads that 

originate from nonpoint sources (NPS). Such models are primary means towards 

generating pollutant estimates in gaged and ungauged watersheds and respond well at 

watershed scales by capturing the variability in soils, climatic conditions, and the land 

use/cover situation and management conditions over extended periods of time [1-3]. At 

present, agricultural activities in the Lower Bear River (LBR) pose a threat to the water 

quality in LBR waterways as the main NPS of nutrients and sediments. Physically-based, 

distributed hydrological models have been widely used for water resources management 

and planning. They have been extensively applied to study the impact of land use change 

on water quality and quantity, water related activities, and adaptation measures, among 

others [4, 5]. The dynamic development of GIS techniques, coupled with digital 

information on topography, soil and land use, has led to creation of complex modeling 

systems combining GIS with hydrologic/water quality models, where the GIS interface 

helps in preparation of input data required for the model. One of the most suitable models 

used worldwide to study hydrologic, biogeochemical and ecological processes at the 

watershed scale is the Soil and Water Assessment Tool (SWAT) [6-11], which integrates 

both hydrologic and water quality components combined within a GIS interface 

environment. Based on that, SWAT watershed model is applied in the research for 
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estimating where the critical sediment and nutrient source areas. 

SWAT is a physically based, semi-distributed and process-oriented hydrological 

model that has been developed by USDA - Agricultural Research Service (USDA-ARS) 

to predict the impact of land management practices on water, sediment, and agricultural 

chemical yields (including nutrients) in complex catchments with varying soils, land use, 

and management conditions over long periods of time [12, 13]. SWAT involves a large 

number of simulated components that can be used to predict over long periods of time, 

the impact of soil management practices in aquatic environments (surface and 

underground) in watersheds with variations in soil type, land use, application of 

fertilizers, and pesticides [14-16]. Since the LBR watershed is dominated by agriculture 

and has several miles of impaired streams, SWAT can be applied to capture these 

features. SWAT has been successfully applied in numerous studies for simulations of 

discharge and nutrient transport in watersheds with varying climatic, geologic and 

hydrologic conditions [17-19]. The SWAT model has been recently applied to assess 

watershed conditions, to develop and evaluate TMDL studies, and to investigate the 

effectiveness of best management and conservation practices in different regions of the 

U.S. Although it was originally developed for application in the United States, the 

expansion of its simulation capabilities has allowed it to become a globally used model 

[20-27]. 

The objectives of this study are: assess if the SWAT model could be successfully 

calibrated and validated for discharge, sediments, and total phosphorus loads from the LBR 

watershed of Box Elder County in State of Utah watershed that is dominated by agricultural 

use. The output discussion and results knowledge are useful for decision makers in order 
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to manage water resources and to implement the most effective measures to limit diffuse 

pollutions from arable land to surface waters. 

 

Literature Review 

The development of SWAT is a continuation of USDA-ARS modeling experience 

that spans a period of roughly 30 years [28-32]. SWAT is a basin‐scale, continuous‐time 

model that operates on a daily time step and is designed to predict the impact of 

management on water, sediment, and agricultural chemical yields in ungauged 

watersheds. Major model components include weather, hydrology, soil temperature and 

properties, plant growth, nutrients, pesticides, bacteria and pathogens, and land 

management. It combines simulated hydrology, sediment and nutrient transport in one 

model. Full documentation about the applications, studies and research that has been 

carried out using SWAT can be seen in Gassman et al. 2007 paper [24]. 

In terms of sediment studies using SWAT, Saleh et al. [33] used the SWAT model 

in a study in North Bosque River watershed in north Texas for evaluating sediment load 

and observed that SWAT simulated sediment load matched well with the observed 

sediment load at monthly basis. Further, Santhi et al. [31] applied successfully SWAT in 

simulating sediment loads at different time scale in two sub watersheds in Bosque River 

in Texas. Arnold et al. [34], utilized SWAT for five major Texas river basins and 

observed that sediment yields predicted by SWAT were within reasonable range of 

sediment yields derived from rating curves in the watersheds.  

There are many studies around the world that show the robustness of SWAT for 

modeling nutrient losses. Saleh et al. [33], Santhi et al. [31] used SWAT to evaluate 
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nitrogen losses in watersheds in Texas. They found that SWAT was able to predict 

nitrogen losses within reasonable limits with the Nash–Sutcliffe model efficiency (NSE), a 

widely-used statistic to evaluate efficiency of hydrologic predictions, value greater than 

0.60 and phosphorus losses was also simulated within reasonable limit of NSE ranging 

from 0.39 to 0.93. In a similar study in Iowa at Walnut Creek watershed, Chaplot et al. 

[35] applied SWAT with nine years of data to calibrate nitrate load and found that 

predicted loads were close to the observed loads at the Creek site. Hanratty and Stefan 

[36] used data collected from the Cottonwood River, Minnesota to calibrate the SWAT 

model and concluded that SWAT was suitable for simulating water quality variability 

under climate change. They simulated both nitrate-nitrogen and phosphorus for their 

study. Arabi et al. [22] studied the effect of best management practices (BMPs) on 

nitrogen and phosphorus losses in two small watersheds in Indiana and found SWAT an 

effective tool to do so. But they also noticed that SWAT underpredicted phosphorus yield 

in those months when measured phosphorus losses were higher and over predicted it for 

the months with low phosphorus losses.  

In SWAT, a watershed is divided into multiple subwatersheds, which are then 

further subdivided into hydrologic response units (HRUs) that consist of homogeneous 

land use, management, and soil characteristics. The HRUs represent percentages of the 

subwatershed area and are not identified spatially within a SWAT simulation. The 

ArcGIS extension ArcSWAT allows for the SWAT model to be executed within a 

geographic information system (GIS) to use its spatial analysis advantages. Such 

integration provides tools for developing and running the model and the aggregation of 

required input data for simulating watersheds [24, 37, 38]. 
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SWAT vs other watershed models 

Many studies and researches have examined the capabilities of several 

hydrological and water quality models [2, 39]. Table 1 summarizes watershed models and 

their main characters and features related to the nature of the study area. 

 

Table 1. Watershed models main characters and features 

Model Suited Application Main components 
chemical 

simulation 

temporal 

scale 

watershed 

representation 

Annualized 

Agricultural 

Non-Point 

Source 

(AnnAGNP) 

Suited for 

agriculture 

watersheds; widely 

used for evaluating 

a wide variety of 

conservation 

practices and other 

BMPs 

No GIS interface 

Hydrology, 

sediment, 

nutrients and 

pesticide 

transport, DEM 

used to generate 

grid and stream 

network 

N, P, 

pesticides, 

organic 

carbon & 

nutrients 

Continuous 

(daily or 

Sub-daily 

steps) 

Homogeneous 

land areas, 

reaches, & 

impoundments 

Hydrological 

Simulation 

Program-

Fortran 

(HSPF) 

Suited for both 

agriculture or 

urban watersheds; 

diverse water 

quality and 

sediment transport 

at any point on the 

watershed 

No GIS interface 

Runoff /water 

quality 

constituents, 

simulation of 

pervious/impervio

us areas, stream 

channels & mixed 

reservoirs 

Soil/water 

temp., 

DO, CO2, 

N, NH3, 

organic 

N/P, N/P, 

pesticides 

Continuous 

Pervious 

/impervious 

land areas, 

stream 

channels, & 

mixed 

reservoirs; 1-D 

simulations  

Soil and Water 

Assessment 

Tool (SWAT)  

Best suited for 

agriculture 

watersheds; and for 

calculating TMDLs 

and simulating a 

wide variety of 

conservation 

practices and other 

BMPs; successfully 

applied across 

watersheds in 

several countries 

GIS interface 

Hydrology, 

weather, 

sedimentation, 

soil temperature 

and properties, 

crop growth, 

nutrients, 

pesticides, 

agricultural 

management and 

channel & 

reservoir outing  

N, P, 

pesticides 

Continuous 

(daily 

steps) 

Sub-basins 

based on 

climate, HRU, 

ponds, 

groundwater, 

& main 

channel 
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Data Collection and Analysis Methods 

Study Area 

The research was conducted in the LBR watershed located in Box Elder County, 

Northern Utah as shown below in Figure 1. The LBR watershed includes the Lower Bear 

River from Cutler Dam to its confluence with the Great Salt Lake, the Malad River from 

the Utah-Idaho state line to its confluence with the Bear River, Box Elder Creek from its 

headwaters to its confluence with Black Slough and the Bear River, along with numerous 

springs and other small tributaries [40]. The LBR Watershed is a sub-basin of Lower 

Bear Malad River (LBMR) watershed (USGS HUC 16010204) that is part of Great Basin 

Region (HUC 1601) where LBR is much larger river than the Malad. The LBR watershed 

under study drains about 1052 km2 from below Cutler Dam to the Bear River Migratory 

Bird Refuge. Flows leaving Cutler Reservoir increase at the lowest gaging station on the 

Bear River near Corinne, Utah (USGS 10126000). Discharge in the LBR below Cutler is 

affected by spring runoff, irrigation diversion, irrigation returns and regulated releases 

from upstream reservoirs. Daily flows from July through October can be very low, 

averaging 0.7 m3/s. Baseline flows in the watershed range from 3.0 - 23.0 m3/s over the 

year. Land use is dominated by irrigated crop lands, dry-farmed crop lands, livestock feed 

production, and grazing. As compiled by the Utah Agricultural Statistics Service, Box 

Elder County ranks as number one in the state for total winter and spring wheat 

production, oats, barley, corn for grain, and cattle and calves’ inventory [41]. In Box 

Elder County, 100 irrigation companies and private users are delivering water from the 

LBR to irrigate over 428 Km2 of agricultural land [40]. 

The flows in the LBR represent three types of sources: 1) water applied to crops 
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in excess that is returned to the river or canal via overland flow; 2) water that remains in 

the canal system and is never used for irrigation; and 3) water that percolates through the 

soil, is collected in drains and returned to the river [41, 43]. 

 

 

 
 

Figure 1. Location of Lower Bear River and Malad River in Northern Utah 
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The LBR travels 105 km southwest through a small, narrow canyon at the 

northern end of the Wellsville Mountains into the Great Salt Lake valley as it leaves 

Cutler Reservoir. The highest point in the watershed is Box Elder Peak (2,900 meters) in 

the Wellsville Mountains, while the lowest point is the Great Salt Lake (1280 meters) 

[42]. The entire water yield within the confines of the LBR Valley, including the inflow 

of the Malad River, adds less than 10 percent of the Bear River flow. 

Average annual precipitation in the drainage ranges from 180-400 mm (11-16 in), 

with most of that falling as snow during the winter months. Mean annual air temperature 

is 8-11oC (46-51 F) with a frost-free season of 100-150 days. Soils below the 1400-meter 

elevation level are formed in mixed lake sediments derived from many kinds of rocks. 

They are nearly level to gently sloping. Soils are mostly silt loam, silty clay loams, and 

are moderately well drained to poorly drained [42]. 

 

Water Quality Status in Lower Bear River Watershed 

High levels of total dissolved solids (salts), sediment and phosphorus are the 

major water quality concerns in the LBR watershed [43]. Major sources of pollutants that 

have had a significant impact on water quality within the LBR watershed and its 

associated ecosystem come from agricultural runoff that carries sediments, fertilizers, and 

animal wastes from agricultural lands, streambank erosion caused by natural processes, 

changes in in-stream flows and grazing on streambanks, and large animal feeding 

operations along the watershed streams. Two waterbody segments (the LBR from Cutler 

Reservoir to the confluence with Great Salt Lake and the Malad River from the Utah-

Idaho state line to the Bear River confluence) were declared impaired in Utah’s year 2000 



22 

303(d) list of water bodies needing TMDL analyses [41] based on Clean Water Act 

requirements of the state of Utah. 

 

Point Sources 

Within the LBR watershed, there are five permitted point source discharges. Four 

are waste water treatment plants (WWTPs) and one is an industrial source. As shown in 

Table 2, they included Corinne WWTP, Brigham City WWTP, Bear River City WWTP, 

Tremonton WWTP, and Nucor Steel [41].  The LBR TMDL [41] indicated that three 

main point sources (Corinne, Bear River and Tremonton cities) accounted for 

approximately 3% of the TP load to the Lower Bear River. The remaining 97% was 

attributed to NPS. Given that the NPS TP loads are more prominent than the point source 

contributions, the TP loads discharged from these point sources is considered 

insignificant in this research. 

 

Nonpoint Sources 

NPS pollution is usually associated with watershed impacts caused by diffuse 

land use activities. In the LBR, the most dominant nonpoint source pollutants are 

phosphorus and sediment. Sources include irrigated and non-irrigated croplands, 

rangelands, feedlots, and unstable streambanks. 

Table 2. List of permitted point source in LBR Watershed 

Point Source Name  Monitoring ID Latitude  Longitude  

Tremonton WWTP  4902710 41.6984034 -112.161616 

Brigham City WWTP  4901200 41.5241527 -112.046225 

Bear River City LAGOONS  4902030 41.5997351 -112.14331 

Corrine LAGOONS  4901160 41.5368495 -112.11186 

Nucor Steel  4902920 41.8863124 -112.204404 
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SWAT Model 

The SWAT watershed model is able to predict daily runoff, sediment, and 

chemical yield.  It generates runoff using the rational method. In-channel transport is 

simulated via simplified reach routing processes. Output consists of daily, monthly, 

annual, and average annual runoff values for subwatersheds and reaches [44]. The model 

is derived from several well known predecessors: 

• SWRRB – Simulator for Water Resources in Rural Basins provides the basic 

hydrology [45, 46]. 

• CREAMS – Chemicals, Runoff and Erosion from Agricultural Management 

Systems for the nutrient and some sediment transport [47, 48]. 

• GLEAMS – Groundwater Loading Effects on Agricultural Management 

Systems for the groundwater quality component [49]. 

• EPIC – Erosion Productivity Impact Calculator for the link between erosion; 

Sediment transport and nutrient loss/gain [50, 51]. 

All of these are physically based models in their own right; SWAT combines 

them into a distributed framework that operates at the catchment/watershed scale. The 

hydrological cycle simulated in the SWAT model is based on the following water balance 

equation: 

𝑆𝑊𝑡 =  𝑆𝑊𝑜 + ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑠𝑤)

𝑡

𝑖=1

 

Where SWt and SWo (final and initial soil water contents), Rday (precipitation), 

Qsurf (surface runoff), Ea (evapotranspiration), Wseep (water entering the unsaturated zone 

from the soil), Qsw (return flow) and all units are in mm. The in-stream kinetics used in 



24 

SWAT for nutrient routing are adapted from the Enhanced Stream Water Quality Model 

(QUAL2E). QUAL2E is a receiving water model that analyzes water quantity and quality 

in a receiving water stream in response to loadings from its contributing watershed(s). It 

is a one-dimensional, steady-state and pseudo-dynamic, and non-uniform flow and water 

quality model [44]. A detailed description of the SWAT model can be found in a research 

report [32] and in theoretical documentation [52]. The SWAT model version selected for 

this study is ArcSWAT 2012.10.19 under ArcGIS 10.4. 

Setup and Data 

The required input data for SWAT are available from various sources as described 

below in Table 3. No field data were collected and as stated previously, the SWAT model 

was tested in the LBR watershed in the period from 2000 to 2010 as a case study to 

characterize the watershed hydrology and to assess phosphorus (TP) and sediment (TSS) 

loads. 

Data on water quality parameters were obtained from the United States 

Geological Survey (USGS) monitoring stations. Utah Division of Water Quality 

(UDWQ) collects TSS/TP data using USGS streamflow-gaging stations as shown in 

Figure 2 (total of 112 sample for TSS and 64 samples for TP). Continuous average 

monthly and yearly loads for TP and TSS were estimated for the period of record from 

the grab samples using the USGS Load Estimator (LOADEST) regression model [53]. 

Provided a time series of discrete measured streamflow and constituent concentrations, 

LOADEST was be used to develop a regression model for estimating constituent loads in 

streams and rivers [53]. 
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Table 3. Description of SWAT dataset and its sources 

Dataset Name Use / description  Source of Data 

National Elevation Dataset 

(NED) 
Digital elevation map 

(DEM) 

Watershed delineation 

(30 m resolution) 

Elevation, overland and channel 

slopes, lengths 

http://ned.usgs.gov/ 

http://gis.utah.gov/data/elevation

-terrain-data/ 

Soils data- State Soil 

Geographic (STATSGO 

and SSURGO) 

HRU analysis 

Soil physical properties such as 

bulk density, texture, saturated 

conductivity) 

http://soildatamart.nrcs.usda.gov

/  

http://bearriverinfo.org/htm/gis-

mapping/ 

National Land Cover 

Dataset (NLCD) 

HRU analysis 

Land Use/Land cover 

(2006 and 2011) 

Land use classification 

http://www.mrlc.gov/ 

National Hydrography 

Dataset (NHD) 
Subbasin delineation / Flow 

data & Stream networks 

http://nhd.usgs.gov/  

http://gis.utah.gov/data/water-

data-services/ 

Climate data (Potential 

source: NOAA COOP 

stations for daily 

temperature, precipitation, 

solar radiation, and wind 

speed or any other 

measured data) 

Weather data (Precipitation & 

Temperature) 

Climate conditions 

(readings from 2000 – 2010) 

http://www.ncdc.noaa.gov/ 

http://uwrl.usu.edu/ 

http://climate.usurf.usu.edu 

Monitoring Data 

(watershed quantity and 

quality data) 

Calibration and Validation / 

(USGS/EPA readings from 

2000 – 2010) 

http://bearriverinfo.org 

http://waterdata.usgs.gov/nwis 

Watershed (HUC8) and 

Sub-watershed (HUC12) 
Watershed delineation 

http://bearriverinfo.org 

http://gis.utah.gov/data/water-

data-services/ 

 

Using the topography information as provided by the Digital Elevation Model 

(DEM), SWAT divides the basin into a number of subbasins as shown in Figure 3. 

Further division into Hydrologic Response Units (HRU) is based on the soil map, land 

use and slope information. Each HRU is a homogenous area in terms of soil and land use 

type as well as slope. 

Water yield from each HRU is aggregated for subbasins and routed via the reach 

network to the watershed outlet (routing phase of hydrology). Then SWAT allows 

modelers to define the point sources and other watershed inlet discharges (e.g., inflows 

from Cutler Reservoir), including manually defining the outlet point of discharge for the 

http://nhd.usgs.gov/


26 

sub-basin and for the whole watershed. After delineation, SWAT divided the study area 

into 126 subbasins with total area of 1998 Km2 (Figure 4). With a threshold value of 20% 

for soil types, 10% for land use, 20% slope, and a 10-elevation bands (maximum number 

of elevations that can be represented in SWAT), the subbasins were further separated into 

565 HRUs as shown in Figure 4. 

Based on the given results, the dominant land use in the LBR watershed are 

pasture, sunflower and winter wheat (small grains). The climate inputs were generated 

internally within SWAT using monthly climatic data (sourced from Climate Forecast 

System Reanalysis (CFSR)) processed by SWAT’s built-in weather generator. SWAT 

utilized the meteorological data (temperature, precipitation, solar radiation, relative 

humidity, and wind) to compute the required to simulate the potential evapotranspiration 

(PET) in the model. See Table A 1 in Appendix 1 for more details about the delineated 

subbasins. 

Database files containing information needed to generate default input for SWAT 

are automatically set based on the watershed delineation and land use, soil and slope 

characterization. The SWAT model simulation was executed for conditions during the11 

year period from 2000 until2010. The first two years were used as a warm-up period and 

were not used for model evaluation because, during early time periods for the simulation, 

model parameters such as soil–water content and residue cover are initially not in 

equilibrium with actual physical conditions as stated [54]. 
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(a) (b) 

  
(c) (d) 

Figure 2. Study area GIS data provided in SWAT: a) digital elevation model, b) land use, 

c) soil map, and d) slope profile set for simulation 
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(a) (b) 

Figure 3. The simulated watershed where a) is the Subbasins generated (126 Subbasins), 

and b) is the HRU map that represents 565 HRUs across the watershed 

 

 

Model Calibration and Validation 

The LBR watershed model was simulated on monthly time-step over the period 

2000-2010. The years from January 2000 to December 2001 were used as a warm-up 

period for state variables to assume realistic initial values. The calibration was carried out 
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at monthly time steps covering period from January 2002 to December 2005, while the 

validation process covered period from January 2006 till December 2010. 

The initial simulations using default parameters were not able to correctly 

reproduce the discharge coming out of the LBR watershed because the actual discharge 

peaks (peak flows) were underestimated. The same was true for sediment and total 

phosphorus loads. Therefore, parameter calibration and identifying the most sensitive 

parameters for runoff, sediment, and total phosphorus were needed to improve the 

usability of the model in the beginning. 

The Sequential Uncertainty Fitting version 2 (SUFI-2) optimization algorithm 

[55, 56] was applied within the SWAT Calibration and Uncertainty Program (SWAT-

CUP) model 2012 and version 5.1.6.2 [57]. SUFI-2 is based on the concept of 

equifinality, which suggests that multiple models (i.e., multiple parameter sets) provide 

equally acceptable predictions and, as such, parameter values are treated as uncertain 

[58]. 

Model parameters selected for calibration were first assigned an initial global 

uncertainty range within SWAT-CUP based on the range of parameters values suggested 

by the SWAT technical documentation. Sensitivity analysis was then performed to 

identify those parameters that model outputs were sensitive to. Only the most sensitive 

parameters were included in model calibration at a monthly time-step against 

observations of discharge, sediments and total phosphorus loads recorded at the outlet. 

Using parameters that are sensitive for discharge, three iterations of 1000 simulations 

were performed to calibrate the model for discharge. The parameter ranges were updated 

after each iteration, as identified by the SUFI-2 optimization algorithm, until prediction 
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uncertainty and model performance were considered satisfactory. Then, sediment 

calibration was carried out using parameters that are only sensitive to it with three 

iterations of 500 simulations. Finally, another calibration used parameters only sensitive 

to total phosphorus with three iterations of 500 simulations. 

Tables 4, 5, and 6 illustrate the SWAT model parameters identified as significant 

by the sensitivity analysis and the final calibrated fitted values of each parameter for 

flow, sediments and phosphorus respectively. The most sensitive parameters during the 

calibration process are: CN2.mgt, SNOCOVMX.bsn, GWQMN.gw, SNO50COV.bsn, 

GW_DELAY.gw, GWQMN.gw, RCHRG_DP.gw, ALPHA_BF.gw, USLE_P.mgt, 

USLE_K.sol SMFMX.bsn, and SMFMN.bsn.  
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Table 4. Parameters that are sensitive to flow simulation 

Parameter_Name Description Fitted_value Min_value Max_value 

r_CN2.mgt SCS runoff curve number 0.149 0.1 0.2 

v_ALPHA_BF.gw Baseflow alpha factor (days) 0.363 0 1 

v_GW_DELAY.gw Groundwater delay (days) 379.2 30 450 

v_GWQMN.gw 

Threshold depth of water in 

the shallow aquifer required 

for return flow to occur (mm) 

18.5 0 500 

v_SNOCOVMX.bsn 

Minimum snow water content 

that corresponds to 100% 

snow cover 

182 100 500 

r_SNOCOVMX.bsn 

Snow water equivalent that 

corresponds to 50% snow 

cover 

0.8 0 1 

v_SFTMP.bsn Snowfall Temperature 0.5 -1 1 

r_SOL_AWC.sol 
Available water capacity of 

the soil layer 
-0.235 -0.3 0.1 

r_SOL_K.sol 
Saturated hydraulic 

conductivity 
0.048 -0.25 0.2 

r_SOL_BD.sol Moist bulk density -0.045 -0.25 0.2 

v_SUB_SFTMP.sno Snowfall temperature 10.765 -20 15 

v_SUB_SMTMP.sno Snow melt base temperature -3.025 -20 15 

v_SUB_SMFMX.sno 

Maximum melt rate for snow 

during year (occurs on 

summer solstice) 

10.815 0 15 

v_SUB_SMFMN.sno 

Minimum melt rate for snow 

during the year (occurs on 

winter solstice) 

0.285 0 15 

v_SUB_TIMP.sno 
Snow pack temperature lag 

factor Subbasin snow 
0.443 0 1 

r_ESCO.bsn 
Soil evaporation 

compensation factor 
0.097 0 0.2 

v_EPCO.bsn 
Plant uptake compensation 

factor 
0.793 0 1 

r_ESCO.hru 
Soil evaporation 

compensation factor 
-0.044 -0.3 0.1 

r_CH_N1.rte 
Manning's "n" value for the 

tributary channels 
0.156 -0.05 0.3 

r_CH_N2.rte 
Manning's "n" value for the 

main channel 
0.058 0.01 0.3 

v_TLAPS.sub Temperature lapse rate -4.46 -10 10 

r_PLAPS.sub Precipitation lapse rate 0.022 -0.25 0.25 

r_SNOEB.sub 
Initial snow water content in 

elevation band 
0.067 -0.05 0.25 
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Table 5. Parameters that are sensitive to sediment simulation 

Parameter_Name Description Fitted_value Min_value Max_value 

v_CH_EROD.rte Channel erodibility factor 0.425 0.1 0.6 

v_CH_COV.rte Channel cover factor 0.569 0.2 1.0 

v__SPCON.bsn 

Linear parameter to calculate 

maximum amount of sediment 

that can be retrained during 

channel sediment routing 

0.004 0.001 0.01 

v__SPEXP.bsn 

Exponent parameter for 

calculating sediment retrained 

in channel sediment routing 

1.243 1.0 1.5 

v__PRF.bsn 

Peak factor for Sediment 

routing factor in main 

channels 

0.541 0.0 2.0 

r__USLE_P.mgt 
USLE equation Support 

practice factor  
0.051 -0.15 0.15 

 

Table 6. Parameters that are sensitive to total phosphorus simulation 

Parameter_Name Description Fitted_value Min_value Max_value 

v__PSP.bsn Phosphorus availability index 0.621 0.5 0.7 

r_ERORGP.hru 
P enrichment ratio with 

sediment loading 
3.148 2 4 

r_SOL_SOLP 

Initial soluble phosphorus 

concentration in the soil layer 

(ppm)  

71.246 0 100 

r_BC4.swq 
Rate constant for 

mineralization of organic P 
0.359 0.3 0.5 

r_RS5.swq Organic P settling rate 0.0941 0.08 0.1 

v_BIOMIX.mgt Biological mixing efficiency 0.156 0 1 

 

The statistical analysis of calibration and validation of SWAT model outputs was 

carried out using the GNU R language (statistical computing and graphics environment, 

version R-3.3.3 [59]). The performance of the developed SWAT model was evaluated by 

examining measures of goodness of fit, coefficient of determination (R2), root mean 

squared error (RMSE) and the Nash-Sutcliffe efficiency (NSE). The larger the values of 

NSE and R2 and smaller the values of RMSE, the greater the precision and accuracy the 

SWAT model in predicting and simulating the movement of water, nutrient and 

sediments. Additional checks on the final parameter values to see if they are within 

physical limits were also conducted. 
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The statistical techniques are detailed as below: 

• Coefficient of determination (R2): It describes the proportion of the 

variance in observations explained by the model. R2 ranges from 0 to 1, with higher 

values indicating less error variance.  In watershed water quality and hydrological 

modeling, a value greater than 0.5 are considered acceptable differences between model 

predictions and measured data [31, 60, 61]. R2 allows us to determine how certain one 

can be in making predictions from a certain model/graph. R2 is computed as Equation 1: 

𝑅2 =  [
1

𝑛
 
∑ (𝑥𝑖

𝑜𝑏𝑠−𝑥𝑖
𝑜𝑏𝑠_𝑚𝑒𝑎𝑛) (𝑦𝑖

𝑠𝑖𝑚−𝑥𝑖
𝑜𝑏𝑠_𝑚𝑒𝑎𝑛)𝑛

𝑖=1

(𝑥𝑦)
]

2

            (1) 

where n is the number of observations used to fit the model, xi
obs is the x value for 

observation i, xi
obs_mean is the mean x value, yi

sim is the y value for simulated i, yi
obs-mean is 

the mean y value, σx is the standard deviation of x, and σy is the standard deviation of y. 

 

• Root mean square error (RMSE):  RMSE indicates error in the units 

(the square root of the sum of squares) of the constituent of interest. Values of 0 indicate 

a perfect fit between the observations and simulation [62]. The square root of the average 

is taken. RMSE can be calculated by Equation 2: 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑖
𝑜𝑏𝑠−𝑥𝑖

𝑠𝑖𝑚)
2𝑛

𝑖=1

𝑛
             (2) 

where n is the number of observations used to fit the model, xi is the x value for 

observation ith (obs= observed, sim = simulated). 
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• Nash-Sutcliffe efficiency (NSE): It is a normalized statistic that 

determines the relative magnitude of the residual variance (noise) compared to the 

observation variance [63]. NSE values recommended for the research objective used 

values are shown in [22, 27] and Table 7. NSE can be computed using the following 

Equation 3: 

𝑁𝑆𝐸 = 1 −  [
∑ (𝑥𝑖

𝑜𝑏𝑠−𝑥𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖=1

∑ (𝑥𝑖
𝑜𝑏𝑠−𝑥𝑖

𝑜𝑏𝑠_𝑚𝑒𝑎𝑛)
2

𝑛
𝑖=1

]             (3) 

where xi
obs is the ith observation for the constituent being evaluated, xi sim is the ith 

simulated value for the constituent being evaluated, xi mean is the mean of the 

observations for the constituent being evaluated, and n is the total number of 

observations. NSE ranges between  and 1 (1 inclusive), with NSE = 1 being the optimal 

value. Values between 0.35 and 1.0 are generally viewed as acceptable levels of 

performance, whereas values < 0.0 indicates that the mean observed value is a better 

predictor than the simulated value, which indicates unacceptable performance [64, 65]. 

 

Table 7 summarizes the acceptable ratings for SWAT model performance based 

on several literature and studies used SWAT application in watershed simulation. 

Table 7. Summary of SWAT model performance ratings 

Performance ratings for NSE [33] 

>0.65 Very good calibration and validation 

0.54 to 0.65 Good calibration and validation 

>0.4 to 0.5 Satisfactory calibration and validation 

<0.35 Unsatisfactory calibration and validation 
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Results and Discussion 

The present modeling effort was carried out with an objective to develop a 

reliable hydrologic model simulating stream flow discharge, sediments, and total 

phosphorus loads. SWAT, v. 2012, was used to simulate the stream flow, sediment, and 

total phosphorus of Lower Bear River located in Box Elder County, northern Utah for the 

period from 2000-2010. The SWAT model was calibrated and validated for flow against 

monthly measured discharge data at the outlet of the simulated LBR watershed (i.e., 

subbasin #126). In general, flow simulations at calibration stations compared well to 

measured flow records and simulated monthly flows (Fig. 4). Model calibration and 

validation were performed for monthly time periods using SUFI-2 algorithm within 

SWAT- CUP. 23 parameters for flow, 6 parameters for sediments and the same for total 

phosphorus simulation that were calibrated as shown in Tables 4, 5, and 6. 

 

Flow Simulation 

The calibration outputs for monthly-flow simulation for the period from 2002 to 

2005 showed a good model performance with R2 = 0.87, NSE = 0.71 and RMSE = 0.43 as 

shown in Figure 4. 

 
Figure 4.Measured vs. simulated monthly flow simulation (m3/sec) (2002-2010) 
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During the validation period (2006-2010), the flow simulation showed good 

performance with R2 = 0.80, NSE = 0.62 and RMSE = 0.58 (m3/sec) meaning it mostly 

captured all hydrological characteristics of the LBR watershed as shown in Figure 4 and 

Table 8. See Table A4 in Appendix 1 for more details about flow data. 

 

Further statistical analysis of between the measured and simulated flow data can 

be explored next through Table 9 and Figure 5. 

 

 

Table 8. Correlation summary of simulated and measured monthly flow 

Statistical Measure 
Flow (2002-2005) 

Calibrated 

Flow (2006-2010) 

Validated 

Flow (2002-2010) 

Calib. - Valid. 

Coefficient of 

determination (R2) 
0.87 0.80 0.83 

Nush-Suttcliffe 

Efficiency (NSE) 
0.71 0.62 0.67 

Root Mean Square Error 

(RMSE) 
0.43 0.58 0.36 

 

 

Table 9. Statistical summary of simulated and measured monthly flow (2002-2010) 

Statistical Summary Measured (m3/sec) Simulated (m3/sec) 

Minimum 1.145 1.18 

1st Quartile 7.80 10.20 

Median 24.99 18.36 

Mean 28.44 24.61 

3rd Quartile 36.76 31.79 

Maximum 166.03 96.12 
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Figure 5. Statistical plots show histogram, scatter, and QQ plots for measured vs. 

simulated monthly flow in the period between 2002 and 2010 

 

As shown in Figure 6, the residual between the measured and simulated monthly 

flow simulation shows random dispersion around the horizontal axis, which implies the 

suitability of the model with close normal distribution of the data on the histogram plot. 

The residual plot shows cyclic pattern suggesting some autocorrelation. 

 
Figure 6. Residual analysis plots for monthly flow (2002-2010) 
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Total Suspended Solids Simulation 

The calibration outputs for monthly TSS simulation for the period from 2002 to 

2005 showed a reasonable model performance with correlation of R2 = 0.83, NSE = 0.67, 

and RMSE = 0.85. However, during validation period (2006-2010), the TSS simulation 

showed good correlation but poor prediction ability with values of R2 = 0.76, NSE = 0.36 

and RMSE = 3.27 (mg/L) as shown in Figure 7 and Table 10. See Table A 5 in Appendix 

1 for more details about total suspended solids data. Further statistical analysis of 

between the measured and simulated TSS data can be explored next through Table 11 and 

Figure 8. 

 

 
Figure 7. Measured vs. simulated monthly TSS simulation (mg/L) (2002-2010) 

 

Table 10. Correlation summary of measured and simulated monthly TSS 

Statistical Measure 
TSS (2002-2005) 

Calibrated 

TSS (2006-2010) 

Validated 

TSS (2002-2010) 

Calib. – Valid. 

Coefficient of 

Determination (R2) 
0.83 0.76 0.74 

Nush-Suttcliffe 

Efficiency (NSE) 
0.67 0.36 0.44 

Root Mean Square Error 

(RMSE) 
0.85 3.27 1.61 

 

Table 11. Statistical summary of simulated vs. measured monthly TSS (2002-2010) 

Statistical Summary Measured TSS (mg/L) Simulated TSS (mg/L) 

Minimum 11.96 10.62 

1st Quartile 25.14 23.30 

Median 43.64 30.19 

Mean 49.53 31.83 

3rd Quartile 66.35 41.01 

Maximum 133.55 71.16 
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Figure 8. Statistical plots show histogram, scatter, and QQ plots for measured vs. 

simulated monthly TSS in the period between 2002 and 2010 

 

As shown in Figure 9 next, the residual between the measured and simulated 

monthly TSS simulation shows poor random dispersion around the horizontal axis which 

affects the suitability of the model to accurately predict TSS values considering the 

uncertainties in the input data (land use/cover, snowmelt timing, etc.) and the yearly 

estimation for TP load data. 

 

 
Figure 9. Residual analysis plots for monthly TSS (2002-2010) 
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Total Phosphorus Simulation 

The calibration outputs for monthly TP simulation for the period from 2002 to 

2005 showed a reasonable model performance with correlation of R2=0.50, NSE = 0.46, 

and RMSE = 0.002. However, during validation period (2006-2010), the TP simulation 

showed good correlation and prediction with values of R2 = 0.67, NSE = 0.62 and RMSE 

= 0.0015 (mg/L) as shown in Figure 10 and Table 12. See Table A 6 in Appendix 1 for 

more details about total phosphorus data. Further statistical analysis of between the 

measured and simulated TSS data can be explored next through Table 13 and Figure 11. 

Figure 10. Measured vs. simulated monthly TP simulation (mg/L) (2002-2010) 

 

Table 12. Correlation summary of simulated and measured TP (mg/L) (2002-2010) 

 

Table 13. Statistical summary of simulated and measured monthly TP (2002-2010) 

Statistical Summary Measured TP (mg/L) Simulated TP (mg/L) 

Minimum 0.067 0.049 

1st Quartile 0.092 0.091 

Median 0.119 0.109 

Mean 0.128 0.112 

3rd Quartile 0.161 0.126 

Maximum 0.231 0.206 

Statistical Measure 
TP (2002-2005) 

Calibrated 

TP (2006-2010) 

Validated 

TP (2002-2010) 

Calib. - Valid. 

Coefficient of 

determination (R2) 
0.50 0.67 0.59 

Nush-Suttcliffe 

Efficiency (NSE) 
0.46 0.62 0.54 

Root Mean Square Error 

(RMSE) 
0.002 0.0015 0.0012 
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Figure 11. Statistical plots show histogram, scatter, and QQ plots for measured vs. 

simulated TP in the period between 2002 and 2010 

 

As shown in Figure 12, the residual between the measured and simulated monthly 

TP simulation shows a reasonable random dispersion around the horizontal axis, which 

suggests the suitability of the model to predict TP values considering the uncertainties in 

the input data (land use/cover, snowmelt timing, etc.) and the yearly estimation for TP 

load data. 

 

Figure 12. Residual analysis plots for monthly TP (2002-2010) 
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Conclusion 

The SWAT model was applied under GIS environment to simulate monthly flow, 

sediment and total phosphorus loads in Lower Bear River watershed, Box Elder County 

in northern Utah. The comparisons between observed and simulated monthly flow data 

showed that the simulation results are acceptable with the R2 value as 0.83, 0.74 and 0.59 

for flow, TSS, and TP respectively. SWAT model proved to perform well and provide 

good results for calibration but not the case for validation. While the prediction power 

supported by NSE was acceptable for flow, TSS and TP simulations with values of 0.67, 

0.44, and 0.54 respectively, SWAT underestimated flow, sediment and total phosphorus 

loads for some high-flow events.  

The inability of SWAT to simulate high-flow events could be attributed to its 

dependence on many empirical and semi-empirical models, such as SCS-CN and 

MUSLE, which caused SWAT to track specific peak flow and sediment load less 

accurately. One thing that can be added is the effect of the estimated TSS and TP loads 

using LOADEST model and the lacking of continuous measured water quality data 

(especially in the period between 2004 and 2007) that could enhance the calibration of 

SWAT parameters and eventually improve its performance. In general, the methodology 

presented in this paper of calibrating the most sensitive parameters for flow, sediments 

and total phosphorus using SWAT-CUP can be used in other agricultural watersheds in 

the Intermountain regions. The results are instructive for future use of SWAT in 

evaluating different management practices in the northern part of Utah. 
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COMBINATION TOOL TO GENERATE MANAGEMENT PRACTICE 

STRATEGIES FOR PHOSPHORUS LOAD REDUCTION IN THE LBR 

WATERSHED 

 

Abstract 

Significant federal investment in the last three decades in technical and financial 

assistance has been provided to implement agricultural best management practices 

(BMPs) that can help reduce nutrient loads leaving agricultural lands and farm fields, 

which in turn can reduce negative environmental impacts on receiving water systems. 

Watershed managers in that regard have limited budgets to propose conservation projects 

that are deemed feasible and will achieve the required water quality goals at watershed 

scale. Often, they don’t possess the tools to prioritize these conservation projects or to 

find the optimal combination of these projects within a specified budget. This chapter 

provides an overall combination approach to agricultural BMPs’ solution in selected non-

point source (NPS) areas within specified budget for implementation at a watershed scale 

within the Lower Bear River (LBR) Watershed, an area with a large delivery of 

phosphorus (P) to the Great Salt Lake. An agricultural BMP database provides 

information on reduction efficiency and cost per area for implementation. Identified 

sources areas are obtained spatially from applying the SWAT model that uses a 

geospatial processing methodology to transform loading rates in the HRUs from the 

parcel map of the study area. The combination tool is a code written in Python script that 

runs the available agricultural BMPs and NPS areas to provide a series of combinations 

based on two constraints: available budget and required reduction.  Three water quality 
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constraints were assigned as a total phosphorus reduction limit: 150, 200 and 250 kg/yr. 

The combination tool generated 671870 solutions (a solution is a conservation practice 

implemented on certain NPS area) from which the minimum cost implementation for 

meeting the three reduction targets were: a combination of six conservation practices with 

an approximate cost of US$12,400 for a 150 kg/yr total phosphorus reduction load. For a 

200 kg/yr of total phosphorus load reduction limit, a minimum budget of US$18,800 for 

implementing eight (8) combined management practices achieved that limit. The 250 

kg/yr of phosphorus load reduction limit was achieved through the lowest budget of 

US$24,500 with ten management projects to implement. 

The simplicity of the proposed combination approach to generate alternatives for 

management practices can have significant feedback to conducting studies and research 

on the LBR watershed to provide the most reliable selection and placement of suites of 

BMPs across the watershed which will help program and policy development and 

analysis of water quality and conversation programs. 

 

Introduction 

A Best Management Practice (BMP) can be defined as a practice or combination 

of practices that is the most effective, technologically, and economically feasible means 

of preventing or reducing the pollutant load generated by NPS to a level that meets water 

quality goals [1, 2]. The use of BMPs was introduced by the U.S. government through 

many incentive programs in the 1980s to encourage agricultural producers to reduce 

agricultural runoff and erosion. BMPs’ impacts on watershed quality were evaluated and 

documented using site specific details obtained from grant reporting and monitoring that 
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often lack the long-term impact of implementing such practices at watershed scale. When 

implementing BMPs, it is critical that the most appropriate BMP, or suite of BMPs, be 

selected, targeted, and implemented in a watershed within an allocated budget. Also, 

since many BMPs involve costs and management changes, which will most likely have 

negative impacts on landowners, fair and equitable financial support and technical 

assistance through cost-share programs will improve BMP adoption. Additionally, 

watershed managers face real challenges in identifying and differentiating the effects of 

BMPs from other landscape factors. It is difficult due to the variable hydrological, 

physiographic, land cover, and soil conditions that can affect the amount and composition 

of pollutants entering streams, especially in the Intermountain West region that is 

categorized by spatial variability in climate, a high frequency of fires, and, often, highly 

erodible soils. 

This challenge can be faced with tools that aid watershed managers in deciding 

the type, and the number of BMPs based on the identified critical areas that are major 

contributors of pollutants into the receiving water. These tools may involve watershed 

simulations tools, spreadsheets for load calculations, BMPs database, and some 

optimization codes if the technical and the financial sources are adequate. When it comes 

to applying for funds, watershed managers and related extension personnel are asked for 

proposing conservation projects based on the Total Maximum Daily Load (TMDL) 

recommendations and their field observation within a specific budget. Finding a suite of 

conservation projects that can protect the watershed quality, within the specified budget, 

and to adequately have a positive impact at watershed scale requires time and effort in 

analyzing the NPS areas, their sediments and nutrient loads, and finally the 
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implementation of the appropriate BMPs. 

This chapter describes a combination tool that can help watershed managers 

determine the best combination among areas that are selected for BMPs implementation 

under specified budget to achieve the maximum quality benefits. The tool was written 

using Python and was tested for selected areas that were identified using a widely 

adopted watershed modeling tool (Soil and Water Analysis Tool – SWAT) and different 

BMPs related to the Lower Bear River (LBR) watershed in northern Utah. 

Within the LBR watershed, high levels of phosphorus, sediments, and total 

dissolved solids (salts) are the major water quality concerns [3]. Major sources of 

pollutants that have had a significant impact on water quality within the LBR watershed 

and its associated ecosystem often come from agricultural runoff that carries sediment, 

fertilizers and animal wastes from agricultural lands. Two waterbody segments (the LBR 

from Cutler Reservoir to the confluence with Great Salt Lake and the Malad River from 

the Utah-Idaho state line to the Bear River confluence) were declared impaired in Utah’s 

year 2000 303(d) list of water bodies needing TMDL analyses [3] based on Clean Water 

Act requirements of the state of Utah. Several conservation projects have been 

implemented across the LBR watershed to protect water quality with an approximate 

expenditure of US$500,000 in the period between 2000 and 2010. The impact of these 

conservation practices was not sufficient to meet the required reduction in loads that set 

by the LBR TMDL. This chapter addresses the implementation of BMPs over a ten-year 

period (2000-2010) and their impact on reducing sediment and total phosphorus loads at 

a watershed scale. 
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For this chapter, the calibrated and validated Soil and Water Assessment Tool 

(SWAT) model for the LBR watershed developed in Chapter 2 was utilized to estimate 

total phosphorus-loadings across the LBR watershed and to identify the potential NPS 

areas that would be selected for agricultural BMP implementation under specific criteria. 

Different types of agricultural BMPs can be implemented to reduce total phosphorus. 

They include no-till management, filter strips, cover crops and vegetation. Pollutant load 

reductions can be calculated based on yield rate (kg/year/size of area) of each NPS area, 

and the ability of an installed BMP to reduce the targeted pollutant. The cost was 

associated with the size of implementation (that includes the management and the 

operation of the BMP in the implemented area). Once the NPS areas and the BMPs were 

verified, the modeling tool was utilized to generate a collection of solutions from 

different scenarios regarding the selection and placement of different types of BMPs in 

the identified NPS areas under available budget and load reduction constraints. 

 

Literature Review 

Increased sediment loads, increased nutrient levels (nitrogen and phosphorus), 

and the presence of pesticides/fertilizers are persistent water quality issues attributed to 

agricultural runoff in the United States [4, 5]. NPS pollution can include surface runoff of 

excess precipitation that flows over the landscape, tile drainage runoff that includes the 

excess water infiltrated through the soil that moves to the drainage ditches through the 

underground tile system [6, 7]. As defined in the Clean Water Act (CWA), BMPs are 

precautionary measures designed to protect water bodies. BMPs are one of the most 

effective and practicable means to control NPS pollution at desired levels and improve 
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surface water quality [8]. 

The United States Department of Agriculture’s National Resources Conservation 

Service (USDA-NRCS) is the well-known source for design, installation, and 

maintenance standards for agricultural BMPs. The NRCS has published over 155 

agricultural BMP standards. The three-digit NRCS identification code is a recognized 

standard that has been incorporated into most of the databases reviewed as part of this 

literature review [9]. The most commonly studied BMPs were various tillage techniques 

followed by filter strips, vegetated buffers, and cover crops. Approximately 35 papers 

studied watershed scale implementation of multiple BMPs. NRCS Conservation Effects 

Assessment Project (NRCS-CEAP) Web based [10] resources are also accessible for 

specific USDA programs involving monitoring and research. In particular, the NRCS-

CEAP was initiated in 2003 and has several small watershed investigation programs for 

studying BMP effectiveness. 

To implement such conservation programs, the United States Environmental 

Protection Agency (EPA) 319 program [11] supports non-point source control projects 

across the nation. The Clean Water Act (CWA) established the Section 319 Nonpoint 

Source Management Program in 1987. Section 319 addresses the need for federal support 

to help state and local nonpoint source efforts by a grant program that supports a wide 

variety of activities including technical assistance, financial assistance, education, 

training, technology transfer, demonstration projects and monitoring to assess the success 

of specific nonpoint source implementation projects. In addition, the EPA 319 Grants 

Reporting and Tracking System (GRTS) [12] database contains details of thousands of 

projects supported by Section 319 of the Clean Water Act. Data are searchable by 
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location. While most of the focus of this database is for tracking grants, over 1,500 

studies have pollutant data available of varying types (measured and/or modeled). The 

Division of Water Quality in State of Utah is responsible for the funding and 

management of Section 319 under Utah Nonpoint Source Management Program [13]. 

Agricultural BMPs are general methods that reduce the transport of P with water 

and sediments [14, 15]. Yet, pollutant losses vary from field to field on the ground where 

some fields being much greater to sources of pollutants than others. It is noted that some 

pollutants, such as phosphorus, come from land surfaces that are more susceptible to 

pollutant loss than others and need to be managed with practices that prevent these losses. 

Usually, multiple BMPs in a watershed will be required to meet water quality goals. 

Some BMPs are cost-wise appropriate for relatively little of the land, while others are 

expensive and require more space. Thus, cost-effective implementation of BMPs requires 

identifying these most sensitive NPS areas and adopting BMPs that are most effective 

relative the cost of implementation. Targeting locations with proper type of conservation 

is a technical, economic and social challenge. 

Recently, the available tools designed to get the optimum solution of targeting the 

NPS locations, and then selecting and placing BMPs under different conditions are 

consisting of application of mathematical programming involving genetic algorithms in 

combination with the watershed simulation tool. Most of these optimization methods 

have used either gradient-based or heuristic techniques to trade off with one objective or 

two. The sophistication of such techniques and their high-performance computer 

requirements leave little room for some of the watershed managers and extension 

personnel on field to apply such methods because of inadequate financial resources, 



57 

technical assistance, or motivation, especially if they were restricted by a budget and 

deadline to submit their proposed conservation method to the concerned agencies. 

There have been several attempts to target and/or optimize placement of BMPs 

within agricultural watersheds [16-20]. These studies have used models that were highly 

specific and research-oriented and not directed toward watershed planning with multiple 

objectives including socially acceptable BMPs and input from local stakeholders with the 

objective of developing watershed plans for implementation. In an effort to engage the 

concerned watershed managers who are aware of the stakeholders’ input and the social 

acceptance of BMPs that can be implemented, Mamo et al. [21] released an interactive 

computer-based tool for selecting BMPs for major cropping systems in Nebraska. 

Managers can set up current farm input and output factors, current prices, and 

management information. 

Based on the users’ tolerance of economic loss and the soil erosion targets for a 

landscape, output from this tool provides stakeholders with several BMP alternatives that 

can be implemented across the watershed. William et al. [22] developed a spreadsheet-

based model (Watershed Manager) that is used in extension education programs for 

learning about and selecting cost-effective watershed management practices to reduce 

soil, nitrogen, and phosphorus losses from cropland. The tool was developed to educate 

stakeholders about alternative best management practices (BMPs) that result in 

improvements in water quality and to select the combination of BMPs that yield the 

largest improvement in water quality per dollar spent. These were very useful approaches 

to be adopted by the watershed managers and related stakeholders for implementing 

BMPs. 
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The aim of this chapter is to provide a simplification process through using a 

combination tool that can offer optimal solutions for selected NPS areas with different 

types of BMPs under specified budgets. The tool comprises preprocessing procedures in 

R Language and a code written in Python that deals with spreadsheets developed by the 

watershed managers as inputs and outputs. The overall approach uses a protocol-written 

code with budget objectives to search for the optimum alternative(s) among many 

possible Area-BMP scenarios. The significance the tool is helping watershed managers 

identify low cost solutions based on the available budget for improving water quality 

under known NPS areas and the BMPs to be implemented, and the conditions of the 

watershed. Watershed managers can also provide and update estimates of annualized 

costs and effectiveness for individual BMPs. 

 

Best management Practices History in the LBR 

NPS pollution is diffuse, originating from a wide range of small sources dispersed 

across the landscape. In Utah, the most common agents of NPS pollution are sediments, 

nutrients, heavy metals, salts, and pathogens [23]. Since 1990, the state of Utah NPS 

programs has spent almost $30 million to address water quality problems [24]. In the 

LBR watershed, conservation projects were funded and implemented in the early 2000s. 

The total 319(h) award for LBR TMDL [25] implementation was approximately 

US$500,000. 

 The primary goals of these 319(h) projects are to: 

i) Reduce nutrient and sediment loading to the LBR from animal feeding 

operations and other agricultural inputs such as field drains, 
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ii) Improve vegetation to enhance streambank stability, and 

iii) Provide cover to control erosion. 

The main BMPs implemented in the LBR watershed can be summarized as: 

fencing off riparian areas; stream bank stabilization and riparian buffer projects; rerouting 

agricultural field drains to reduce pollutant input to waterways; relocating an animal 

feeding operation; constructing dikes to prevent animal waste from entering waterways; 

providing off-stream watering facilities for livestock; and constructing animal waste 

storage facilities and waste transfer pipelines. Table 14 summarizes the BMPs projects 

implemented under Utah NPS 319(h) grants in the LBR watershed. The projects were 

selected by a Water Quality Task Force made up of a team of resource professionals from 

federal, state and local agencies [26]. 

 

Table 14. List of 319 projects implemented in the LBR Watershed [26] 

Project Type Project # Estimated Size Location 

Riparian Fencing 1 3,593 feet 41°45'36.59"N 112°07'10.53"W 

Storm Drain Piping  2 300 feet 41°40'22.44"N 112°07'36.96"W 

Feedlot 3 155,600 Sq. ft. 41°36'29.00" N 112°06'54.35"W 

Dairy 4 solid/Liquid Pits 41°38'11.29" N 112°06'30.83"W 

Dairy 5 solid/Liquid Pits 41°33'39.21" N 112°05'13.67"W 

Feedlot 6 48,840 Sq. ft. 41°33'56.73" N 112°07'20.80"W 

Dairy 7 solid/Liquid Pits 41°36'02.85" N 112°08'37.66"W 

Feedlot 8 73,080 Sq. ft. 41°37'26.61" N 112°10'00.11"W 

Feedlot 9 300,591 Sq. ft. 41°37'40.03" N 112°10'15.93"W 

Two feedlots 10 37,250 Sq. ft. 41°39'15.51" N 112°09'45.52"W 

Compost facility 11 38,512 Sq. ft. 41°39'18.90" N 112°09'33.48"W 

Feedlot 12 3,510 Sq. ft. 41°42'46.66" N 112°09'36.73"W 

Feedlot 13 1,445,400 Sq. ft. 41°53'34.92" N 112°10'05.41"W 

Runoff Pond 14 3,650 Sq. ft. 41°49'32.45" N 112°07'38.07"W 

Dairy 15 solid/Liquid Pits 41°42'05.21" N 112°05'29.42"W 
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The selection is based on criteria reflect the priorities of the Nonpoint Source program, 

including protecting public health, restoring impaired waters, and preventing surface and 

ground water pollution.  Figure 13 shows the spatial placement of these projects. The 

partners supporting the implementation of BMPs programs are the Utah Division of Water 

Quality (monitoring and lab analysis), Natural Resources Conservation Service (NRCS) 

and USU Extension (provide technical support and outreach education). 

 

 

  

Figure 13. Spatial distribution of different implemented BMPs across LBR watershed 
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Data Collection and Analysis Methods 

 

Study Area 

The research was conducted in the LBR watershed located in Box Elder County, 

Northern Utah (Figure 14). The LBR watershed is unique because it is almost completely 

dominated by agriculture (76%) and very little urban (4%) (Table 15); therefore, the 

research focused on the effects of changes in agricultural practices and their related 

BMPs [3]. 

 

 
Figure 14. Location of Lower Bear River and Malad River in Northern Utah 

 

 



62 

 

Table 15. Landuse Distribution in LBR Watershed 

Name Code Area (Km2) % 

Water WATR 4.10 0.21 

Residential-Low Density URLD 51.62 2.58 

Residential-Medium Density URMD 8.66 0.43 

Residential-High Density URHD 2.72 0.14 

Industrial UIDU 0.88 0.04 

(Arid) Range SWRN 0.45 0.02 

Forest-Deciduous FRSD 56.00 2.80 

Forest-Evergreen FRSE 136.79 6.85 

Forest-Mixed FRST 0.37 0.02 

Range-Brush RNGB 921.87 46.14 

Range-Grasses RNGE 157.51 7.88 

Hay HAY 179.46 8.98 

Agricultural Land-Row Crops AGRR 449.61 22.50 

Wetlands-Forested WETF 7.68 0.38 

Wetlands-Non-Forested WETN 20.13 1.01 

Watershed Simulated Area  1,997.85 100 

 

 

Two waterbody segments (the LBR from Cutler Reservoir to the confluence with 

Great Salt Lake and the Malad River from the Utah-Idaho state line to the Bear River 

confluence) were declared impaired in Utah’s year 2000 303(d) list of water bodies 

needing TMDL analyses [27] based on Clean Water Act requirements of the state of 

Utah. 

Water quality data sampling and collection from the LBR watershed was not 

consistent in the recent years. Samples were intensively taken in the period from 2000 till 

2002 and again between 2008 and 2009 as shown in Figure 15. 
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Figure 15. Distribution of water quality samples collected at the outlet of the study area 

(USGS 10126000 Bear River near Corinne, UT) 

 

 

Pollutants Loads using LBR SWAT Watershed Model 

The loadings map produced by the SWAT model showed high sediments and total 

phosphorus loads from subbasins around Malad River in particular subbasin 118, 121, 

and 125). This is attributed to the large number of agricultural fields acting as  nonpoint 

sources to the Malad River, but, lower sediment and total phosporus loading from the 

subbasins/tributaries adjacent to Lower Bear River. This is likely due to the fact that 

Cutler Reservoir is trapping sediments and total phosphorus from being transported to the 

LBR and a majority of the loading is sourced from the LBR water rather than the larger 

Bear River drainage. 
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Spatial visualization of SWAT average annual sediment yield and phosphorus 

losses output are important tools to target and place the right BMP at the right subbasin 

modeled in the LBR watershed for the total hydrological period. Table 16 summarizes 

these yearly loads at the outlet of the simulated LBR watershed. Figures 16 and 17 

demonstrate the spatial loads of sediments and total phosphorus across the watershed in 

years 2002 and 2010 where it shows that largest TP sources are the same as the largest TSS 

sources. 

 

Table 16. Yearly loads of Sediments and total phosphorus from LBR watershed 

Year SED (ton/yr) TOT_P (kg/yr) 

2002 63.79 1109.90 

2003 37.93 687.18 

2004 45.41 902.34 

2005 89.23 1317.72 

2006 76.01 1341.35 

2007 53.50 887.15 

2008 79.61 1036.48 

2009 112.68 1051.57 

2010 112.01 1538.57 

Avg (2002-2010) 74.46 1096.92 
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2002 2010 

Figure 16. Total phosphorus loads (kg/year) in years 2002 and 2010 from Subbasins 

across the LBR watershed (LBR SWAT model output) 
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2002 2010 

Figure 17. Sediment loads (ton/year) in years 2002 and 2010 from Subbasins across the 

LBR watershed (LBR SWAT model output) 

 

 

Targeting Critical Areas 

Many models exist to aid in modeling targeted areas and the BMP spatial 
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placement and its effectiveness. SWAT is the most robust one [2, 28]. SWAT can offer a 

wide array of detailed outputs (i.e., daily weather, surface runoff, return flow, 

percolation, evapotranspiration, transmission losses, pond and reservoir storage, crop 

growth and irrigation, groundwater flow, reach routing, nutrient and pesticide loads) [29]. 

The outputs are quite detailed as well, as they provide the variability throughout the 

watershed via the hydrologic response units (HRUs). The majority of the pollutant load is 

transported and observed at the watershed outlet. The SWAT simulation results identified 

critical areas where the potential contribution of pollutants (sediments and phosphorus 

load critical areas) to the receiving waters is significantly higher than other areas in the 

watershed. 

 

Map HRU output to Parcel Boundaries 

To identify specific fields for implementation of BMPs, the SWAT HRU output 

needed to be mapped to the actual field boundaries, derived from the tax parcel coverage, 

that provide geospatial information, zip codes, ownership type, and the size of that field 

(parcel area). Converting SWAT HRU output to field‐level results and identifying the 

fields that produced the highest total phosphorus and sediment yields involved several 

steps after running SWAT successfully. The approach was calculating the average annual 

total phosphorus for HRUs from the SWAT output tables and creating a new database file 

(csv format). Then, the new csv database file was joined with the FullHRU shapefile, 

which was converted from shapefile to grid (raster), so it could be used with the parcel 

map with the help of zonal statistics to get total phosphorus yields for each parcel. The 

parcel map, as shown in Figure 18, was obtained from the Box Elder County Geographic 
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Information System (GIS) website [30]. The resulting total phosphorus and total sediment 

loading maps are shown below in Figure 19, with the resulted parcels along with their 

loading rates. 

 

 

 

Figure 18. Parcel map of Box Elder County, Utah for the year 2016 
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Figure 19. Generated parcel map with total phosphorus loads 
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Based on the resulting Parcel map with loads, the possible NPS locations were 

identified and selected as shown in Table 17. Depending on the nature of the receiving 

water, some BMPs may be promoted, restricted or prohibited, or special design or sizing 

criteria may apply. Thus, assumptions behind selecting the NPS sites and the BMPs are: 

• Sites with high phosphorus yield amount based on SWAT watershed simulation. 

• Physical feasibility of the site to implement BMPs and no restrictions to do so. 

• Adjacent to waterways to have direct impact. 

• Close to areas where previous BMPs were implemented. 

• Community (landowners and farmers) accepting the implementation of such 

BMPs to prevent pollution and earn economic and environmental benefits. 

• Only agricultural BMPs to be applied to reduce the size of structural BMPs.  

 

Table 17. Selected NPS sites of total phosphorus yield annually in the LBR watershed 

Subbasin FID_Parcel 
Parcel_Area 

(Km2) 
TP_Yeild(kg/yr/Km2) 

123 5115 0.790 3.70 

123 6473 0.374 3.70 

125 1142 0.334 123.74 

11 1146 0.320 123.74 

125 1069 0.318 123.74 

121 2946 0.314 52.36 

123 1677 0.275 3.70 

125 5 0.252 123.74 

120 5706 0.250 221.19 

125 1252 0.248 123.74 
121 930 0.222 52.36 

125 1189 0.222 123.74 

123 1552 0.212 3.70 

123 3318 0.211 3.70 

123 574 0.207 3.70 

123 1665 0.203 3.70 

123 3249 0.191 3.70 

121 936 0.178 52.36 

121 939 0.158 52.36 

121 920 0.157 52.36 
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Agricultural BMPs scenarios in the LBR 

An Agricultural BMPs database was developed to provide information on costs 

and pollution removal efficiency estimates for each BMP to be implemented in the LBR 

watershed. Data and information were collected from several relevant standards, studies 

and literature. In addition, records from Environmental Protection Agency's Grants 

Reporting and Tracking System (GRTS) [31] can give historical NPS projects and the 

implemented BMPs in the LBR watershed. Table 18 is a summary of collected 

agricultural BMPs data and their characteristics. For this work, the BMP reductions 

obtained were assumed to not vary temporally, i.e. the BMP effectiveness performance 

remains the same throughout pre- or post-BMP periods in the study area. These BMPs 

are applicable in land uses of cropland, rangeland pasture, and forests. 

 

The database in Table 18 was compiled from several resources [32-38]. As with 

all of these types of financial assessments, the costs presented here are simply baseline 

numbers and are meant to be informative rather than prescriptive. Other costs such as 

design, engineering, insurance was not included due to insufficient data from literature. 

The BMPs that were selected for this chapter/study are based on lieterature review and 

research recommendation: herbaceous riparian buffer, cover crops, residue tillage, filter 

strip and riparian forest buffer. Table 19 shows the selected BMPs that will be 

implemented in this chapter. The selection was based on BMPs history, relevance and its 

implementation in the area.  
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Table 18. Summary of proposed Agricultural BMPs database in the LBR watershed 

BMP Type/Practices 

NRCS 

Practice 

Code 

Units (Based 

on Parcel 

Area) 

Life 

Span 

(yr) 

Cost Per 

Unit 

(US $) 

TSS % 

Reduction 

Efficiency 

TP% 

Reduction 

Efficiency 

Filter Strips  
Are strips or areas of herbaceous 

vegetation that remove 

contaminants from overland 

flow. They are adjacent to water 

resources that protect water from 

nonpoint source pollution 

393 Km2 10 54363.0 60 50 

Riparian Forest Buffer 
They are adjacent to water 

resources that protect water from 

nonpoint source  

391 Km2 15 81545.0 65 55 

Terraces 
Earthen embankment, ridge or 

ridge-and-channel, to reduce 

erosion by reducing slope length 

600 Linear m. 10 4.90 65 50 

Stream bank Stabilization 
Streambank protection refers to 

both biological and structural 

method of stabilizing 

streambanks and/or shorelines 

on rivers, streams and ditches 

580 Linear m. 20 26.3 65 55 

Fencing 
A constructed barrier to 

livestock, wildlife, or people 
382 Linear m. 20 30.0 70 55 

Residue and Tillage 

Management, 
No till Conservation (Planting 

Systems) 

329 Km2 1 7413.15 65 50 

Herbaceous Riparian 

Buffer 
Grasses, grass-like plants and 

forbs that are tolerant of 

intermittent flooding or saturated 

soils and established or managed 

in the transitional zone between 

terrestrial and aquatic habitats 

390 Km2  5 3707.0 60 55 

Contour buffer strips 
narrow strips of permanent, 

herbaceous vegetative cover 

established around the hill slope, 

and alternated down the slope 

with wider cropped strips that 

are farmed on the contour 

332 Km2 5 12355 65 55 

Cover Crops 
Cover crops are plants that are 

used to protect soils during the 

period between the harvest and 

establishment of crops such as 

corn and soybeans 

340 Km2 1 14826.0 25 25 
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Table 19. Selected BMPs for the study area 

BMP type BMP(#) Cost per Km2 TP_Eff %* 

Herbaceous Riparian Buffer  (1) 741.4 65 

Cover Crops  (2) 2965.2 25 

Residue Tillage  (3) 7413.15 50 

Filter Strip  (4) 10872.6 50 

Riparian Forest Buffer  (5) 16309.0 55 

* TP_Eff is the total phosphorus reduction effeciency as illustrated in Table 18. 

 

3.3.1 Optimal Solutions Framework 

The proposed framework is a combination tool that generates multiple solutions 

for watershed managers or others to select their best options based on a given budget. 

Implementing BMPs within a watershed based on selected NPS areas is beneficial for 

decision makers to evaluate such plans. The Optimal Solution framework developed here 

will aid the watershed managers to propose the practices they deem acceptable and 

applicable at selected NPS areas (feasible locations), provide them with generated 

scenarios with the help of the combination code, and prioritize the solutions based on 

their given budget to achieve the maximum environmental benefits (i.e., maximizing the 

nutrient and sediments reductions). The Optimal Solution framework consists of the 

following: 

• Data preparation: Spreadsheets for the users (watershed 

manager/stakeholders) to assign the applicable and feasible BMPs to the 

identified NPS areas with known loading rates and hydrological 

conditions. 

• Preprocessing of the data: Spreadsheets prepared by the users are 
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processed in the R Language [39] environment with a script for joining 

and merging the proposed BMPs with the selected NPS areas. The 

preprocessing involves calculating the cost of each BMP implemented in 

each Area, as well as to the total phosphorus load reduction amount based 

on the removal efficiency for each BMP implemented in each Area. At the 

end, a csv file is created that lists all scenarios associated with their costs 

and phosphorus reduction. Please see Table A 7 in Appendix 2 for more 

details about the R code. 

• Combination of Scenarios: The created csv file is then used by a script 

written in Python to generate multiple solutions based on a given budget 

as a constraint for the combination model. The generated solutions are 

then filtered in spreadsheets upon preferences of the user that can be 

related to the maximum reduction a budget limit can provide. 

 

Combination Tool 

The combination script was written in Python [40]. The combination tool script 

has commands and packages that read the database variables, start the combinations 

based on budget criteria, and export the results. The combination module in Python 

“itertools” are iterators for efficient looping. The iterator is “combination ( )” where it 

can run the iteration based on the length of the data in sorted order and no repeated 

elements because they are unique. There will be no repeat values in each combination. 

The combination tool uses a “functional components approach” (R Language and 
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Python Script) wherein basic Area and BMP components are selected and pieced together 

to achieve a desired outcome. This approach limits the inclusion of numerous individual 

BMPs or implementing in different areas that could not meet the required budget or the 

watershed quality goals. While the code runs the combination, it will automatically 

calculate the cost of that combination as well as the total phosphorus reduction associated 

for each proposed scenario. See Table A 8 for Python script in Appendix 2. 

 

Results and Discussion 

The selected NPS areas in Table 17 and the BMPs detailed in Table 18 were 

prepared in spreadsheets. Preprocessing of the information compiled in the spreadsheets 

is carried out using the R language and has generated fifty (50) scenarios. The top twenty 

scenarios with high phosphorus reduction amounts were selected as shown in Table 20 

for combination processing. The scenarios are described as each BMP was implemented 

in each Area. 

The output file was then used in the combination tool in Python. The code set two 

budget criteria: Max = US$ 50,000 and Min = US$ 10,000, and for phosphorus load 

reduction limits of 150, 200, and 250 kg/yr as suggested by the TMDL study. All 

combinations that falls within budget and quality limits should be considered and 

returned in the results. Combination tool results showed 671870 possible combination 

generated from the provided scenarios in Table 20. The data frame of the results is 

671870 observations of two variables (Cost and TP reduction). 
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Table 20. Generated Area vs BMP scenarios for the study area. 

Area* BMP Tot_Cost** Tot_TP_Reduct.*** 
Combination Solutions 

(CS#) reference in Python 

Area9 BMP (1) 185.35 35.94 CS1 

Area9 BMP (5) 4077.25 30.41 CS2 

Area9 BMP (3) 1853.28 27.64 CS3 

Area9 BMP (4) 2718.15 27.64 CS4 

Area3 BMP (1) 244.66 26.54 CS5 

Area4 BMP (1) 237.25 25.74 CS6 

Area5 BMP (1) 237.25 25.74 CS7 

Area3 BMP (5) 5381.97 22.46 CS8 

Area4 BMP (5) 5218.88 21.78 CS9 

Area5 BMP (5) 5218.88 21.78 CS10 

Area3 BMP (3) 2446.34 20.41 CS11 

Area3 BMP (4) 3587.96 20.41 CS12 

Area8 BMP (1) 185.35 20.11 CS13 

Area10 BMP (1) 185.35 20.11 CS14 

Area4 BMP (3) 2372.22 19.79 CS15 

Area5 BMP (3) 2372.22 19.79 CS16 

Area4 BMP (4) 3479.23 19.79 CS17 

Area5 BMP (4) 3479.23 19.79 CS18 

Area8 BMP (5) 4077.25 17.00 CS19 

Area10 BMP (5) 4077.25 17.00 CS20 

* Area as defined in Figure 19 (Parcel map) 

** Tot_Cost is the total cost of implementing combination 

*** Tot_TP_Reduct is the total reduction of total phosphorus when implementing the BMPs 

combination 

 

For a 150 kg/yr of phosphorus load reduction, the top combination solutions 

(refer to Table 20 to look for the CSs) that met the conditions are shown in Figure 20. For 

each solution provided, there are number of combinations (BMPs and Areas) that can be 

considered for implementation to meet the desired reduction. As per the results, the cost 

ranges from US$ 12,388 to US$ 24,268 for management scenarios of combination 

conservation practices that would achieve the 150 kg/yr load reduction as the lowest total 

cost shows a combination of six: CS_2, CS_5, CS_6, CS_7, CS_9 and CS_15 as shown 

in Table 21. 
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Table 21. Generated combination solutions (CS) and their implementation cost to target 

Phosphorus reduction by 150 kg/yr 
1 2 3 4 5 6 7 Cost ($) 

CS_2 CS_5 CS_6 CS_7 CS_9 CS_15 - 12,388 

CS_2 CS_5 CS_6 CS_7 CS_9 CS_17 - 13,495 

CS_2 CS_8 CS_11 CS_13 CS_15 CS_16 CS_19 20,913 

CS_2 CS_8 CS_11 CS_13 CS_15 CS_17 CS_19 22,020 

CS_2 CS_8 CS_11 CS_14 CS_15 CS_16 CS_20 20,910 

CS_2 CS_8 CS_11 CS_14 CS_17 CS_18 CS_19 23,127 

CS_2 CS_8 CS_12 CS_13 CS_16 CS_18 CS_20 23,160 

CS_2 CS_8 CS_12 CS_13 CS_17 CS_18 CS_19 24,268 

CS_2 CS_8 CS_12 CS_14 CS_15 CS_16 CS_19 22,054 

 

For a 200 kg/yr of phosphorus load reduction limit, the budget of implementing 

the management scenarios to achieve the required water quality reduction ranges from 

US$ 18,775 to US$ 34,765 (refer to Table 20 to look for the CSs). This is beneficial for 

the watershed managers, since they have the ability to select among different alternatives 

not only based on the budget and water quality reduction limits, but also on the 

management and maintenance associated with the number of management practices that 

need to be implemented. As shown in Table 22, the lowest cost shows a combination of 

CS_1, CS_3, CS_4, CS_5, CS_6, CS_8, CS_19 and CS_20. 

 

For a 250 kg/yr of phosphorus load reduction limit, interestingly, the budget 

ranges from US$24,485 to US$36,238 as shown in Table 23 (refer to Table 20 to look for 

the CSs). Again, this is helpful for the watershed managers to have feasible alternatives 

and, at the same time, room for decisions based on their preferences, available technical 
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support, willingness of the landowners to cooperate, and the associated efforts in 

managing and monitoring these management practices. As shown in Table 23, the lowest 

total cost shows a combination of eleven: CS_2, CS_3, CS_5, CS_5, CS_6, CS_9, 

CS_11, CS_12, CS_13, CS_14, CS_16 and CS_20. 

 

 

Table 22. Generated combination solutions (CS) and their implementation cost to target 

Phosphorus reduction by 200 kg/yr 
1 2 3 4 5 6 7 8 9 Cost ($) 

CS_1 CS_3 CS_4 CS_5 CS_6 CS_8 CS_19 CS_20 - 18,775 

CS_1 CS_3 CS_4 CS_6 CS_8 CS_9 CS_10 CS_19 - 24,890 

CS_2 CS_5 CS_8 CS_9 CS_10 CS_11 CS_15 CS_17 CS_19 32,517 

CS_2 CS_5 CS_8 CS_9 CS_10 CS_12 CS_16 CS_18 CS_20 33,658 

CS_2 CS_5 CS_8 CS_9 CS_10 CS_12 CS_17 CS_18 CS_19 34,765 

CS_2 CS_5 CS_8 CS_9 CS_10 CS_13 CS_14 CS_17 CS_19 28,070 

CS_2 CS_6 CS_7 CS_9 CS_10 CS_11 CS_13 CS_19 CS_20 27,776 

CS_2 CS_6 CS_7 CS_9 CS_10 CS_12 CS_13 CS_19 CS_20 26,917 

CS_2 CS_6 CS_8 CS_9 CS_11 CS_15 CS_16 CS_17 CS_18 29,065 

 

 

Table 23. Generated combination solutions (CS) and their implementation cost to target 

Phosphorus reduction by 250 kg/yr 
1 2 3 4 5 6 7 8 9 10 11 Cost ($) 

CS_1 CS_2 CS_5 CS_6 CS_7 CS_8 CS_9 CS_10 CS_15 CS_16 - 25,546 

CS_1 CS_2 CS_5 CS_6 CS_7 CS_8 CS_9 CS_10 CS_15 CS_18 - 26,653 

CS_1 CS_2 CS_5 CS_6 CS_7 CS_8 CS_9 CS_10 CS_17 CS_18 - 27,760 

CS_1 CS_2 CS_5 CS_9 CS_10 CS_13 CS_15 CS_16 CS_17 CS_19 CS_20 31510 

CS_1 CS_2 CS_5 CS_9 CS_10 CS_13 CS_15 CS_17 CS_18 CS_19 CS_20 32,615 

CS_2 CS_3 CS_5 CS_6 CS_8 CS_9 CS_10 CS_15 CS_16 CS_19 CS_20 35,130 

CS_2 CS_3 CS_5 CS_6 CS_8 CS_9 CS_10 CS_15 CS_18 CS_19 CS_20 36,238 

CS_2 CS_3 CS_5 CS_6 CS_9 CS_11 CS_12 CS_13 CS_14 CS_16 CS_20 24,485 

CS_2 CS_3 CS_5 CS_7 CS_8 CS_9 CS_10 CS_17 CS_18 CS_19 CS_20 37,345 
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Prioritizing conservation projects under a given budget constraint to achieve 

maximum nutrient removal (total phosphorus) is of paramount goal for the watershed 

managers and extension personnel. The optimal solution framework approach presented 

here using combination is simple with direct procedures to select the most feasible 

combinations of agricultural BMPs to be implemented in different NPS areas. At the end, 

the combination results provided the cost of implementation and the amount of total 

phosphorus reduction for suits of Areas and BMPs considering that BMP performance 

remains the same throughout pre- or post-BMP implementation in the study area and not 

to vary temporally. 

 

Conclusions 

For better placement and selection of agricultural BMPS, NPS should be 

identified and targeted with the proper BMP to attain the watershed quality goals in the 

most feasible way. The NPS areas were identified using SWAT (watershed simulation 

model). The output of SWAT is detailed in hydrological responses units (HRUs) that 

reflect land use, soil, and slope characteristics in a specific geospatial environment in 

ArcGIS. Most of the time, the size of the HRUs doesn’t correspond with the size of the 

existing fields on ground. Therefore, simulating practices in ArcSWAT might not reflect 

the same operation or the extent of management in the field that will achieve the required 

sediment and nutrients reductions. The chapter proposed an approach to generate a spatial 

information of HRUs that can be projected on the parcel map of the study area. The 

approach transforms the sediments and the nutrients loads to the parcel areas using zonal 

statistical and geometry applications within the ArcGIS environment. 
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Thus, NPS areas were identified based on the parcel size (field size) and its 

loading rates of sediments and phosphorus. As agricultural BMPs have multiple sources 

and references, the chapter collated the most relevant agricultural BMPs that can be 

applied within the LBR watershed (study area). The collected data reflects the type of 

BMPs, its life span, associated cost and removal efficiencies of both total phosphorus 

losses and sediments loads. For the purpose of the chapter, lists of NPS areas and BMPs 

were selected as a case study to perform a prioritization process using a combination tool 

that will help watershed managers make decisions for the feasible allocation of budget to 

implement the conservation projects. Watershed managers often have to propose 

conservation projects based on restricted budgets and time. These conservation projects 

depend on the location, size and the type of practices to implement. The approach in this 

chapter can help managers base their decision through the examination of multiple 

alternatives rather than single solutions to achieve the most environmentally-sound 

scenario among all those theoretically possible. In addition, instead of reviewing options 

as discrete alternatives, scenarios can provide multiple alternatives for making decisions. 

This is especially valuable when dealing with budget and BMPs that can be implemented 

in different areas. 

A combination tool was written in the R language and Python in order to generate 

combination solutions of different scenarios of the selected agricultural BMPs and 

identified NPS areas under a specified budget. Three water quality constraints were used 

150, 200 and 250 kg/yr based on the given conditions of the case studies (NPS areas and 

BMPs). The combination tool generated 671870 solutions with minimum budget to 

implement these water quality criteria of US$12,387, US$18,775, and US$24,485 
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respectively for three different total phosphorus removal requirements. The tool is aimed 

at helping watershed managers to base their decision through the examination of multiple 

alternatives rather than single solutions to achieve the most environmentally-sound 

scenarios of feasible combinations among all those theoretically possible. The ability to 

consider many NPS reduction scenarios when dealing budget and multiple BMPs that can 

be implemented in different areas is valuable. 

  



82 

References 

[1] USEPA. 1980. An approach to water resources evaluation on non-point 

silvicultural sources. EPA – 600/8-80-012. USEPA Environmental Res. Lab., 

Athens, GA. 

[2] Arabi, M., Frankenberger, J. R., Enge, B. A., & Arnold, J. G. (2008). 

Representation of agricultural conservation practices with SWAT. [Article]. 

Hydrological Processes, 22(16), 3042‐3055 

[3] UDWR (Utah Division of Water Resources). 2004. Bear River Basin: Planning 

for the Future. Natural Resource, Division of Water Resources. Salt Lake, Utah 

[4] Frimpong, E. A., Lee, J. G., & Ross‐Davis, A. L. (2007). Floodplain influence 

on the cost of riparian buffers and implications for conservation programs. 

[Article]. Journal of Soil and Water Conservation, 62(1), 33‐39 

[5] Wang, G. Q., Hapuarachchi, H. A. P., Takeuchi, K., & Ishidaira, H. (2010). 

Grid‐based distribution model for simulating runoff and soil erosion from a 

large‐scale river basin. [Article]. Hydrological Processes, 24(5), 641‐653 

[6] Baker, N. T., Stone, W. W., Frey, J. W., & Wilson, J. T. (2007). Water and 

agricultural‐chemical transport in a Midwestern, tile‐drained watershed; 

implications for conservation practices. Fact Sheet ‐ U. S. Geological Survey, 6‐

6 

[7] Qiu, Z. Y. (2009). Assessing Critical Source Areas in Watersheds for 

Conservation Buffer Planning and Riparian Restoration. [Article]. 

Environmental Management, 44(5), 968‐980 

[8] Fentress, R. D. (1988). Nonpoint source pollution, groundwater, and the 1987 

Water Quality Act: Section 208 revisited. Envtl. L., 19, 807. 

[9] USDA-NRCS (Natural Resources Conservation Service). 2017. Conservation 

Technical Assistance. Web accessed: http://www.nrcs.usda.gov/programs/cta/. 

[10] USDA-NRCS (Natural Resources Conservation Service). 2017. Web accessed: 

https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/ceap/ 

https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/ceap/


83 

[11] United States Environmental Protection Agency (EPA) 319 program. 2017. 

Web accessed: https://www.epa.gov/nps/319-grant-program-states-and-

territories 

[12] United States Environmental Protection Agency (EPA) 319 Grants Reporting 

and Tracking System. 2017. Web accessed: https://www.epa.gov/nps/grants-

reporting-and-tracking-system-grts 

[13] Division of Water Quality. State of Utah. Utah Nonpoint Source Management 

Program. 2017. 

https://deq.utah.gov/ProgramsServices/programs/water/nps/NPS_Funding.htm 

[14] Agouridis, C.T., S.R. Workman, R.C. Warner, & G.D. Jennings. (2005). 

Livestock grazing management impacts on stream water quality: A review. 

Journal of the American Water Resources Association, 41(3), 591-606. 

[15] Herendeen, N., Glazier, N., 2009. Agricultural best management practices for 

Conesus Lake: The role of extension and soil/water conservation districts. J. 

Great Lakes Res. 35, 15–22  

[16] Yuan, Y., S.M. Dabney, and R.L. Bingner. 2002. Cost-effectiveness of 

agricultural BMPs for sediment reduction in the Mississippi Delta. J. Soil Water 

Conserv. 57:259–267 

[17] Yang, W., M. Khanna, R.L. Farnsworth, and H. Onal. 2003. Integrating 

economic, environmental and GIS modeling to target cost-effective land 

retirement in multiple watersheds. Ecol. Econ. 46:249– 267. 

doi:10.1016/S0921-8009(03)00141-1 

[18] Yang, W., M. Khanna, and R.L. Farnsworth. 2005. Effectiveness of 

conservation programs in Illinois and gains from targeting. Am. J. Agric. Econ. 

87:1248–1255. doi:10.1111/j.1467- 8276.2005.00814.x 

[19] Veith, T.L., M.L. Wolfe, and C.D. Heatwole. 2004. Cost-effective BMP 

placement: Optimization versus targeting. Trans. ASAE 47:1585–1594. 

[20] Rodriguez, H.G., J. Popp, C. Maringanti, and I. Chaubey. 2011. Selection and 

placement of best management practices used to reduce water quality 

https://www.epa.gov/nps/319-grant-program-states-and-territories
https://www.epa.gov/nps/319-grant-program-states-and-territories
https://www.epa.gov/nps/grants-reporting-and-tracking-system-grts
https://www.epa.gov/nps/grants-reporting-and-tracking-system-grts
https://deq.utah.gov/ProgramsServices/programs/water/nps/NPS_Funding.htm


84 

degradation in Lincoln lake watershed. Water Resour. Res. 47:1–13. 

doi:10.1029/2009WR008549 

[21] Mamo M., Ginting D., Schoengold K., Wortmann C.S. 2009. Soil-Erosion 

Economic Decision Support Tool (SEE-DST) For Land Management in 

Nebraska, EC-169. Lincoln, NE: University of Nebraska Extension. 

[22] Williams, Jeffery R., Craig M. Smith, Josh D. Roe, John C. Leatherman, and 

Robert M. Wilson. "Engaging Watershed Stakeholders for Cost-Effective 

Environmental Management Planning with “Watershed Manager”." Journal of 

Natural Resources & Life Sciences Education 41, no. 1 (2012): 44-53. 

[23] UDEQ. 2010. Utah Nonpoint Source Pollution Management Program Fiscal 

Year 2009 Annual Report. Available at 

www.deq.utah.gov/ProgramsServices/programs/water/nps 

[24] UDEQ. 2009. Utah’s Environmental Report: 2009. Available at 

http://www.deq.utah.gov/envrpt/docs/2009/2009envrpt.pdf. 

[25] UDEQ. 2014. Utah Nonpoint Source Pollution Management Program Fiscal 

Year 2014 Annual Report. Available at: 

http://www.deq.utah.gov/ProgramsServices/programs/water/nps/ 

[26] Personnel communication with Utah Division of Water Quality - Watershed 

extension – Logan office. 

[27] UDEQ Report 2002. Lower Bear River & Tributaries TMDL. Utah Department 

of Environmental Quality, Division of Water Quality. TMDL Section. Salt Lake 

City, State of Utah 

[28] Heathman, G. C., Larose, M., & Ascough, J. C. (2009). Soil and Water 

Assessment Tool valuation of soil and land use geographic information system 

data sets on simulated stream flow. Journ. of Soil & Water Cons. 64(1), 17‐32. 

[29] Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and 

water assessment tool theoretical documentation version 2009. Texas Water 

Resources Institute. 

[30] The Box Elder County Geographic Information System (GIS). 2017. Accessed 

at Jan, 2017 at http://www.boxeldercounty.org/gismaps.htm 

http://www.deq.utah.gov/envrpt/docs/2009/2009envrpt.pdf
http://www.deq.utah.gov/ProgramsServices/programs/water/nps/


85 

[31] EPA 2015. EPA Grants Reporting and Tracking System – GRTS. Access date: 

August 25, 2016. Available at: http://iaspub.epa.gov/apex/grts/f?p=GRTS:199 

[32] Wiadler, D., White, M., Steglich, E., Wang, S., Williams, J., Jones, A., and 

Srinivasan, R. (2009). Conversation Practices Modeling for SWAT and APEX. 

Available at: http://swat.tamu.edu/ 

[33] USDA-NRCS for Conservation practices database. Available at: 

www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/cp/ncps/?cid=n

rcs143_026849 

[34] NRCS Field Office Technical Guide (eFOTG), Section IV, Conservation 

Practice Standard Available at: 

https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/fotg/ 

[35] Minnesota Department of Agriculture September (2012). The Agricultural BMP 

Handbook. Available at: www.mda.state.mn.us 

[36] Horsburgh, J. S., Mesner, N. O., Stevens, D. K., Caplan, A., Glover, T., and 

Neilson, B. T. (2009). “USEPA targeted watersheds grant Bear River Basin.” 

Final Project Rep., Project # WS-97807301 

[37] Schultz, R.C., Colletti, J.C., Isenhart, T., Marquez, C.O., Simpkins, W.W., and 

C.J. Ball (2000) Riparian buffer practices. Chapter in North American 

Agroforestry: An integrated Science and practice. American Society of 

Agronomy, Madison WI 

[38] Roley, S. S., Tank, J. L., Tyndall, J. C., & Witter, J. D. (2016). How cost-

effective are cover crops, wetlands, and two-stage ditches for nitrogen removal 

in the Mississippi River Basin? Water Resources and Economics, 15, 43-56. 

[39] R Core, T.E.A.M., 2017. R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. Online: 

https://www.r-project.org/ 

[40] Python Software Foundation. Python Language Reference, version 2.7. 

Available at http://www.python.org 

  

http://swat.tamu.edu/
http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/cp/ncps/?cid=nrcs143_026849
http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/cp/ncps/?cid=nrcs143_026849
https://www.r-project.org/
http://www.python.org/


86 

OPTIMIZATION OF NONPOINT SOURCE POLLUTION CONTROL PRACTICES 

IN THE LBR WATERSHED 

 

Abstract 

Best management practices (BMPs) are implemented to reduce nonpoint source 

(NPS) pollutants from agricultural areas in a watershed. Prior to implementation of 

agricultural BMPs in the watershed, it is important first to select a suite of BMPs that can 

be both economically and environmentally efficient. Simultaneous implementation of 

BMPs in specified NPS areas could affect their reduction benefits across the watershed. 

Therefore, several methods have been developed to identify cost-effective BMP 

combinations for improving water quality using plan- (e.g., targeting method) or 

performance- (e.g., optimization) based methods with only specified sizes of NPS areas 

for implementation. The research aimed to assess the selection and placement of 

agricultural BMPs in reducing pollutant losses in a watershed using multi-objective 

optimization that can populate different sizes of areas for BMPs implementation to target 

the water quality requirements under given budget constraints. Two objective functions 

were used in the optimization process; maximizing phosphorus load reduction and 

minimizing cost of BMP implementation. The optimization framework utilized a multi-

objective genetic algorithm (AMALGAM), agricultural BMPs database, and a watershed 

model (Soil and Water Assessment Tool, SWAT). BMPs scenarios, which consist of 

Herbaceous Riparian Buffer, Cover Crops, Residue Tillage, Filter Strip, and Riparian 

Forest Buffer were considered in this study. Three scenarios of optimum BMP options 

were implemented in critical NPS areas identified in the LBR Watershed. The optimal 
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solutions produced as a Pareto front for scenarios 1, 2 and 3 generated a total phosphorus 

load reduction of 155, 160 and 150 kg/yr respectively. The cost associated with each 

reduction for each scenario was US$35,000, US$26,000 and US$25,000 respectively. 

This optimization approach achieved different target load reductions under different 

implementation costs for different sizes of NPS areas. This allows watershed managers to 

be informed about planning the different alternatives for implementing BMPs within a 

watershed. 

 

Introduction 

Best management practices (BMPs) are widely considered as effective control 

measures for agricultural nonpoint sources of sediments and nutrients. The 2014 Farm 

Bill (2014 Farm Act) was signed on February 7, 2014, and remained in force through 

2018. It provided up to $2 billion funds for conservation programs aimed at protecting 

water quality from agricultural nonpoint source (NPS) pollution [1]. Clean Water Act 

Section 319 Nonpoint Source National Monitoring Program and the Natural Resources 

Conservation Service (NRCS) provides hundreds of millions of dollars in federal funds to 

support agricultural best management practices (BMPs) in an effort to reduce pollutants 

driven into waterways. Success of such programs, however, depends upon availability of 

efficient watershed-scale planning tools. 

Implementation of agricultural BMPs is challenged by difficulties in 

incorporation of conflicting environmental, economic, and institutional concerns. Under 

the EPA’s Total Maximum Daily Load (TMDL) program, the environmental assessment 

centers around resolving social benefits such as achieving the goal of protecting water 
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bodies from pollution. While BMPs facilitate achievement such targets, their 

establishment bears additional cost for watershed management and/or agricultural 

producers. Usually, management practices are implemented under a limited budget; costs 

associated with unnecessary/redundant management actions that may affect the 

attainability of designated water quality goals. Additionally, in a watershed with multiple 

NPS areas and multiple BMPs feasible for implementation, it becomes a daunting task to 

choose a right combination of BMPs that provide maximum pollution reduction for the 

least implementation costs. Identifying optimal combinations of watershed management 

practices requires systematic methods that allow decision makers to assess their goals of 

implementing management actions under environmental and economic criteria. 

Optimization of cost-effective distribution of watershed management practices 

(mainly agricultural BMPs in this chapter) is a promising trial and error strategy that 

requires no linearity, continuity, or differentiability either for objective/constraint 

functions or for input parameters (e.g. the size of area of implementation) [2, 3]. Such a 

strategy can help accommodating certain economic and environmental criteria for 

deciding on implementation of watershed management plans with specified target values 

for pollutant loads, and total cost. 

The main goal of this chapter is to develop an optimization framework that 

enhances watershed decision makers’ capacity to evaluate a range of agricultural 

management alternatives implemented under different range of available area sizes of the 

identified NPS areas using a watershed simulation model. The method combines the use 

of: a watershed model [4] to identify the NPS areas; agricultural best management 

practices (using the database on implementation cost and removal efficiencies in Tables 
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18 and 19); development of different scenarios of implementing agricultural BMPs in 

different NPS areas (three different combination of areas and BMPs); and a genetic 

algorithm-based optimizer that can produce multiple solutions along a Pareto front. This 

method was designed to identify near optimal watershed conservation practices that 

reduce pollutant loads at a watershed outlet to target quality values with available or 

minimum budget allocated. 

 

Literature Review 

Several methods have been developed to select and place cost-effective BMPs in 

a watershed. Those methods can be categorized into either plan- or performance-based 

methods [2, 5-6]. Plan-based methods are mainly used to assign BMPs based on the 

identification of critical areas in a watershed. However, interactions among BMPs on 

pollutant reduction are typically not considered in plan-based methods, thus a BMP that 

is selected based on a certain targeting strategy may or may not be the most cost-effective 

BMP for the watershed. In contrast, optimization is a performance-based method that 

considers the effectiveness and cost of various BMPs, evaluates numerous BMP 

scenarios and incorporates the impacts of BMP interactions in assessing the cost-

effectiveness of BMP scenarios [7]. 

Genetic Algorithms (GAs) are a subset of evolutionary algorithms that mimic 

biological processes to optimize an objective function [8]. Developed by Holland (1975) 

[9], a GA allows a population composed of many individuals to evolve under specified 

selection rules to a state that maximizes/minimizes the cost. GAs do not require 

derivative or gradient information to evaluate optimal solutions [10]. After defining 



90 

optimization parameters and the objective function, potential solutions are randomly 

generated in the initial generation. Selection, crossover and mutation are the GA 

operations which generate new solutions. While crossover selects properties from parent 

solutions to the offspring solutions, mutation ensures that the search will not converge in 

local maxima/minima. The search is stopped based on selected convergence criteria. 

Many studies have combined the GA and NPS prediction models to optimize the 

BMP selection and placement in a watershed [11, 12]. Most of the previous work has 

focused on using a single objective function which combines both BMP effectiveness and 

cost [12], sequentially optimizing two objective functions separately [13] or optimizing 

two objective functions of BMP effectiveness and cost simultaneously [22]. These 

methods include a multiobjective genetic algorithm (GA) and a watershed simulation 

model to select and place BMPs [14], where the GA to search the combination of BMPs 

that minimize cost to meet pollution reduction requirements [2], and an optimization 

model based on discrete differential dynamic programming to locate BMPs in a 

watershed considering economic analysis [15]. 

Multiobjective optimization problems have been evaluated in the hydrology/water 

quality field, where optimal decisions need to be taken between two or more conflicting 

objectives. Single-objective optimization yields a single optimal solution, while a 

multiobjective optimization produces a family of near-optimal solutions known as Pareto-

optimal set. Deb et al. 2002 [16] concluded that the nondominated sorted genetic 

algorithm (NSGA-II) can search a larger number of variables and better spread of 

solutions than the Strength Pareto Evolutionary Algorithm (SPEA-2) [17]. Another 

optimization procedure developed by Vrugt and Robinson in 2007 [18] called “A Multi 
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Algorithm Genetically Adaptive Method (AMALGAM)”. AMALGAM was developed to 

be more efficient than a single algorithm optimization in watershed simulations since it 

blends four widely used optimization algorithms, including (NSGAII) [16], (SPEA-2), 

Particle Swarm Optimization (PSO) [19], and Differential Evolution (DE) [20]. The use 

of AMALGAM in identifying the Pareto front (feasible solutions) found to be useful in 

comparing effective combination of control scenarios by providing a trade-off (Pareto-

optimal front) for the near optimal solution, between the two objective functions which 

aids decision makers to choose from a range of solutions [21]. 

The Lower Bear River watershed in Box Elder County, northern Utah, is an 

important agricultural producer with high phosphorus loading to the receiving 

waterbodies. Since the development of the LBR TMDL in 2002 the LBR Watershed 

managers have depended on field inspection and the TMDL recommendations to define 

where to implement the BMPs along with spreadsheets that calculate the NPS loading. 

The lack of a decision-making tool to propose conservation projects under a fixed budget, 

made it difficult for the managers to achieve environmental goals and reduce the impact 

of NPS. These tools can support watershed improvement by locating NPS areas, 

allocating BMPs, and optimizing their implementation within the watershed. 

Accordingly, a multi-objective genetic algorithm (MoGA) using Pareto ordering 

optimization can help in comparing effective combination of control scenarios by 

identifying optimum values of the design parameters. The method in this research offered 

optimization scenarios generated by AMALGAM code with additional statistical 

analyses, to compare the most feasible implementation size of each selected NPS area to 

implement the BMP allocated specifically for that NPS area. 
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Optimization Method and Data Collection 

The optimization approach in this objective considers finding the most feasible 

size of NPS area to implement the effective agricultural BMPs in a cost-efficient manner. 

This will help the watershed managers to effectively implement and evaluate scenario 

managements under different phosphorus loads reduction targets (i.e., TMDL quality 

regulations), BMP characteristics (type, costs, reduction effectiveness), and identified 

critical NPS areas (simulated by SWAT as NPS model), with the use of multi-objective 

optimization genetic algorithm (e.g., AMALGAM) in MATLAB [22]. 

 

Multiobjective Optimization Framework 

The water quality optimization problem for the watershed involves two, 

contrasting goals. The first aims to maximize phosphorus load reduction to surface 

waters. The second aims to minimize costs for BMPs implemented to reduce phosphorus 

load.  The genetic algorithm was used in managing different scenarios of watershed 

control plans where multi-objective optimization can be formulated as a decision-making 

problem of simultaneous optimization of two or more design objectives that are 

conflicting in nature, [23, 24]. Further, the watershed managers will have the ability to 

compare the selection and placement of individual and combination of BMPs on 

watershed water quality at watershed scale under specific NPS areas for implementation. 

This approach can significantly minimize the time and cost associated with proposing 

conservation programs that include BMPs at field scale. AMALGAM optimization 

produces a family of near-optimal points known as Pareto-optimal set, which provides 
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decision makers with insight into different characteristics of the proposed scenarios 

before a final solution can be determined for which they additionally can choose to 

weight criteria to emphasize their preferences and any constraints can be placed on 

design variables. 

The optimization concept that was addressed this study is to minimize the cost of 

applicable combinations of BMPs targeting NPS critical areas of phosphorus sources 

through feasible selected NPS areas in order to meet the required water quality ends. 

Mathematically, this can be expressed as Objective function (C) as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝐶) = 𝐵𝑀𝑃𝑠𝐶 =  ∑ ∑ 𝐵𝑀𝑃𝑠𝐶𝑖𝑗

𝑗𝑖

 

 

The cost objective was compared with the other objective to maximize total 

phosphorus reduction loads from the selected NPS critical areas. Mathematically, 

Phosphorus loads reduced by each implemented BMPi in each optimized critical NPS 

area (A)j can be represented by: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑇𝑃𝑅) = 𝑀𝑎𝑥. 𝑇𝑜𝑡𝑎𝑙 𝑃 𝐿𝑜𝑎𝑑 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  𝑃_𝐿𝑇 = ∑ ∑ 𝑃_𝐿𝑖𝑗

𝑗𝑖

 

 

Where,  

𝑃𝐿𝑖𝑗 =  𝑃𝑘 × 𝑒𝑖 × 𝐴𝑘𝑖𝑗 

 

 

Subject to 

 

𝐴𝑚𝑎𝑥  ≤  𝐴𝑘  ≥ 𝐴𝑚𝑖𝑛 
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𝑃_𝐿𝑇 ≤ 𝑃_𝐿𝑚𝑎𝑥 

𝑃𝑘 ≥ 0 | 𝐴𝑘  ≥ 0 

𝐵𝑀𝑃𝑠𝐶 ≤ 𝐵𝑀𝑃𝑠𝐵𝑢𝑑𝑔 

 

 

Here,  

• BMPsC is the total cost to implement the BMPs in the LBR watershed subbasins 

• The BMPsC should not exceed the allocated budget constraint (BMPsBudg) 

• BMPsCij is the implementation cost of the BMP type i implemented in the critical 

area j.  

• Potential BMP(s) implementation/placement are identified by the Parcels map 

(available from SWAT analysis). The types of BMP i to be implemented in the 

optimized critical area (A) j) is identified in different scenarios. 

• Pk is the Phosphorus load produced/contributed by the optimized Critical Area Ak 

(values were obtained from SWAT load analysis). 

• Ak is the size of the optimized area (km2) of the critical area k value that lies 

within the HRU (optimization-defined), Amax is the maximum size of area of the 

critical areas assigned to the watershed (obtained from SWAT-Parcel analysis) 

and Amin is the minimum size of area of the critical areas assigned to the 

watershed (obtained from SWAT-Parcel analysis) 

• P_LT is the total annual phosphorus load (kg/yr) reduced by implementing the 

BMPs in the watershed subbasins (it is based on total potential load from a critical 

area multiplied by BMP reduction database), and the P_Lmax is the user defined 

(constraint) maximum limit of annual phosphorus load  
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• The phosphorus loads allowed in the watershed were obtained from LBR TMDL. 

• ei = estimated unit sediment and phosphorus removal efficiencies for each BMP i 

(obtained from the BMPs literature) 

• Non-negative decision variables: Ak, and Pk ≥ 0 

 

Environmental and Economic Criteria 

The environmental component t for the optimization model is related to the Lower 

Bear River TMDL report [25]. The LBR TMDL stated that the watershed outlet had a 

load averaging of 980 kg/day annually of total phosphorus (TP) and the allowable load 

after the NPS controls are implemented is 458.8 kg/day annually based on 0.075 mg/l 

instream concentration of TP. As a result, the LBR TMDL report suggested several goals 

to be implemented to reduce non-point source pollution to meet the state indicator 

standards by reducing the amount of pollutants entering the watershed by improving 

riparian areas, fencing and other intensive grazing croplands throughout the watershed. 

Based on this, the environmental criteria for the optimization model is to achieve 

maximum reduction of 100 kg/day and a minimum of 25 kg/day on an annual basis over 

the next five to ten years needed by increment to achieve the remaining TMDL target 

which is 520 kg/day per year. The amount of reduction depends on the removal 

efficiency of the proposed agricultural BMPs that were implemented in the optimized 

NPS areas. These removal efficiencies are estimated based on relative sources and 

studies. The economic component of the optimization system depends simply on the 

available budget of the watershed managers responsible for proposing the LBR 

conservation projects. Yet, it is also associated with the cost of implementation, 
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operation, and maintenance of proposed management practices. 

The maximum and the minimum budget was specified US$20,000 and US$5,000 

respectively, taking into consideration the nature of the watershed and the number of 

selected NPS areas for BMPs implementation that was set in this study. The total cost of 

implementation of agricultural BMPs was estimated based on relative sources and 

literature as shown in Table 18. The BMPs cost proposed includes the installation, 

maintenance, and management costs. 

 

Pareto Optimal Solution 

In the presence of conflicting objectives in many engineering disciplines 

situations, solutions are chosen such that there are reasonable trade-offs among these 

objectives. Pareto search is an approach for handling such situations. As a replacement 

for providing a single optimal solution, many solutions are generated that satisfy Pareto 

Optimality Criterion forming a set of Pareto front surface of optimal solutions. Each 

Pareto optimal solution is good in some respects and depends on the preferences and 

constraints set by the decision maker [26]. The Pareto front helps engineers and managers 

to visualize the trade-offs that need to be made under different objectives. 

Further, estimating the goodness of solutions in the Pareto optimal front is 

subjective. As the front moves, it is ensured that the magnitudes of the objective 

functions (high total P reduction and low cost is desired) for the solutions get reduced in 

the direction of both objectives. Therefore, the Pareto-optimal front as far from the origin 

(e.g., the ideal is to have 0 cost and 0 remaining TP) as possible is desired. In this case 

study, the Pareto front presents the tradeoff between the two objective functions with the 
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x-axis representing the pollutant load reduction and y-axis representing the 

implementation costs. Each solution on this tradeoff curve represents a BMP 

implemented in an optimized NPS area as demonstrated in Figure 20. 

 

AMALGAM Algorithm Code Development 

The multi-objective genetic algorithm considered for optimization in the research 

is A Multi Algorithm Genetically Adaptive Method (AMALGAM) that was developed 

by Vrugt and Robinson in 2007 [18]. AMALGAM was selected because of its efficiency 

in locating the optimum solutions in a variety of applications [27-30]. In AMALGAM, 

four different sampling-based heuristic optimization algorithms are used: genetic 

algorithm (NSGA-II), particle swarm optimizer, adaptive Metropolis search, and 

differential evolution [18, 20, 31-32]. 

 

 

Figure 20. Demonstration of Pareto Optimal Front for maximizing the TP/TSS 

load reduction vs minimizing the Cost associated with BMPs implementation 

 



98 

The AMALGAM optimization script and its functions were written in 

AMALGAM files as detailed in Appendix 1. All statistical analysis for optimization 

results was performed in the R language [33]. AMALGAM optimization produces a 

family of near-optimal points known as the Pareto-optimal set within a single 

optimization run which provides set of solutions that can be compared. 

 

Optimization Application 

The AMALGAM optimization application for selecting agricultural BMPs uses 

the steps below: 

▪ Identify critical areas using SWAT as an NPS watershed model; 

▪ Identify sediment and phosphorus sources and reduction targets as set in the 

TMDL; 

▪ Identify potential BMP types, unit cost, and reduction efficiency from the 

selected Agricultural BMPs dataset that are applicable for each NPS area. 

▪ Developing different scenarios for implementing selected Agricultural BMPs 

in selected NPS areas  

▪ Writing the functional code (MATLAB) for producing management scenarios 

that incorporates each BMPs implementation and their cost in the optimized 

NPS area. 

▪ Implement the multi-objective optimization program that produces set of 

Pareto solution of optimal solution using the optimized NPS areas. 
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Study Area 

The research was conducted in the LBR watershed located in Box Elder County, 

Northern Utah, USA as shown below in Figure 21. The LBR watershed is unique because 

it is almost completely dominated by agriculture (76%) and range, with very little urban 

development (4%); therefore, the research can focus on the effects of changes in 

agricultural practices and their related BMPs [34]. 

 

 
Figure 21. Location of Lower Bear River and Malad River in Northern Utah 
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Two waterbody segments (the LBR from Cutler Reservoir to the confluence with 

Great Salt Lake and the Malad River from the Utah-Idaho state line to the Bear River 

confluence) were declared impaired in Utah’s year 2000 303(d) list of water bodies 

needing TMDL analyses [27] based on Clean Water Act requirements of the state of 

Utah.  

Water quality data sampling and collection from the LBR watershed was 

inconsistent in the past 20 years. Samples obtained from USGS water information system 

were more intensively taken in the period between from 2000 - 2003 and again between 

2008 and 2009 (Figure 22). 

 

 

Figure 22. Distribution of water quality samples collected at the outlet of the study area 

(USGS 10126000 Bear River near Corinne, UT). 
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NPS areas using the SWAT watershed model  

 

Based on the resulting Parcel map with loads from the calibrated and validated 

SWAT watershed model over the period from 2000 till 2010 in Chapter 2 and 3, the 

possible NPS locations were identified and selected as shown in Table 24 as a case study 

considered in this chapter. 

 

Table 24. List of selected NPS areas of high total phosphorus yield annually in the LBR 

watershed. 

Subbasin ID FID_Parcel 
Parcel_Area  

(Km2) 
TP_Yield 

(kg/yr/Km2)* 

123 5115 0.790 3.70 

123 6473 0.374 3.70 

125 1142 0.334 123.74 

11 1146 0.320 123.74 

125 1069 0.318 123.74 

121 2946 0.314 52.36 

123 1677 0.275 3.70 

125 5 0.252 123.74 

120 5706 0.250 221.19 

125 1252 0.248 123.74 
121 930 0.222 52.36 

125 1189 0.222 123.74 

123 1552 0.212 3.70 

123 3318 0.211 3.70 

123 574 0.207 3.70 

123 1665 0.203 3.70 

123 3249 0.191 3.70 

121 936 0.178 52.36 

121 939 0.158 52.36 

121 920 0.157 52.36 

* TP_Yield: total phosphorus yield (kg/yr/Km2) from the corresponding subbasin  
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Agricultural BMPS 

The Agricultural BMPs database (Agricultural BMP Database Portal project 

website: http://www.bmpdatabase.org/agBMP.htm) provides information for the costs 

and pollution removal efficiency estimates for each BMP to be implemented in the LBR 

watershed. Data and information were collected from several relevant standards, studies 

and literature. In addition, records from Environmental Protection Agency's Grants 

Reporting and Tracking System (GRTS) [31] can give historical NPS projects and the 

implemented BMPs in the LBR watershed. Table 25 is a summary of collected BMPs 

data and its characteristics that were implemented in this case study. 

Table 25. Summary of proposed Agricultural BMPs database in the LBR watershed 

BMP Type/Practices 

NRCS 

Practice 

Code 

Units (Based 

on Parcel 

Area) 

Cost Per 

Unit 

(US $) 

TSS % 

Reduction 

Efficiency 

TP% 

Reduction 

Efficiency 

Filter Strips  
Strips or areas of herbaceous 

vegetation that remove 

contaminants from runoff flow 

393 Km2 54,363.0 60 50 

Riparian Forest Buffer 
They are adjacent to water 

resources that protect water from 

nonpoint source  

391 Km2 81,545.0 65 55 

Residue and Tillage 

Management, No till 

Conservation (Planting Systems) 
329 Km2 7,413.15 65 50 

Herbaceous Riparian 

Buffer 
Grasses, like plants & forbs that 

are tolerant of intermittent 

flooding that are in between 

terrestrial & aquatic habitats 

390 Km2 3,707.0 60 55 

Contour buffer strips 
Strips of herbaceous vegetative 

cover around hill slope, & 

alternated down slope with 

wider cropped strips that are 

farmed on contour 

332 Km2 12,355.0 65 55 

Cover Crops 
Plants that are used to protect 

soils during the period between 

harvest & establishment of crops 

340 Km2 14,826.0 25 25 
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Table 26. Selected BMPs for the study area (refer to Table 18 for more information)  

BMP type BMP(#) Cost (US$) per Km2 TP_Eff % 

Herbaceous Riparian Buffer  (1) 741.4 65 

Cover Crops  (2) 2,965.2 25 

Residue Tillage  (3) 7,413.2 50 

Filter Strip  (4) 10,872.6 50 

Riparian Forest Buffer  (5) 16,309.0 55 

Contour Buffer Strips  (6) 2,471.0 55 

 

The final selected agricultural BMPs for the case study in the LBR watershed are 

identified in detail of their cost and total phosphorus removal efficiency in Table 26. 

 

Practices Management Scenarios 

To implement the optimization procedures, possible three scenarios were 

developed to be included in the optimization process. These scenarios include 

implementing different agricultural BMPs in different NPS areas as shown in Table 27. 

The range of implementation size for each BMP was determined based on the Parcel 

areas provided by Box Elder County GIS portal (Box Elder County Geographic 

Information Systems (GIS) - http://www.boxeldercounty.org/gismaps.htm). 

The scenarios that were developed considered the fact that BMPs selected are 

applicable and adaptable to any situation in the study area based on the history of past 

BMPs implemented in the watershed. BMPs selected proved through literature its 

http://www.boxeldercounty.org/gismaps.htm
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efficiency in reducing total phosphorus loads as well to its cost of implementation and 

maintenance which can help the farmers/watershed managers to get funds under different 

state and federal programs (Section 319 Nonpoint Source Competitive Grants Program, 

for example) that could install BMPs to mitigate or prevent impacts on water quality. 

Lastly, the developed optimization process took into consideration selecting critical 

agricultural NPS areas that contribute greatest phosphorus losses in the watershed.  

 

Optimization Code Application 

The optimization model was run using an AMALGAM algorithm developed for 

MATLAB. The optimization run for each scenario was performed using the following 

files (full details about these files can be found in Appendix 3):  

▪ Data.dat file to create and edit the variables. 

▪ Amalgam-zed file to record the optimization functions for cost and load 

reduction. 

▪ optimization.m file to set up the run (number of iterations along with 

generation of the data). 

▪ runAmalgam.m file to run the code and to check the results along with 

the Pareto solution front. 
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Table 27. Scenarios of different combinations of agricultural BMPs and selected NPS areas 

in the LBR watershed. 

Subbasin 
FID 

Parcel 

Pk P load 

(kg/yr/Km2) 

Amax. NPS 

area (Km2) 

Amin. NPS 

areas (Km2) 

Scenario 1 

BMP (#) 

Scenario 2 

BMP (#) 

Scenario 3 

BMP (#) 

123 5115 3.70 0.790 0.395  (3)  (6)  (4) 

123 6473 3.70 0.374 0.187  (4)  (2)  (3) 

125 1142 123.74 0.334 0.167  (6)  (6)  (6) 

11 1146 123.74 0.320 0.160  (5)  (5)  (2) 

125 1069 123.74 0.318 0.159  (3)  (3)  (1) 

121 2946 52.36 0.314 0.157  (5)  (3)  (4) 

123 1677 3.70 0.275 0.137  (3)  (3)  (3) 

125 5 123.74 0.252 0.126  (5)  (5)  (6) 

120 5706 221.19 0.250 0.125  (4)  (6)  (5) 

125 1252 123.74 0.248 0.124  (2)  (2)  (2) 

121 930 52.36 0.222 0.111  (5)  (1)  (3) 

125 1189 123.74 0.222 0.111  (3)  (6)  (4) 

123 1552 3.70 0.212 0.106  (4)  (4)  (2) 

123 3318 3.70 0.211 0.105  (1)  (1)  (3) 

123 574 3.70 0.207 0.103  (2)  (2)  (4) 

123 1665 3.70 0.203 0.102  (6)  (4)  (5) 

123 3249 3.70 0.191 0.095  (5)  (5)  (5) 

121 936 52.36 0.178 0.089  (3)  (3)  (2) 

121 939 52.36 0.158 0.079  (1)  (5)  (1) 

121 920 52.36 0.157 0.078  (4)  (4)  (3) 

 

Results and Discussion 

The NPS areas with phosphorus loading rates were selected from the output of the 

calibrated and validated SWAT watershed model. The agricultural BMPs information 

was collected from relevant studies and literature as shown in Table 18. Both the selected 

agricultural BMPs and the NPS areas at parcel scale were combined through a targeting 

method shown in Chapter 3 to develop three scenarios for implementation across the 

LBR watershed. The three scenarios were applied in the AMALGAM optimization model 

to generate sets of solutions formed as in Pareto front corresponding to two objective 

functions. The two objective functions in the optimization model calculate the total 
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phosphorus reduction and the associated cost of that reduction out of implementing its 

BMP. 

The solutions generated to form the Pareto front surface were combinations of 

BMPs implemented in the proposed NPS areas. Each combination provided a value of the 

total phosphorus reduction and the total cost of implementing the scenarios. Initially, 

scenario 1 was applied to test the sensitivity of GA parameters and their impact on the 

optimization results. The GA parameters (population size, generations, mutation, and 

cross over) were changed, one at a time, to evaluate the effects of each parameter on the 

Pareto-front as shown in Table 28. 

As referred in AMALGAM manual in Appendix 3, the default value for crossover 

probability rate is 0.9 and the mutation rate equals 1/d (number of variables), i.e. = (1/ 

#NPS areas) = 1/20 = 0.05. Two statistical analyses showed that these runs have the same 

mean and homogenous variance as shown in Appendix 3. We can conclude that the 

number of generations, crossover probability rate and the mutation rate have no 

significant impact on the optimization model. In this study, a 1000 population with 100 

generations besides the default values for crossover and mutation was considered for each 

scenario.  

 

Table 28. GA parameters tested for sensitivity analysis 

GA 

Parameter 
1st Run 2nd Run 3rd Run 4th Run 5th Run 6th Run 

Population 1000 1000 1000 1000 500 2000 

Generation 100 100 200 100 100 100 

Cross over 0.5 0.9 0.9 0.9 0.9 0.9 

Mutation 0.05 0.05 0.05 0.5 0.05 0.05 
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Scenarios 

The Pareto distribution of solutions for Scenario 1 is shown in Figure 23. We can 

infer that there are set of solutions that can give a max reduction of 165 kg/yr for 

maximum cost of almost US$47,500, while a minimum annual phosphorus reduction can 

go down to 85 kg/yr for a budget of US$ 24,000 and still meet water quality criteria. The 

optimal solutions generated by the populated sizes of the NPS areas are centered around 

155 kg/yr of total phosphorus load reduction that can cost around US$35,000 to 

implement the proposed agricultural BMPs. The trade-off between the two objective 

functions (total cost and total reduction) was generated by populating the sizes of NPS 

areas and implementing BMPs in these areas.  
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Figure 23. Pareto front solutions generated in MATLAB for Scenario 1 
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We can also see the mean value of the populated sizes of each NPS area proposed 

in Scenario 1 (denoted as x variable) in Figure 26 in Appendix 3. See Table 27 for the list 

of selected agricultural BMPs and the NPS areas as parcels. 

 

For Scenario 2, the Pareto front distribution of the generated solutions combining 

the selected agricultural BMPs with the populated sizes of area can be visualized in 

Figure 24. The Pareto solutions gave a maximum reduction of 168 kg/yr for almost 

maximum US$36,000, while a minimum phosphorus reduction was 85 kg/yr for a budget 

of US$ 17,500. The optimal solutions are centered around 160 kg/yr of total phosphorus 

load reduction that cost around US$26,000 to implement the proposed agricultural BMPs. 

The convergence of the Pareto front towards the center of the two axis is not as smooth as 

in Scenario 1 due to given scenario’s parameters, constraint functions, available NPS 

areas, proposed BMPs and their costs. The mean values of the optimized sizes of NPS 

areas in Scenario 2, is listed in Figure 27 in Appendix 3. See Table 27 for the list of 

selected NPS areas as parcels. 

 

The Pareto solutions for Scenario 3 provided alternatives to reduce the total 

phosphorus loads from 80 to 155 kg/yr under a cost range of US$20,000 to US$42,000, 

centered around 150 kg/yr for a budget of US$25,000 as shown in Figure 29. These 

optimized solutions are related to the sizes of the NPS areas that were optimized in the 

model for implementing the targeted agricultural BMPs. The mean values of the 

optimized NPS areas in Scenario 3 can be seen in Figure 28 in Appendix 3. 
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Figure 24. Pareto front solutions generated in MATLAB for Scenario 2 
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Figure 25. Pareto front solutions generated in MATLAB for Scenario 3 
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Table 29. Pareto solution for the proposed three scenarios 

Description Scenario 1 Scenario 2 Scenario 3 

Reduction of TP loads  155 kg/yr 160 kg/yr 150 kg/yr 

Cost of associated BMPs  US$35,000 US$26,000 US$25,000 

 

Each scenario produced a set of Pareto solutions that converged towards the 

center of the two objective functions (total cost and total load reduction) as shown in 

Table 29 where scenario 3 demonstrated the optimal solution for the study area. This 

implies the feasibility of the optimization model and its parameters to provide Pareto 

front solutions. 

 

The optimization approach proposed in this chapter using Pareto Optimal solution 

provided alternative options to for locating BMPs through assessing their impact on water 

quality while keeping in mind the availability of budget. The approach allows the 

watershed managers to apply different BMPs across different NPS critical areas taking 

into consideration availability of budget, landowners’ willingness to implement BMPs, 

lifespan of BMPs, environmental benefits, monitoring and evaluation, BMPs 

maintenance, duration of the projects (e.g., five to ten years) and their knowledge about 

the watershed conditions. The approach can guide the manager to select a particular BMP 

for each NPS area and then the optimizer shall determine a portion of the NPS area to 

apply the BMP. The cost of implementation is then the size of area (Km2) times the cost 

of that BMP/area with the idea to maximize Total P removal while minimizing costs. 
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For this analysis, it was assumed that all the aforementioned factors were taken 

into consideration during the selection of the agricultural BMPs as well as the identified 

NPS areas, however, it may not be the case when the BMPs are implemented. Most of the 

research was optimizing the cost against the nutrient load reduction to get the optimal 

BMP set, while we state here the importance of addressing the size of NPS areas to have 

the BMPs implemented. As such, this would give the watershed managers and the owners 

the opportunity to discuss and negotiate the benefits of such implementation.  

 

Conclusion 

In an agricultural watershed with multiple NPS areas and multiple agricultural 

BMPs feasible for implementation, it is an exhausting and expensive task to choose a 

right combination of BMPs that provide maximum pollution reduction for least 

implementation costs. Identifying optimal solutions of watershed management practices 

requires systematic approaches that allow decision makers to assess their goals of 

implementing management actions under environmental and economic criteria. 

In this chapter, the optimization framework utilized the calibrated and validated 

SWAT model simulated over the period 2000-2010 in the Lower Bear River watershed to 

identify the nonpoint source areas, literature information about the types, costs, and 

phosphorus removal efficiencies regarding selected Agricultural BMPs, economic and 

environmental criteria, and finally a GA (AMALGAM algorithm) optimization technique 

to find the best combinations. The main variable to be optimized is the size of the 

available NPS area for BMPs’ implementation. The optimization model was tested for its 

GA parameters by running scenario (1) six times, and in each run a GA parameter is 
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changed. The GA parameters examined were: population, generation, crossover 

probability and mutation probability. Statistical analysis showed no significant difference 

among the six runs, implying that the GA parameters have no effect on the optimization 

model results. Other runs for the other scenarios were completed using a population of 

1000 and a generation of 100, plus the default values of crossover and mutation. Three 

different scenarios of with different suite of agricultural BMPs selected for 

implementation in different NPS areas identified by the SWAT model for this study. 

A MATLAB computer program was used to run the AMALGAM code in 

addition to the defined variables and the two objective functions for total phosphorus 

reduction and total implementation costs in different MATLAB files within the 

AMALGAM code. The optimization model was tested for optimizing the sizes of the 

selected NPS areas of high phosphorus loading rates using different agricultural BMPs of 

herbaceous riparian buffer, cover crops, residue tillage, filter strip, riparian forest buffer 

and contour buffer strips in the LBR watershed. 

The optimization of the three scenarios were performed based on two different 

GA parameters: population (1000) and generation (500) in each run. Each run provided a 

different set of Pareto front solutions made of implementing the agricultural BMPs in the 

selected NPS areas. The optimal solutions produced by the Pareto front for Scenarios 1, 2 

and 3 generated a total phosphorus load reduction of 155, 160 and 150 kg/yr respectively, 

and the cost associated with each reduction for each scenario was US$35,000, US$26,000 

and US$25,000 respectively.  

This study resulted in incorporating the sizes of populated NPS areas that will 

give much flexibility to the decision makers to select from to implement their agricultural 
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BMPs within a given budget and a water quality strategy. Previous studies determined the 

solutions based on given exact NPS areas with multiple choices of BMPs to be 

implemented. The study showed the implementation of a BMP per area in different 

scenarios using area factor as the variable to be populated and optimized based on given 

economic and environmental criteria. The results produced different set of optimum 

solutions for implementation at watershed scale. This approach can be further developed 

to be an interactive tool for the watershed managers or the decision-makers who plans to 

propose set of conservation projects where they can have an insight into different 

characteristics of the proposed management plans before a final solution is considered. 
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SUMMARY AND CONCLUSIONS 

 

In this dissertation, watershed models and decision approaches were developed to: 

(1) simulate the movement of water flows and to estimate the sediments and total 

phosphorus load releases to waterbodies in  Lower Bear River watershed in northern 

Utah, (2) select a combination of best management practices (BMPs) to maintain water 

quality standards within a specified budget, and (3) generate the optimum areas of 

nonpoint sources that can be used for agricultural implementation to reduce total 

phosphorus load releases and to minimize the cost of implementation. These tools are 

presented in three independent studies in Chapters 2, 3 and 4. 

Chapter 2 highlights the water quality issues in the Lower Bear River (LBR) 

watershed, Box Elder County in northern Utah. A watershed simulation model (SWAT) 

was developed in a GIS environment to simulate monthly flow, sediment and total 

phosphorus loads. Input data such as digital elevation model (DEM), land use, soil and 

climatic information were used for SWAT, using a watershed delineation that creating 

126 Subbasins across the LBR watershed. SWAT was then used to simulate the period 

between 2000-2010, using a two-year warm up period. LOADEST was utilized to 

generate measured monthly concertation loads of sediments and phosphorus over the 

period of simulation due to lack of water quality parameters over several period of times 

at the outlet of the watershed. SWAT was calibrated using SWAT-CUP software to 

enable various calibration/uncertainty analyses for more than 20 different parameters 

related to flow, sediments and total phosphorus. The final set of calibrated parameters in 

SWAT provided good representation of monthly flow, sediments and total phosphorus 
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loads covering the period 2002-2005. The validation of the model calibration used data 

from 2006 and 2010 and showed good prediction for both flow and total phosphorus, but 

poor prediction for the sediment load. SWAT was able to map out spatially the nonpoint 

source areas based on land cover/use and terrain features for further research and use in 

this dissertation. 

Chapter 3 addresses the problem of total phosphorus loading in the LBR 

watershed in Utah. To tackle the field scale versus SWAT output, the total phosphorus 

loading rates from the 565 hydrological responses units (HRU) developed in SWAT were 

projected via ArcMap processing tools (zonal statistical and intersect spatial analysis) to a 

Parcel map of Box Elder County, Utah, where the watershed is located. This provided 

realistic sizes of NPS areas for management practices implementation. Further, the 

chapter provided information of agricultural BMPs that are applicable in the LBR 

watershed. Subsequently, a simple combination tool was developed to provide the cost-

effective combination of BMPs and selected NPS areas to reduce phosphorus loading 

within LBR watershed. The written code pairs agricultural BMPs and NPS areas to 

maximize the total phosphorus reduction under a specified budget. Each budget may 

produce a set of different combination solutions to be implemented with different load 

reduction. Combination and post-processing results suggest that agricultural BMPs such 

as cover crops, filter strips, and buffers for private land grazing and diffuse runoff areas 

can feasibly reduce the phosphorus loads in the LBR watershed. This combination tool 

can help watershed managers to evaluate alternatives of management practices to reduce 

phosphorus load in watersheds under specific budgets. 
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In Chapter 4, an optimization framework was developed to utilize the output of 

SWAT model simulated over the period 2000-2010 in the Lower Bear River watershed to 

identify the nonpoint source areas, the literature information about the types, costs, and 

phosphorus the removal efficiencies of selected Agricultural BMPs, the economic and 

environmental criteria, and finally a GA (AMALGAM algorithm) optimization 

technique. Three scenarios of different agricultural BMPs selected to be implemented in 

different NPS areas were prepared for optimization. The optimization model was tested 

for optimizing the selected NPS areas of high phosphorus loading rates using different 

agricultural BMPs of herbaceous riparian buffer, Cover Crops, residue tillage, filter strip, 

riparian forest buffer, and contour buffer strips in the LBR watershed. The populated 

areas were considered variables in calculating the two objective functions: total reduction 

of phosphorus loads and the cost of implementation. This study concluded that 

incorporating the populated sizes of NPS areas will give much flexibility to the decision 

makers to select where to implement their agricultural BMPs within a specified budget 

for implementation and a water quality protection strategy to meet.  

State regulators from the Utah Department of Environmental Quality and 

personnel from Utah State University-Bear River Watershed extension participated in 

chapter 3 by providing the current best management practices implemented so far along 

with their associated costs. They also provided feedback on the modeling the LBR 

watershed in Chapter 2. Pacificorp Co. was helpful in providing flow and water quality 

data regarding the discharge beyond cutler reservoir. 

In conclusion SWAT was able to characterize the flow, sediments and total 

phosphorus loads in the LBR watershed, although it was a time-consuming process to 
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calibrate and validate SWAT. However, SWAT, as a watershed model, is very 

comprehensive and powerful providing the ability to propose scenarios and management 

practices within a watershed. As with all models, its performance depends on the quality 

and the quantity of the input data available about the study area. There were many 

uncertainty factors that impacted the calibration-validation process of SWAT. Water 

quality sampling was inconsistent during the simulation period (2002-2010). Using 

LOADEST was helpful to generate monthly load concentration based many regression 

formulas, but it was also predicting the observations to predict other data.  SWAT-CUP 

was very useful for calibrating and validation the model during the course of this work. It 

was found that calibration using SWAT-CUP requires longer computation time (because 

of the many iterations) than SWAT simulation itself. It is recommended to have 

supercomputer resources for such calibration and sensitivity analysis of SWAT 

parameters, to speed the calibration process.  

Sediment and phosphorus pollutant loadings were estimated at Parcel map scale. 

The HRUs were processed to obtain their average weighting of loads, then using spatial 

analyst tools (zonal statistics and intersect), this process was very helpful in identifying 

the appropriate NPS areas with implementation area that represents the ground. 

The optimization model developed is general and can be easily extended to other 

watersheds to develop the Pareto-optimal fronts. The model gives a range of options 

available for pollution reduction and their corresponding costs for the implementation of 

BMPs and the selection of a combination is subjective. This trade-off can aid the 

watershed modelers in TMDL development and to estimate the corresponding cost for the 

placement of BMPs to achieve TMDL goals. 
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The evaluation of the optimal BMPs combination in selected NPS areas using a 

simple optimization approach of combination, proved to be efficient with clear 

combination practices to be implemented to meet the water quality and budget 

constraints. The solutions obtained from the combination procedures were optimal for 

both reducing total phosphorus losses by placing agricultural BMPs in high phosphorus 

loading areas. Further, using the multiobjective GA optimization tool with selected BMPs 

targeting specific NPS areas showed promise. The optimization considers populating 

different sizes from the given area of NPS areas for the BMPs to be implemented This 

could result in less management burden, agreement and acceptance by the landowners 

and farmers, and more alternatives for the watershed managers to plan their water quality 

control efforts. After all, it is essential to differentiate the impacts of land use changes 

from the impacts of conservation practices in order realize a true picture of the 

conservation effectiveness. It is important to incorporate human factor in any 

optimization process which includes the wellness and adoption of farmers to implement 

BMPs and to incorporate social norms and uncertainty into decision-making. Some 

assumptions but to extent were made during the course of this study to facilitate the 

applying the optimization procedures and the results.   
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RECOMMENDATIONS/FUTURE WORK 

 

Presently, there are thousands of impaired streams in the U.S. due to non-point 

sources (NPS) pollutants from agricultural watersheds. Therefore, understanding the 

responses of streams for various agricultural cropping systems, change in land use and 

land cover and agricultural BMPs is crucial for successful stream restoration towards 

providing the intended ecosystem services. The SWAT model can simulate the NPS 

sediment and nutrient loadings.  Thus, applying SWAT in agricultural watersheds and 

having optimization tools can provide watershed managers and policy makers with the 

best location and most cost-efficient conservation practices to implement. 

When applying SWAT to analyze agricultural watersheds, it is recommended to 

simulate watersheds using available and continuous flow and water quality data to 

minimize the uncertainties when it comes to calibration and validating the watershed 

model. SWAT-CUP is a very useful and powerful, but prior experience and the 

availability of supercomputers will facilitate the calibration and sensitivity process. It is 

also recommended when delineating the watershed and creating the subbasins, to assign 

their outlets at existing monitoring stations or similar Location. This can help in the 

calibration and validation procedures for a particular subbasin and then to generalize the 

parameters of the calibrated SWAT to nearby subbasins. 

Though we use monitoring stations and US Geological Survey (USGS) flow and 

total phosphorus (TP) data to estimate phosphorus retained in soils, future work needs to 

better quantify P stored in the stream system. It is recommended to study floodplains, 

streambanks and stream sediment to quantify stored P. This could be done through 
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multiple sampling of soil in each of these areas of storage and the spatial distribution of 

the TP to be analyzed. This will aid in both P modeling and to identify potential 

conservation practices. 

In this study, two objective functions, maximizing the pollutant load reduction 

and minimizing the BMP-implemented cost, were used. With additional objective 

functions, a more optimal set of BMPs may be obtained using the optimization tool, 

which can easily be extended to more objectives. Other types of BMPs than the 

agricultural practices, could be applied in the study to assess their effectiveness and 

performance within the watershed using the optimization methods we have developed in 

this study. The combination tool can be further developed to be an interactive tool with 

stakeholders or watershed managers either through online or through an executable file 

with simple GUI interface. The same is true for the optimization model. The users can 

incorporate their knowledge and data about the BMPs, locations, watershed economic 

and environmental criteria to then evaluate their options.  

The continuation of the land use/land cover change poses a challenge to the LBR 

watershed. In response, these changes should be monitored for their impact on the 

watershed management and operation. It is also useful to consider those changes for 

future studies such as TMDL, water quality studies and prevention measures. 

The research could be further used for assessing the impacts of climate change. 

Different climate change scenarios on agricultural watershed water quantity and quality, 

and crop production can be applied using greenhouse gas emission scenarios. Greenhouse 

gas emissions are called representative concentration pathways (RCPs).  
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APPENDIX 1 

Table A 1. Simulated 126 subbasins using SWAT watershed model 

 

SUB AREAkm2 

1 29.38 

2 10.68 

3 10.20 

4 0.01 

5 21.17 

6 10.93 

7 20.14 

8 10.54 

9 8.63 

10 17.56 

11 0.89 

12 13.50 

13 1.40 

14 10.11 

15 11.30 

16 32.43 

17 13.68 

18 0.26 

19 6.29 

20 27.27 

21 0.23 

22 16.72 

23 10.20 

24 20.81 

25 8.38 

26 14.02 

27 10.52 

28 0.97 

29 14.33 

30 16.01 

31 27.28 

32 50.26 

33 17.02 

34 19.11 

35 28.64 

36 11.06 

37 2.28 

38 35.45 

39 10.75 

40 25.19 

41 11.92 

42 6.83 

SUB AREAkm2 

43 0.18 

44 20.07 

45 19.69 

46 7.93 

47 16.53 

48 4.15 

49 13.00 

50 41.08 

51 18.36 

52 18.22 

53 38.06 

54 21.55 

55 24.46 

56 16.87 

57 1.85 

58 18.10 

59 18.50 

60 4.39 

61 28.64 

62 22.70 

63 12.64 

64 0.98 

65 0.96 

66 18.15 

67 6.53 

68 1.32 

69 17.05 

70 4.32 

71 63.58 

72 8.97 

73 18.80 

74 11.29 

75 0.09 

76 10.71 

77 12.39 

78 17.57 

79 5.78 

80 14.25 

81 11.34 

82 0.04 

83 12.91 

84 17.12 

SUB AREAkm2 

85 31.62 

86 28.58 

87 0.11 

88 0.48 

89 10.64 

90 26.49 

91 19.65 

92 34.66 

93 13.20 

94 0.14 

95 14.03 

96 14.73 

97 1.04 

98 10.36 

99 13.85 

100 42.97 

101 21.42 

102 18.66 

103 30.09 

104 13.24 

105 23.55 

106 13.60 

107 0.42 

108 27.46 

109 0.33 

110 11.68 

111 1.13 

112 8.48 

113 18.49 

114 11.57 

115 3.97 

116 17.41 

117 52.41 

118 2.74 

119 14.69 

120 5.73 

121 25.08 

122 23.74 

123 96.72 

124 43.43 

125 11.34 

126 2.50 
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Table A 2. Soil Profiles Distribution in the Simulated Watershed  

Name Code Area (ha) Area (Km2) % 

VALMAR ID011 8081.2084 80.81 4.04 

REXBURG ID012 4097.3875 40.97 2.05 

PAVOHROO ID013 7528.0324 75.28 3.77 

COPENHAGEN ID045 3070.7028 30.71 1.54 

STERLING ID048 4998.5466 49.99 2.50 

HYMAS ID049 7003.0906 70.03 3.51 

LOGAN ID050 8932.9126 89.33 4.47 

GOOSE CREEK ID051 3459.9582 34.60 1.73 

YAGO ID052 4619.6318 46.20 2.31 

RIRIE ID054 20437.7523 204.38 10.23 

RIDGECREST ID062 40487.3282 404.87 20.27 

SAMARIA ID175 15504.8459 155.05 7.76 

KEARNS ID487 1779.5689 17.80 0.89 

AGASSIZ UT064 6095.9969 60.96 3.05 

MIDDLE UT067 1967.6776 19.68 0.98 

STERLING UT068 6934.9326 69.35 3.47 

KEARNS UT069 16454.3809 164.54 8.24 

FIELDING UT071 6016.779 60.17 3.01 

HONEYVILLE UT073 7466.1687 74.66 3.74 

LASIL UT074 3521.7319 35.22 1.76 

WHEELON UT090 1948.525 19.49 0.98 

 UT098 831.8322 8.32 0.42 

RIDGECREST UT146 18380.0667 183.80 9.20 

 UT554 165.9888 1.66 0.08 

Total     1997.85 100 

Watershed Simulated Area 1997.85   

 

Figure A 3. Landuse Distribution Profiles  
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Table A 4. Measured vs. simulated monthly flow (m3/sec) at the outlet of the LBR 

watershed  

 

Time Measured Simulated 

Jan-02 33.075 16.89 

Feb-02 27.466 19.32 

Mar-02 36.817 36.43 

Apr-02 44.061 54.79 

May-02 18.013 28.03 

Jun-02 7.064 10.606 

Jul-02 2.328 7.928 

Aug-02 1.882 5.392 

Sep-02 8.661 19.59 

Oct-02 12.712 9.201 

Nov-02 19.876 14.47 

Dec-02 23.194 15.987 

Jan-03 21.395 17.209 

Feb-03 25.460 20.78 

Mar-03 28.123 32.95 

Apr-03 30.982 46.26 

May-03 7.945 15.15 

Jun-03 2.290 6.019 

Jul-03 1.145 1.874 

Aug-03 1.426 2.788 

Sep-03 3.168 4.267 

Oct-03 9.942 7.125 

Nov-03 18.767 12.996 

Dec-03 20.060 13.178 

Jan-04 24.618 16.932 

Feb-04 29.270 18.248 

Mar-04 44.220 51.35 

Apr-04 31.066 61.439 

May-04 11.465 25.39 

Jun-04 14.234 15.34 

Jul-04 1.218 9.241 

Aug-04 1.324 6.602 

Sep-04 3.724 5.782 

Oct-04 15.292 4.853 

Nov-04 21.106 10.712 

Dec-04 29.906 22.721 

Jan-05 35.099 31.399 

Feb-05 28.756 23.687 

Time Measured Simulated 

Mar-05 63.208 44.344 

Apr-05 88.188 69.22 

May-05 166.028 96.12 

Jun-05 91.772 42.234 

Jul-05 6.903 11.97 

Aug-05 4.844 10.78 

Sep-05 8.414 7.547 

Oct-05 21.969 13.45 

Nov-05 24.660 19.838 

Dec-05 33.679 25.291 

Jan-06 51.296 31.18 

Feb-06 44.869 37.441 

Mar-06 70.783 75.023 

Apr-06 140.678 84.49 

May-06 109.102 49.85 

Jun-06 33.994 25.823 

Jul-06 3.473 6.135 

Aug-06 4.224 7.741 

Sep-06 18.126 17.958 

Oct-06 31.466 15.352 

Nov-06 36.740 18.462 

Dec-06 40.027 29.417 

Jan-07 36.979 26.023 

Feb-07 42.273 24.963 

Mar-07 53.437 34.71 

Apr-07 40.835 68.36 

May-07 13.078 27.752 

Jun-07 3.038 17.526 

Jul-07 2.189 6.842 

Aug-07 2.141 1.182 

Sep-07 4.251 6.879 

Oct-07 13.264 10.521 

Nov-07 17.742 13.845 

Dec-07 20.666 16.422 

Jan-08 24.017 23.361 

Feb-08 31.851 23.13 

Mar-08 37.860 40.09 

Apr-08 37.944 56.234 
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Time Measured Simulated 

May-08 40.237 40.135 

Jun-08 33.698 29.718 

Jul-08 2.412 7.243 

Aug-08 2.422 2.962 

Sep-08 5.582 8.956 

Oct-08 22.450 11.394 

Nov-08 25.444 15.828 

Dec-08 25.323 18.63 

Jan-09 29.356 23.241 

Feb-09 26.697 20.205 

Mar-09 54.289 39.385 

Apr-09 74.134 82.158 

May-09 72.911 40.363 

Jun-09 85.810 49.501 

Jul-09 7.073 8.359 

Aug-09 4.051 6.332 

Time Measured Simulated 

Sep-09 7.364 5.928 

Oct-09 27.083 16.333 

Nov-09 29.316 22.227 

Dec-09 27.455 16.614 

Jan-10 27.577 18.739 

Feb-10 27.705 20.991 

Mar-10 33.043 58.35 

Apr-10 43.750 68.21 

May-10 27.799 54.517 

Jun-10 45.866 38.261 

Jul-10 3.447 7.251 

Aug-10 3.332 2.538 

Sep-10 5.988 3.764 

Oct-10 14.660 14.24 

Nov-10 21.645 13.98 

Dec-10 40.173 30.671 
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Table A 5. Measured vs. simulated monthly total suspended solids (mg/L) at the outlet of 

the LBR watershed 
 

Time Measured Simulated 

Jan-02 25.315 29.505 

Feb-02 24.920 29.719 

Mar-02 37.330 37.648 

Apr-02 55.316 39.492 

May-02 68.308 44.242 

Jun-02 78.636 48.608 

Jul-02 74.846 55.946 

Aug-02 66.175 46.665 

Sep-02 63.675 39.490 

Oct-02 41.093 36.140 

Nov-02 27.202 24.994 

Dec-02 19.644 20.896 

Jan-03 15.152 18.255 

Feb-03 16.629 23.358 

Mar-03 23.055 26.716 

Apr-03 35.013 38.501 

May-03 41.126 44.056 

Jun-03 46.448 42.612 

Jul-03 47.976 35.172 

Aug-03 45.185 28.256 

Sep-03 37.024 24.877 

Oct-03 29.184 19.482 

Nov-03 20.796 19.132 

Dec-03 14.144 18.546 

Jan-04 12.269 17.227 

Feb-04 13.510 12.291 

Mar-04 21.338 20.204 

Apr-04 27.431 26.132 

May-04 42.889 38.413 

Jun-04 56.029 47.321 

Jul-04 40.513 40.151 

Aug-04 37.280 32.156 

Sep-04 35.653 28.920 

Oct-04 27.164 23.893 

Nov-04 18.667 19.827 

Dec-04 13.655 16.203 

Jan-05 11.955 14.355 

Feb-05 12.145 10.622 

Mar-05 21.655 23.324 

Time Measured Simulated 

Apr-05 35.357 31.291 

May-05 59.811 47.308 

Jun-05 76.194 46.992 

Jul-05 53.972 33.348 

Aug-05 46.363 30.818 

Sep-05 37.006 26.364 

Oct-05 30.003 24.306 

Nov-05 19.530 18.000 

Dec-05 14.326 13.619 

Jan-06 13.919 11.395 

Feb-06 14.416 11.849 

Mar-06 21.814 25.224 

Apr-06 41.016 27.518 

May-06 59.750 39.916 

Jun-06 67.778 52.932 

Jul-06 50.388 44.616 

Aug-06 49.115 29.423 

Sep-06 49.281 29.054 

Oct-06 36.930 21.817 

Nov-06 24.471 21.905 

Dec-06 17.519 14.344 

Jan-07 14.753 11.058 

Feb-07 16.965 17.685 

Mar-07 25.208 30.122 

Apr-07 35.748 40.992 

May-07 44.386 30.858 

Jun-07 50.370 33.843 

Jul-07 59.289 35.530 

Aug-07 56.878 36.092 

Sep-07 48.674 31.494 

Oct-07 39.376 28.946 

Nov-07 27.064 24.686 

Dec-07 19.892 15.503 

Jan-08 17.840 11.071 

Feb-08 21.520 26.060 

Mar-08 32.018 36.672 

Apr-08 53.160 50.138 

May-08 90.274 52.293 

Jun-08 113.475 60.608 
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Time Measured Simulated 

Jul-08 87.207 52.965 

Aug-08 84.225 42.923 

Sep-08 77.524 36.641 

Oct-08 66.886 29.666 

Nov-08 47.193 25.693 

Dec-08 32.147 22.681 

Jan-09 29.079 21.660 

Feb-09 32.036 18.747 

Mar-09 56.393 35.997 

Apr-09 104.881 62.549 

May-09 112.309 71.164 

Jun-09 120.905 59.563 

Jul-09 103.265 46.810 

Aug-09 92.329 36.890 

Sep-09 81.168 35.367 

Time Measured Simulated 

Oct-09 82.508 29.148 

Nov-09 62.181 25.953 

Dec-09 58.388 30.262 

Jan-10 49.324 26.748 

Feb-10 55.322 33.663 

Mar-10 84.277 45.263 

Apr-10 106.038 50.001 

May-10 120.670 62.962 

Jun-10 133.551 65.363 

Jul-10 120.485 56.105 

Aug-10 105.654 49.465 

Sep-10 90.581 41.069 

Oct-10 84.561 39.365 

Nov-10 72.867 28.930 

Dec-10 62.738 23.223 
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Table A 6. Measured vs. simulated monthly total phosphorus (mg/L) at the outlet of the 

LBR watershed. 

 

Time Measured Simulated 

Jan-02 0.122 0.126 

Feb-02 0.149 0.129 

Mar-02 0.173 0.154 

Apr-02 0.193 0.168 

May-02 0.223 0.206 

Jun-02 0.231 0.170 

Jul-02 0.210 0.169 

Aug-02 0.170 0.108 

Sep-02 0.123 0.143 

Oct-02 0.103 0.097 

Nov-02 0.092 0.100 

Dec-02 0.093 0.114 

Jan-03 0.108 0.107 

Feb-03 0.126 0.118 

Mar-03 0.151 0.123 

Apr-03 0.171 0.151 

May-03 0.204 0.134 

Jun-03 0.206 0.104 

Jul-03 0.181 0.095 

Aug-03 0.144 0.113 

Sep-03 0.114 0.099 

Oct-03 0.091 0.091 

Nov-03 0.080 0.106 

Dec-03 0.083 0.102 

Jan-04 0.092 0.105 

Feb-04 0.110 0.131 

Mar-04 0.127 0.137 

Apr-04 0.148 0.133 

May-04 0.169 0.093 

Jun-04 0.160 0.153 

Jul-04 0.163 0.109 

Aug-04 0.127 0.118 

Sep-04 0.099 0.073 

Oct-04 0.077 0.079 

Nov-04 0.072 0.067 

Dec-04 0.072 0.083 

Jan-05 0.081 0.103 

Time Measured Simulated 

Feb-05 0.101 0.110 

Mar-05 0.109 0.112 

Apr-05 0.119 0.121 

May-05 0.108 0.120 

Jun-05 0.116 0.133 

Jul-05 0.144 0.082 

Aug-05 0.120 0.087 

Sep-05 0.090 0.107 

Oct-05 0.073 0.058 

Nov-05 0.067 0.049 

Dec-05 0.068 0.072 

Jan-06 0.072 0.065 

Feb-06 0.092 0.123 

Mar-06 0.104 0.109 

Apr-06 0.106 0.126 

May-06 0.117 0.110 

Jun-06 0.135 0.120 

Jul-06 0.147 0.123 

Aug-06 0.117 0.092 

Sep-06 0.083 0.066 

Oct-06 0.069 0.075 

Nov-06 0.064 0.072 

Dec-06 0.067 0.052 

Jan-07 0.078 0.089 

Feb-07 0.094 0.073 

Mar-07 0.111 0.102 

Apr-07 0.134 0.144 

May-07 0.159 0.122 

Jun-07 0.173 0.175 

Jul-07 0.153 0.124 

Aug-07 0.126 0.110 

Sep-07 0.097 0.080 

Oct-07 0.080 0.068 

Nov-07 0.073 0.066 

Dec-07 0.076 0.098 

Jan-08 0.087 0.114 

Feb-08 0.103 0.091 
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Time Measured Simulated 

Mar-08 0.124 0.105 

Apr-08 0.146 0.134 

May-08 0.154 0.172 

Jun-08 0.150 0.139 

Jul-08 0.163 0.120 

Aug-08 0.135 0.104 

Sep-08 0.107 0.091 

Oct-08 0.082 0.074 

Nov-08 0.076 0.073 

Dec-08 0.081 0.108 

Jan-09 0.093 0.070 

Feb-09 0.115 0.090 

Mar-09 0.130 0.108 

Apr-09 0.146 0.125 

May-09 0.157 0.095 

Jun-09 0.147 0.118 

Jul-09 0.172 0.119 

Time Measured Simulated 

Aug-09 0.149 0.126 

Sep-09 0.116 0.107 

Oct-09 0.091 0.072 

Nov-09 0.086 0.073 

Dec-09 0.091 0.070 

Jan-10 0.107 0.113 

Feb-10 0.131 0.125 

Mar-10 0.159 0.124 

Apr-10 0.183 0.173 

May-10 0.208 0.192 

Jun-10 0.188 0.166 

Jul-10 0.211 0.170 

Aug-10 0.176 0.132 

Sep-10 0.142 0.112 

Oct-10 0.113 0.152 

Nov-10 0.105 0.130 

Dec-10 0.104 0.107 
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APPENDIX 2 

Table A 7. R Code Script for Data preprocessing and preparation along with the results   
 

R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch" 

Copyright (C) 2016 The R Foundation for Statistical Computing 

Platform: x86_64-w64-mingw32/x64 (64-bit) 

 

R is free software and comes with ABSOLUTELY NO WARRANTY. 

You are welcome to redistribute it under certain conditions. 

Type 'license()' or 'licence()' for distribution details. 

 

R is a collaborative project with many contributors. 

Type 'contributors()' for more information and 

'citation()' on how to cite R or R packages in publications. 

 

Type 'demo()' for some demos, 'help()' for on-line help, or 

'help.start()' for an HTML browser interface to help. 

Type 'q()' to quit R. 

 

[Workspace loaded from ~/.RData] 

> #Setting the working directory WD 

> setwd("C:/Users/Ali/Desktop/SWAT Results/BMP vs Area") 

> #to get the working directory 

> getwd() 

>  

> #reading the BMP data of the results 

> BMPdata<-read.csv(file = "C:/Users/Ali/Desktop/SWAT Results/BMP vs Area/BMP.csv", header = TR

UE) 

> str(BMPdata) 

> summary(BMPdata) 

> #reading the Area data of the results 

> Areadata<-read.csv(file = "C:/Users/Ali/Desktop/SWAT Results/BMP vs Area/Area.csv", header = TRU

E) 

> str(Areadata) 

> summary(Areadata) 

> #Creating a dataset of rows with Area (HRU numbers) names and BMP names 

> Area_BMP=data.frame(merge(Areadata$Name, BMPdata$BMP)) 

> colnames(Area_BMP)<-c("Area#", "BMP#") 

> Area_BMP 

> ############################################################## 

> #########            Total Cost per Area           ########### 

> #Total Cost for implementing the BMP in each Area 

> # Creating the loop for multiplication purposes by reading every cell 

>  

> Area_Cost=data.frame(merge(Areadata$Area,BMPdata$Cost, all=TRUE)) 

> colnames(Area_Cost)<-c("Area", "Cost_per_BMP") 

> Area_Cost 

> ## Calculating the total cost of each BMP in each Area 

> Tot_Cost = Area_Cost$Area*Area_Cost$Cost_per_BMP 

> Tot_Cost 

> ############################################################## 

> #########          Total TP Reduction              ########### 

> ##creating new variable in the Area (Area * TP loads) 

> Areadata$TP_Area<-c(Areadata$Area*Areadata$TP) 
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>  

> ##reading the new output file for the Area to make sure it was added 

> Areadata 

> ## creating a matrix with the new outputs 

> Area_TP_Reduct=data.frame(merge(Areadata$TP_Area, BMPdata$TP_Eff, all=TRUE)) 

> colnames(Area_TP_Reduct)<-c("Area", "TPReduct_per_BMP") 

> Area_TP_Reduct 

> ## Calculating the total reduction of TP from each BMP in each Area 

> Tot_TP_Reduct = Area_TP_Reduct$Area*Area_TP_Reduct$TPReduct_per_BMP/100 

> Tot_TP_Reduct 

> Cost_Red 

> ## Writing the output file for Python 

> write.csv(Cost_Red, file="CostvsRed.csv") 
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Table A 8. Python Script for Combination tool   

 

import pandas as pd 

import itertools 

 

def bmp(bmp_file,outfile=None): 

    bmp_df = pd.read_csv(bmp_file, sep=',', header=None) 

    print  bmp_df 

 

    def read_other_col(combination_tuple): 

        sum = 0.0 

        for k in combination_tuple: 

            sum = sum+ float( bmp_df.iat[int(k),2]) 

            # print  bmp_df.iat[int(k),1] 

        return sum 

     

    def add_tuple(combination_tuple): 

        sum = 0.0 

        for k in combination_tuple: 

            sum = sum+ float( bmp_df.iat[int(k),1]) 

            # print  bmp_df.iat[int(k),1] 

        return sum 

 

    def tuple_string(combination_tuple): 

        return ",".join(['CS_'+str(bmp_no) for bmp_no in combination_tuple]) 

 

 

    combo_list = [] 

    for t in range(1,len(bmp_df)): 

        combo_list.append(t) 

    with open(outfile, "a+") as f: 

        for i in range(2,len(bmp_df)): 

            print i, 

            ith_combinations = list(itertools.combinations(combo_list,i)) 

 

            for a_tuple in ith_combinations: 

                # print a_tuple,add_tuple(a_tuple), 

                if (add_tuple(a_tuple) > 5000.0) and  (add_tuple(a_tuple) < 10000.0): 

 

                    f.write( str(tuple_string(a_tuple))+ "Cost=" +str(add_tuple(a_tuple))+ "Phosphorus" 

+str(read_other_col(a_tuple))+   '\n'   ) 

 

    return f 

  

bmp_file = 'CostvsRedpy.csv' 

outfile= 'results.txt' 

bmp(bmp_file, outfile=outfile) 
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Figure A 9. Python Script for Combination tool 
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APPENDIX 3 

 

AMALGAM files 

The following is a description of the files used in the optimization frame: 

Data.dat  

It is a structured data file that represents the problem numbers. Each row 

represents a parameter while the columns represents a given data such as: 

▪ ei = percent of Phosphorus Removal efficiency 

▪ BMPC = BMP implementation cost ($) 

▪ Pk = load of either Phosphorus or Sediments from the area in kg/day (i.e., 

Parcel) 

▪ Amax = maximum area for implementing BMP (in square kilometer) 

▪ Amin = minimum area for implementing BMP (in square kilometer) 

▪ Budget: constraint where the first cell represents the maximum ($) that 

can be utilized, while the second cell represents the minimum budget ($) 

▪ Load Reduction: reduction constraint where the first cell represents the 

maximum and the second cell represents the minimum reduction  

 

optimization.m  

Defines the population size, which is the number populated of NPS area to 

implement the BMPs as combined solutions (Please see Table A11 in Appendix 3 for 

more details), where. 

▪ T represents how many generations (i.e., how many iterations) to get the 

solution, which is can be modified according to result. If problem needs 

more time to reach to optimal set, then the number of iterations can be 

increased. Sometimes increasing the number of generations doesn’t affect 

the optimal solution. 

▪ d defines the number of parameter (Area) used from the data file (number 
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of rows) 

▪ Par_Info which focuses on variable area. The initial sample of Area is 

drawn using Latin hypercube sampling, and the boundary handling is 

activated to enforce the parameters to stay within their prior ranges 

(Par_info.min, Par_info.max) which represent Area max and Area min 

respectively. 

▪ Func_name loads the objective functions from amalgam-zed file and 

send all of the data to amalgam to be processed.  

 

Amalgam-zed  

It contains the objective functions that was called optmaztion.m. The functions 

define both, the total cost (budget) and the total phosphorus load reduction. For more 

details see Table A 12 in Appendix 3. The mechanism: 

• First step is to call Data.dat file that is filled into vectors and used in 

calculation. 

• Second, it calculates the summation for both objective functions, 

according to the problem case (i.e., one parameter for each BMP’s -in 

case of two BMP’s). 

• The final step is to check the budget and reduction boundary constraints). 

If it’s within the given range, then it was considered, otherwise the 

solution was eliminated. 

 

runAMALGAM.m file 

This is a function to develop a problem file. Only used to pass file name to be 

executable. For more details, please see Table A10 in Appendix 3. 

 

print.m file  
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This file does the multiply load reduction values and print the figure.  

 

output.mat  

This file contains the resulted structured data as vectors. Where, 

▪ x > represents the solutions set of NPS areas per member of the 

population. 

▪ F > two vectors. First one represents the total load reduction and the 

second one represents the total cost for implementing the selected BMPs 

in the selected Areas 
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Table A 10. RunAMLAGAM.m – MATLAB files   

 

Main window: 

 
 
% ------- The AMALGAM multiobjective optimization algorithm ---------- % 

% This general-purpose MATLAB code is designed to find a set of parameter values that defines the Pareto trade-off 

surface corresponding to a vector of different objective functions. In principle, each Pareto solution is a different 

weighting of the objectives used. Therefore, one could use multiple trials with a single objective optimization algorithms 

using different values of the weights to find different Pareto solutions. However, various contributions to the 

optimization literature have demonstrated that this approach is rather inefficient. The AMALGAM code developed 

herein is designed to find an approximation of the Pareto solution set within a single optimization run. The AMALGAM 

method combines two new concepts, simultaneous multimethod search, and self-adaptive offspring creation, to ensure 

a fast, reliable, and computationally efficient solution to multiobjective optimization problems. This method is called a 

multi-algorithm, genetically adaptive multiobjective, or AMALGAM, method, to evoke the image of a procedure that 

blends the attributes of the best available individual optimization algorithms. %                                         % 

% SYNOPSIS: 

% 
%[X,F,output,Z,sim]= AMALGAM(AMALGAMPar,Func_name,Par_info); 

%[X,F,output,Z,sim]= AMALGAM(AMALGAMPar,Func_name,Par_info,options); 

%[X,F,output,Z,sim]= AMALGAM(AMALGAMPar,Func_name,Par_info,options,func_in); 

%[X,F,output,Z,sim]= AMALGAM(AMALGAMPar,Func_name,Par_info,options,func_in,Fpar); 

%                                                                                            % 
% Input:   

% AMALGAMPar = structure with AMALGAM settings/parameters 

% Func_name = name of the function or model that returns objective functions 

% Par_info = optional structure with parameter ranges 

% Fpareto = optional vector with Pareto solution set (benchmark problems) 

% options = optional structure with additional settings 

% func_in = optional variable that user can pass to function 
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% 

% 

% Output:    

% X = final population (matrix) 

% F = final objective function values of "X" (matrix) 

% output = structure with several output arguments computed by AMALGAM (structure) 

% Z = archive of all past populations augmented with X (matrix) 

% sim (optional) = Model simulations of Pareto solutions (see example 6 and 7) 
% 

% This algorithm has been described in 

% Vrugt, J.A., and B.A. Robinson, Improved evolutionary optimization from genetically adaptive multimethod search, 

Proceedings of the National Academy of Sciences of the United States of America, 104, 708 - 711, 

doi:10.1073/pnas.0610471104, 2007.            % 

% Vrugt, J.A., B.A. Robinson, and J.M. Hyman, Self-adaptive multimethod search for global optimization in real-

parameter spaces, IEEE Transactions on Evolutionary Computation, 13(2), 243-259, doi:10.1109/TEVC.2008.924428, 

2009. 

% For more information please read:% 

% Vrugt, J.A., H.V. Gupta, L.A. Bastidas, W. Bouten, and S. Sorooshian, Effective and efficient algorithm for multi-

objective optimization of hydrologic models, Water Resources Research, 39(8), art. No. 1214, 

doi:10.1029/2002WR001746, 2003. 

% Schoups, G.H., J.W. Hopmans, C.A. Young, J.A. Vrugt, and W.W.Wallender, Multi-objective optimization of a 

regional spatially-distributed subsurface water flow model, Journal of Hydrology, 20 - 48, 311(1-4), 

doi:10.1016/j.jhydrol.2005.01.001, 2005. 

% Vrugt, J.A., P.H. Stauffer, T. Wöhling, B.A. Robinson, and V.V. Vesselinov, Inverse modeling of subsurface flow 

and transport properties: A review with new developments, Vadose Zone Journal, 7(2), 843 - 864, 

doi:10.2136/vzj2007.0078, 2008. 

% Wöhling, T., J.A. Vrugt, and G.F. Barkle, Comparison of three multiobjective optimization algorithms for inverse 

modeling of vadose zone hydraulic properties, Soil Science Society of America Journal, 72, 305 - 319, 

doi:10.2136/sssaj2007.0176, 2008. 

% Wöhling, T., and J.A. Vrugt,. Combining multi-objective optimization and Bayesian model averaging to calibrate 

forecast ensembles of soil hydraulic models, Water Resources Research, 44, W12432, doi:10.1029/2008WR007154, 

2008. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% 

% 

% AMALGAM code developed by Jasper A. Vrugt, University of California Irvine: jasper@uci.edu % 

% Version 0.5:   June 2006. % 

% Version 1.0:   January 2009    Cleaned up source code and implemented 4 test problems  

% Version 1.1:   January 2010    Flexible population size and no need divide by # algorithms % 

% Version 1.2:   August 2010     Sampling from prior distribution% 

% Version 1.3:   May 2014        Varous updates - cleaning and improved speed ranking% 

% Version 1.4:   Januari 2014    Parallellization using parfor (done if CPU >1)  

%      PLEASE CHECK MANUAL OF AMALGAM (ON MY WEBSITE)                       %  

% Vrugt, J.A., Multi-criteria optimization using the AMALGAM software package: Theory concepts, and MATLAB 

implementation, UCI, 2015 

% NOTE: EXPLICIT PRIOR SAMPLING DISTRIBUTIONS CAN BE USED IN AMALGAM: CHECK DREAM 

MANUAL 

% Vrugt, J.A., Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and 

MATLAB Implementation, Environmental Modelling & Software, 75, 273-316, doi:10.1016/j.envsoft.2015.08.013. 

%% Check:  http://faculty.sites.uci.edu/jasper 

%% Papers: http://faculty.sites.uci.edu/jasper/publications/ 

%% Google Scholar: https://scholar.google.com/citations?user=zkNXecUAAAAJ&hl=nl 

%% ######################################################################## 

%%   Func_name: Name of the function script of the model/function 

%% ######################################################################## 

%%                        CASE STUDY DEPENDENT 

%% ------------------------------------------------------------------------ 

%% Func_name                 % Name of the model function script (.m file) 

%% ------------------------------------------------------------------------ 

%% ######################################################################## 

%%   AMALGAMPar: Computational setup AMALGAM and algorithmic parameters 

%% ######################################################################## 
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%%                         CASE STUDY DEPENDENT 

%% ------------------------------------------------------------------------ 

%% AMALGAMPar.d              % Dimensionality Pareto distribution 

%% AMALGAMPar.N              % Population size 

%% AMALGAMPar.T              % Number of generations? 

%% AMALGAMPar.m              % Number of objective functions? 

%% ------------------------------------------------------------------------ 

%%                           DEFAULT VALUES 

%% ------------------------------------------------------------------------ 

%% AMALGAMPar.rec_methods   % Recombination methods  : {'GA','PSO','AMS','DE'} 

%% AMALGAMPar.beta_1        % DE scaling factor      : @(N) unifrnd(0.6,1.0,N,1) 

%% AMALGAMPar.beta_2        % DE scaling factor      : @(N) unifrnd(0.2,0.6,N,1) 

%% AMALGAMPar.c_1           % PSO social factor      : 1.5 

%% AMALGAMPar.c_2           % PSO cognitive factor   : 1.5 

%% AMALGAMPar.varphi        % PSO inertia factor     : @(N) unifrnd(0.5,1.0,N,1) 

%% AMALGAMPar.p_CR          % NSGA-II crossover rate : 0.9 

%% AMALGAMPar.p_M           % NSGA_II mutation rate  : 1/d 

%% AMALGAMPar.eta_C         % NSGA-II mutation index : 10 

%% AMALGAMPar.eta_M         % NSGA-II mutation index : 50 

%% AMALGAMPar.gamma         % AMS jump rate          : (2.38/sqrt(d))^2 

%% AMALGAMPar.K             % Thinning rate          : 1 (no thinning of Z) 

%% AMALGAMPar.p_min         % Min. selection prob.   : 0.05 

%% ------------------------------------------------------------------------ 

%% ######################################################################## 

%%   Par_info: All information about the parameter space and prior 

%% ######################################################################## 

%%                        CASE STUDY DEPENDENT 

%% ------------------------------------------------------------------------ 

%% Par_info.initial % Initial sampling distribution ('uniform'/'latin'/'normal'/'prior') 

%% Par_info.min              % If 'latin', min parameter values 

%% Par_info.max              % If 'latin', max parameter values 

%% Par_info.prior            % Marginal prior distribution of each parameter 

%% Par_info.mu               % If 'normal', mean of initial parameter values 

%% Par_info.cov              % If 'normal', covariance matrix parameters 

%% Par_info.boundhandling    % Boundary handling ('reflect','bound','fold') 

%% ------------------------------------------------------------------------ 

%%                          DEFAULT VALUES 

%% ------------------------------------------------------------------------ 

%% Par_info.boundhandling = 'none'   % no boundary handling (unbounded problem) 

%% ------------------------------------------------------------------------ 

%% ######################################################################## 

%%   options: Structure with optional settings 

%% ######################################################################## 

%%                             OPTIONAL 

%% ------------------------------------------------------------------------ 

%% options.parallel  % Multi-core computation chains? 

%% options.IO        % If parallel, IO writing model? 

%% options.save      % Save DREAM output during the run? 

%% options.ranking   % Pareto Ranking code, 'MATLAB' (default) or 'C' (faster) 

%% options.density   % Which density of points 'crowding' (default) or 'strength' 

%% options.modout    % Return model simulatons? 'no' (default) or 'yes' 

%% options.restart   % Restart run ( continue previous run - options.save must be 'yes') 

%% options.print     % Print to screen tables/figures (postprocessor) 

%% ------------------------------------------------------------------------ 

%% ######################################################################## 

%%  Fpareto: Matrix ( Npar x d ) with Pareto solutions (synthetic problems) 

%%  NOTE: Existing IGD.mexw64 in zip file compiled for 64 bit machine 

%%  NOTE: If this gives error recompile IGD.cpp ("mex IGD.cpp") 

%%  NOTE: If you do not have mex compiler and IGD gives errors just specify 

%%  NOTE: Fpar = [];  

%% ######################################################################## 
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Table A 11. optimiztion.m - MATLAB files   

 

Optimization file in the MATLAB  
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Table A 12. amalgamZDT.m - MATLAB files   
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Statistical Analysis 

Statistical results: 

Bartlett test of homogeneity of variances 

data:  dati and groups 

Bartlett's K-squared = 0.023109, df = 5, p-value = 1 

P> 0.05, meaning that the Null Hypothesis is true that all variances are equal. 

 

ANOVA test 

Response: dati 

           Df  Sum Sq  Mean Sq F value Pr(>F) 

groups      5 0.00188 0.000377  0.0292 0.9996 

Residuals 114 1.47060 0.012900                

Pr(>F) = p-value 

Since p-value > 0.05, we accept the null hypothesis H0: the six means are 

statistically equal. 
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Scenarios 

Definitions: 

Variable X represents BMP implemented.  

Mean represents the average area (Km2) of the populated NPS areas for BMPs 

implementation  

 

 

Figure 26. Mean values of populated NPS areas for BMPs in Scenario 1 
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Figure 27. Mean values of populated NPS areas for BMPs in Scenario 2 
 

 

Figure 28. Mean values of populated NPS areas for BMPs in Scenario 3 
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