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ABSTRACT 

Improvement of Ultraviolet Digital Image Correlation (UV-DIC) 

at Extreme Temperatures 

by 

Thinh Quang Thai, Doctor of Philosophy 

Utah State University, 2020 

 

Major Professor: Ryan B. Berke, Ph.D. 

Department: Mechanical and Aerospace Engineering 

 

For the purposes of designing mechanical structures in challenging environments 

such as extreme temperatures and vibration, it is essential to adopt non-contacting, full-

field strain measurements. Non-contacting methods are preferable because, unlike strain 

gauges, they are less vulnerable to damage in extreme environments. Full-field 

measurements are preferable because, unlike point-based methods, they convey a greater 

sense of the overall thermo-mechanical environment. To meet these two requirements, 

Digital Image Correlation (DIC) is one of the most popular and versatile methods for non-

contacting and full-field strain measurement. In brief, DIC is performed by recording 

images with a digital camera before and after deformation, from which full-field 

displacements are computed by correlating the relative deformation between the two 

images. In some high temperature applications like hot-fire testing and hypersonic flight, 

the images acquired from cameras tend to saturate due to light emitted from high 

temperature objects according to blackbody radiation. It is well known that the emitted 
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light is brighter at longer wavelengths (i.e. red and infrared) compared to shorter 

wavelengths (i.e. blue and ultraviolet (UV)). Therefore, a novel variation of DIC named 

UV-DIC was introduced to extend the temperature limit when performing DIC at extreme 

temperatures. Thanks to its shorter wavelengths when compared to other common 

wavelengths, especially blue light, UV-DIC is potentially the highest temperature DIC. 

When performing high temperature DIC, it is required to maintain a good contrast 

of the acquired images throughout testing. One of the significant factors in determining 

contrast, particularly in quasi-static testing, is exposure time. This dissertation will examine 

the importance of exposure time on DIC measurement uncertainty, thereby giving a 

normalized metric which helps DIC users select an appropriate exposure time (likely to 

extend to other factors such as aperture and amplified gain) not only at the start of the test 

but during mid-test. In addition, the dissertation will investigate a novel phenomenon of 

speckle pattern inversion which is occasionally reported during high temperature DIC 

testing. Based on explanations of the physical mechanism, recommended solutions are 

introduced to evade the inversion. Furthermore, a method to help salvage data in cases of 

inversion is also presented. With all its contributions, this dissertation is expected to 

improve the capabilities of UV-DIC, thereby greatly improving strain measurements at 

extreme temperatures. 

(121 pages) 
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PUBLIC ABSTRACT 

Improvement of Ultraviolet Digital Image Correlation (UV-DIC) 

at Extreme Temperatures 

Thinh Quang Thai 

 

Extreme temperature has increasingly played an essential role in design and 

operation of various engineering applications including spacecraft re-entry, hypersonic 

flight, next-generation nuclear reactors, and hot-fire rocket testing. To protect instruments 

against the harsh environments, it is preferable to use non-contacting measurements when 

monitoring the integrity of those mechanical structures. Digital Image Correlation (DIC) is 

a popular method which uses digital cameras in order to track motion thanks to images 

acquired before and after deformation. Displacements and strains are plotted over a full-

field region which is conducive to identify highly risky zones. At high temperature, objects 

emit light which interferes with image acquisition. It is known that the emitted light is 

considerably suppressed when images are taken at very short wavelengths such as 

ultraviolet (UV). This dissertation will investigate the importance of exposure time, which 

is a significant factor when determining the camera sensitivity, on the uncertainty of UV-

DIC measurements. Through examining the exposure time, this dissertation is intended to 

give insights for users when performing DIC at high temperature in both pre-testing 

conditions and on-going testing. In addition, the dissertation will discuss a specific 

phenomenon of pattern inversion which is occasionally reported in high temperature DIC 

measurement. Under this phenomenon, due to differences in emissivity of refractory paint 
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and the background material, portions of the object which appear dark at room temperature 

instead appear bright at high temperature, and vice versa. The dissertation will explain the 

physical principle behind pattern inversion and introduce alternative solutions to evade the 

pattern inversion. With the aforementioned contributions, the dissertation is expected to 

improve the UV-DIC technique intensively and extensively.
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

In recent years, extreme temperature has played an important role in the design and 

operation of various engineering applications including nuclear reactors [1], spacecraft 

reentry [2], gas turbines [3] and hot-fire rocket engine testing [4,5]. A host of highly 

promising materials have been introduced and developed for those increasing demands. 

For example, Carbon-Carbon (C-C) and Ceramic Matrix Composite (CMC) materials are 

used for high temperature uncooled nozzle extensions on liquid rocket engines [6]. 

Nevertheless, information and understanding in terms of mechanical performance of those 

candidate materials remains limited. This places the integrity of the mechanical structures 

in jeopardy when working under combined thermo-mechanical environments. Therefore, 

in order to improve the safety, reliability and performance of high temperature mechanical 

structures, it is essential to get a better understanding regarding thermo-mechanical 

behaviors of candidate materials. 

Since these extreme environments include conditions like high temperature or 

vibration, it is preferable to adopt non-contacting and full field strain measurement methods 

rather than contacting or point-wise techniques. Digital Image Correlation (DIC) [7] is a 

versatile method that is popular in the scientific mechanics community to obtain full-field 

strains. In brief, DIC uses high resolution cameras to capture images before and after 

deformation. A computer program is then employed to compare the captured images, 

thereby exporting the full-field displacement map. Strains are then computed by taking 
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derivatives of displacement. Based on its working principles, DIC has a host of advantages 

[8] when comparing to other traditional techniques like strain gages including (1) it is non-

contacting thus can survive the full duration of the test provided a sufficient standoff 

distance is supplied [9], (2) it is able to collect full field data and (3) it can be applied in a 

broad range of length scales from nanoscale [10] to meter-scale [11] as long as appropriate 

cameras and lenses are used. 

At high temperatures, objects emit light in accordance with the black body radiation 

of Planck’s law. Therefore, images acquired from cameras at high temperature tend to 

saturate due to the increased intensity of light coming to the camera sensor. It is known 

that the objects emit more light at longer wavelengths (i.e. red and infrared) in comparison 

with shorter wavelengths (i.e. blue and ultraviolet) [12]. For this reason, many researchers 

[13,14] implemented a low-wavelength optical bandpass filter (i.e. blue bandpass filter) to 

screen out the brightest glowing. In this work, we use ultraviolet (UV) optics to extend the 

temperature limit even further. Thanks to its shorter wavelength when compared to blue 

light, UV-DIC has been demonstrated for its superior capability in restricting the 

oversaturation in high temperature DIC measurement. Specifically, in Reference [15], 

blue-filtered DIC was saturated at 900°C whereas under the same camera settings UV-DIC 

remained non-saturated to at least 1125°C. UV-DIC has since been demonstrated to at least 

1600°C [16,17] but its upper temperature limit remains unknown. 

Given the high potential of UV-DIC, the overall objective of this dissertation is to 

develop a comprehensive and robust technique which can perform DIC at extreme 
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temperatures based on UV-DIC. The outcomes of this dissertation are expected to enhance 

the implementation of UV-DIC. 

1.2. Research Background 

1.2.1. Brief Overview of DIC 

Digital Image Correlation (DIC) is one of the most popular and versatile methods 

in the scientific mechanics community due to its simplicity of experimental setup and its 

capability to perform full-field non-contact measurements. The technique was first 

introduced by Peters and Ranson [18] in 1982. In that work, from the principle of tracking 

of speckle images, they were able to produce a displacement and strain map. Michael 

Sutton, another member of their group [19], improved DIC to obtain the full-field planar 

displacement of a cantilever beam subjected to an end load. Throughout the 1980’s, 

additional research papers were published by their group as improvements of the DIC 

method [20,21]. DIC can be performed either in 2D using a single camera or in 3D using 

multiple cameras. 

In principle, DIC requires three fundamental steps so that a meaningful 

measurement is performed, particularly (1) sample preparation, (2) acquiring images 

during loading and (3) analyzing the images using a correlation algorithm [22]. 

For the first step (sample preparation), the minimum requirement is to create a 

random speckle pattern on the sample surface if there is no inherent speckle. Generally, a 

good speckle pattern has features of high contrast, randomness, isotropy and stability [23]. 

In order to meet these requirements, various assessment methods of speckle pattern quality 

have been introduced and developed [24,25]. In practice, there are many ways to make a 
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good speckle pattern depending on desired length scales. Such methods include airbrush 

spraying [26], lithography [27], focused ion beam [28] and spin coating [29]. 

For the second step (image acquisition during loading), in 2D DIC the camera 

sensor is required to be parallel to the flat surface of a specimen. This alleviates any out of 

plane displacement. If the sensor is not parallel, it makes magnification non-uniform, 

resulting in artificial in-plane deformation. Also, geometric distortion should be mitigated, 

especially in high-resolution imaging systems, because it is likely to interfere with 

correlation in image matching. In an effort to remove optical distortion, Yoneyama et al. 

[30] calculated a correction coefficient from displacement distribution in rigid motion test. 

For the third step (analyzing images with a correlation algorithm), DIC employs a 

collection of pixel values called a subset to track the motion of points from the reference 

image to the deformed images. The subset is chosen because it includes a wide distribution 

of greyscale levels which gives more information in searching for its position in the 

deformed image. In other words, a subset has a unique signature to differentiate from other 

subsets in a deformed image. 

Figure 1.1 shows the displacement mapping in 2D-DIC between a reference subset 

and a deformed subset. The square reference subset has a size of (2M+1) x (2M+1) pixels 

and is centered at point A(x0, y0). Relative to the center of the reference subset, the center 

of the deformed subset is displaced in the x and y directions by u and v, respectively 

resulting in the coordinates of point A’(x0
′ , y0

′ ). Relative to point A, a point B(x, y) in the 

reference subset has coordinates Δx and Δy compared to the center of the reference subset. 

Assuming continuity of the solid object, a set of neighboring points in a reference subset 
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remains as neighboring points in the deformed subset. Therefore, point B in the reference 

subset is mapped to point B’(x’, y’) in the deformed subset. 

 

Figure 1.1. Schematic illustration of reference subset and deformed subset 

 The displacement mapping function is given as [31]: 

x′ = x0 + Δx + u + uxΔx + uyΔy 

y′ = y0 + Δy + v + vxΔx + vyΔy 

(1.1) 

where ux = ∂u/ ∂x, uy = ∂u/ ∂y, vx = ∂v/ ∂x, vy = ∂v/ ∂y are the displacement 

gradients. The terms (x0 + Δx + u) and (y0 + Δy + v) represent translation while (uxΔx +

uyΔy) and (vxΔx + vyΔy) account for normal strain, shear strain, and rotation. 

To compare between the reference subset and the deformed subset, it is required to 

introduce a correlation criterion. Let f(x,y) and g(x’,y’) characterize the distribution of grey 

intensity of the reference and deformed subsets, respectively. The three most commonly 
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used correlation functions are based on the method of sum of squared differences, as 

follows: [32] 

1/ Sum of squared differences (SSD): 

CSSD(p⃗ ) = ∑ ∑ [f(xi, yi) − g(xi
′, yi

′)]2
M

i=−M

M

i=−M

 
(1.2) 

2/ Normalized sum of squared differences (NSSD): 

CNSSD(p⃗ ) = ∑ ∑ [
f(xi, yi)

f̅
−

g(xi
′, yi

′)

g̅
]

2M

i=−M

M

i=−M

 
(1.3) 

where 

f̅ = √ ∑ ∑ [f(xi, yi)]2
M

i=−M

M

i=−M

 

g̅ = √ ∑ ∑ [g(xi
′, yi

′)]2
M

i=−M

M

i=−M

 

(1.4) 

3/ Zero-normalized sum of squared differences (ZNSSD): 

CZNSSD(p⃗ ) = ∑ ∑ [
f(xi, yi) − fm

Δf
−

g(xi
′, yi

′) − gm

Δg
]

2M

i=−M

M

i=−M

 (1.5) 

where 

fm =
1

(2M + 1)2
∑ ∑ f(xi, yi)

M

i=−M

M

i=−M

 

gm =
1

(2M + 1)2
∑ ∑ g(xi

′, yi
′)

M

i=−M

M

i=−M

 

(1.6) 
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Δf = √ ∑ ∑ [f(xi, yi) − fm]2
M

i=−M

M

i=−M

 

Δg = √ ∑ ∑ [g(xi
′, yi

′) − gm]2
M

i=−M

M

i=−M

 

(1.7) 

It should be noted that the SSD correlation criterion is sensitive to fluctuations in 

lighting. The NSSD criterion is insensitive to linear scaling in lighting (for example, 

changes in camera sensitivity) but remains sensitive to offsets in lighting (for example, 

additional light sources). The ZNSSD criterion is insensitive to both linear scaling and 

offsets in lighting. 

Taking into account the shape change of subsets during deformation, the correlation 

function turns to a nonlinear function with respect to the mapping parameters vector p⃗ =

(u, ux, uy, v, vx, vy)
T
. In order to find solution of six parameters vector p⃗ , it is common to 

use Newton-Raphson method which is called Iterative Spatial Domain Cross-Correlation 

Algorithm. The solution can be written as: 

p⃗ = p⃗ 0 −
∇C(p⃗ 0)

∇∇C(p⃗ 0)
 (1.8) 

where p⃗ 0 is the initial guess, p⃗  is the next solution in the iteration, ∇C(p⃗ 0) is the first-order 

gradient of the correlation function, ∇∇C(p⃗ 0) is the second-order gradient of the correlation 

function, also known as the Hessian matrix [33]. 
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1.2.2. High Temperature DIC Measurement 

Theoretically, DIC is able to work at any temperature as long as the acquired images 

are still in good contrast. Nonetheless, there are three major challenges that necessarily 

demand to be tackled [34]: 

(1) A speckle pattern must be stable and keep consistent contrast during heating. 

Particularly, the speckle must not flake off or discolor at high temperatures. In order to 

circumvent this challenge, some solutions were suggested such as refractory coatings [35], 

cobalt oxide [36] or sandblasting [37]. In this work, a refractory paint which is rated to 

1760oC was used. 

(2) Any optical distortion due to thermal turbulence and heat haze between camera 

and specimen need to be minimized. In order to tackle this issue, Novak and Zok [38] 

suggested using an air knife to blow off the heat haze. In this work, specimens were tested 

in a vacuum chamber, thus removing any warping due to variation of the refraction index 

of air. 

(3) The emitted light from specimen due to black body radiation of Planck’s law 

needs to be suppressed. The intensity of emitted light is more significant at higher 

temperatures and deteriorates the speckle contrast. The emitted light is also known to be 

brighter at longer wavelengths. Some researchers suggest using blue light illumination and 

a blue bandpass filter to screen out the brightest glow [39,40], but eventually the glow in 

the range of blue wavelengths becomes bright as well. More recently, Berke and Lambros 

[15] demonstrated that UV optics, which operates at an even shorter wavelength than blue, 

can potentially extend the temperature range of DIC even further. Their method is 
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potentially the highest-temperature DIC capability, which enables recording more 

information of heterogeneous material behavior at extreme temperatures. Thus, UV-DIC 

was used as optical imaging in this work. 

1.2.3. Literature Gaps 

In order to improve UV-DIC, the first step is to investigate the camera settings at 

the start of the test. In DIC, it is instrumental for images to have good contrast [41], 

especially when performing DIC at high temperature. Contrast can be improved by 

manipulating the light sensitivity of the cameras. There are five main ways to control the 

light [16], but each comes with its own drawbacks as summarized in Table 1.1. 

Table 1.1. Lighting manipulation methods 

Lighting Method Drawbacks 

(1) Use a brighter light source 

• Costs money to buy new equipment 

 

• Safety concerns (especially lasers or UV) 

(2) Increase exposure time on camera • More prone to motion blur 

(3) Increase aperture on lens • Reduced depth of field 

(4) Increase gain on camera • Amplify noise along with signal 

(5) Post-process dark images • Very easy to corrupt measurement 

Assuming (i) that one uses the brightest lights that they have safely available, and 

(ii) that loading is sufficiently slow such that motion blur is negligible, exposure time is 

the easiest method to manipulate the light without introducing significant errors. Exposure 
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time can be varied digitally via a computer user interface without disrupting the lens, 

whereas apertures must be physically adjusted by manually twisting the lens, thus 

displacing optical alignment while also refocusing the lens. Gain and post-processing 

techniques can also be varied digitally, but should be generally avoided unless small 

apertures and exposure times are critical to obtaining a meaningful measurement. For these 

reasons, the initial objective of this dissertation is to investigate the influence of exposure 

time on uncertainty of DIC measurement. 

Moreover, exposure time is a dimensional unit which varies from camera to camera. 

Accordingly, in order to apply recommendations about exposure time universally to any 

camera, it is helpful to develop a normalized metric. My first published paper in 

Experimental Techniques (presented in Chapter 2) has solved that challenge. In literature, 

other authors have attempted to address this topic, yet their solutions are generally 

cumbersome when applied in practice. Wang et al. and Ke et al. [42–44] introduced a robust 

and thorough framework to ensure sufficient contrast which is considerably beneficial to 

readers who are greatly interested in designing a DIC code, but is cumbersome and time-

consuming in practice in comparison with my metric. More simply, P. Reu [45,46] 

suggested that given “typical” dark and bright speckles and he recommended the difference 

between them should be at least 50 counts. However, he did not define explicitly what a 

“typical” dark and bright speckle was. For this reason, my paper in Chapter 2 developed a 

metric based on Reu’s recommendation which is simple, quick and easy to apply. In short, 

I propose that the metric called Delta (Δ) which defines dark and bright speckles by 

computing the span of the median 90% of data in the greyscale histogram. If Δ > 50 and 
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the upper threshold of the span does not equal 255 for an 8-bit monochromatic camera, it 

is a good indicator to let DIC users know that they had good contrast images. 

The metric from the first paper presented an easy, quick and reliable method to 

assess the contrast of images. Consequently, this gives DIC users a reference point to 

choose an appropriate exposure time prior to testing. In some cases, objects at high 

temperature may emit more light than anticipated at the beginning of the test. Accordingly, 

holding exposure time fixed throughout the test may be unfeasible and can lead to data 

being completely lost. To the best of my knowledge, most research investigating the 

importance of camera configurations mainly emphasizes pre-testing conditions or doing 

some post-processing. However, by changing exposure time mid-test, one can potentially 

salvage data that would otherwise be lost due to over-exposure of the camera. My second 

paper published in Measurement Science and Technology (presented in Chapter 3) 

examined whether exposure time can be changed during mid-test, what conditions are 

necessary and its effects on DIC measurement uncertainty. Suggestions were introduced 

regarding evaluation of images at room temperature and then extrapolated to exposure at 

extreme temperature, thus giving a comprehensive picture about setting exposure time not 

only prior to testing but modification during the test if needed. That paper is believed to be 

the first research to focus on the change of camera settings (in this case, exposure time) 

during a DIC test. 

Speckle pattern inversion is an interesting phenomenon which is occasionally 

reported when performing DIC at high temperature. One of primary factors contributing to 

this phenomenon is the difference in emissivity between the dark and light materials of the 
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speckle pattern. In particular, all objects at high temperature emit light according to black 

body radiation. In some cases, the background emits more light than the speckle leading to 

an image which is inverted when compared to the same speckle pattern at room 

temperature. Correlations are unable to be completed if there exist substantial differences 

of the speckle pattern between room temperature and high temperature. The paper 

presented in Chapter 4 introduces an optical method using the UV bandpass filter to 

eliminate the speckle inversion at high temperature DIC testing. Unlike other research 

using the post-processing like grey level corrections to eliminate inversion digitally [47], 

my technique is based on the optical principles to evade or at least postpone inversion 

physically. Furthermore, that paper presents a subtraction method to salvage data from 

inverted images in some cases where DIC users did not follow my initial recommendations. 

1.3. Objectives 

The primary objectives of this dissertation are as follows: 

1. Investigate the influence of exposure time on DIC measurement uncertainty, 

thereby giving a normalized metric to let DIC users know how to choose an appropriate 

camera setting prior to testing. The metric is likely to apply to any cameras thus having a 

wide range of applications. 

2. Examine the conditions which exposure time can be changed during mid test and 

its influence on DIC uncertainty. Thanks to that, a comprehensive recommendation is given 

to help DIC users set a suitable exposure time not only at the start of the test but during 

mid test. 
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3. Investigate the physical mechanism behind speckle pattern inversion, and 

develop strategies to mitigate it. Thereby, we introduce a method to avoid inversion when 

performing DIC at high temperature. Additionally, we present a post-processing technique 

to help DIC users remove inversion from inverted images. 

1.4. Dissertation Outline 

The dissertation is organized in multi-paper format. The dissertation has total of six 

chapters including this Introduction chapter. Chapter 2 through Chapter 4 refer to 

individual papers which were published or to be submitted to peer-reviewed scientific 

journals. References are placed at the end of each chapter. Here is the brief summary of 

each chapter: 

• Chapter 1 provides the overview of the dissertation including motivation, research 

background, objectives and this outline. 

• Chapter 2 is a full-length paper which was published in Experimental Techniques. 

The paper presents the importance of exposure time when performing DIC at 

extreme temperatures. 

• Chapter 3 is also a full-length paper which was published in Measurement Science 

and Technology. The paper is a continuation of the Chapter 2 paper and discusses 

the change of exposure time mid-test in high temperature DIC measurement. 

• Chapter 4 is another full-length paper which is in preparation to be submitted to a 

peer-reviewed journal. That paper focuses on the explanation of speckle pattern 

inversion and introduces an optical method by using the UV bandpass filter to evade 

the inversion of speckle pattern in high temperature DIC measurement. 
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• Chapter 5 presents further discussion about relationship of Δ with respect to 

exposure time and temperature. 

• Chapter 6 is the conclusion which summarizes the contributions of the dissertation 

and also gives some future works. 
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CHAPTER 2 

IMPORTANCE OF EXPOSURE TIME ON DIC MEASUREMENT UNCERTAINTY 

AT EXTREME TEMPERATURES 

2.1. Prologue 

This chapter presents a full-text paper which was published in Experimental 

Techniques, volume 43, issue 3, pages 261-271 on February 15, 2019 under the title 

“Importance of Exposure Time on DIC Measurement Uncertainty at Extreme 

Temperatures”. The experiment and data were performed and processed at Utah State 

University, Logan, UT. The author list is Thinh Q. Thai, Robert S. Hansen, Adam J. Smith, 

John Lambros, and Ryan B. Berke. The original paper is entirely presented below. 

2.2. Abstract 

Digital Image Correlation (DIC) is a popular optical method for deformation and 

strain measurement. At extreme temperatures, it is known that materials emit light in 

addition to reflecting the light supplied by a light source, and the emitted light can saturate 

a camera sensor. More recently, a novel variation of DIC, named ultraviolet (UV) DIC, 

extended the range of temperature further by using a UV bandpass filter to screen out some 

of the brightest glowing and external UV illumination to provide additional reflected 

lighting. In principle, for a given optical set-up the temperature range can be extended 

further by reducing the camera’s sensitivity to light, and exposure time is an instrumental 

parameter when setting such camera configurations. In this paper, we examine the 

influence of multiple exposure times on the uncertainty of UV-DIC correlation 
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measurements. Rigid-motion experiments were performed at four different temperatures: 

room temperature, 1300oC, 1450oC, and 1600oC. At each temperature level, UV images 

were recorded for DIC at exposure times ranging from 500 µs to 61,000 µs – a range of 

over two orders of magnitude. The results showed abrupt increases of error at extremely 

dark or bright exposure times, but at intermediate exposure times the errors of UV-DIC 

were minimal. A normalized metric was presented in order to give a general guideline 

when choosing exposure time for camera sensitivity. It is recommended that cameras 

should be set at a suitable range of exposure time (between 10,000 µs and 40,000 µs for 

the camera used in this paper) in order to perform meaningful DIC up to 1600oC. 

Keywords: DIC, extreme temperature, exposure time, ultraviolet light, graphite, Gleeble. 

2.3. Introduction 

Digital Image Correlation (DIC) [1, 2] is one of the most popular and versatile 

methods for obtaining full field strain maps. In brief, DIC employs high-resolution cameras 

to record images of a speckle pattern applied to the sample surface in an undeformed and 

deformed state. A computer algorithm is then used to track the deformation of the speckle 

pattern between the two images, respectively, within a selected region. Strains are usually 

calculated by taking derivatives of displacement fields. In comparison with strain gauges [3], 

DIC has gained popularity since (1) it is able to collect full-field data (as opposed to point-

wise or specimen-averaged techniques), (2) it is non-contacting (except for a thin layer of 

paint), and (3) having no inherent length scale, it can be used at any time or length scale if 

appropriate cameras and lenses are used. DIC has been demonstrated at lengths from sub-

micrometer [4, 5] to tens of meters [6, 7] and from room temperature to 2000°C [8]. 
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In order to perform a meaningful DIC analysis, it is essential to have an appropriate 

amount of light reach the camera sensor when images are acquired [9]. When there is too 

much light on the camera sensor, the image can become overly saturated. Conversely, the 

image is underexposed if there is not enough light. There are four main ways that the 

amount of light reaching the camera sensor can be amplified: 

(1) Using a brighter light source. This could be more expensive and can introduce 

some safety hazards such as those presented by lasers [10] and/or UV lights [11]. 

(2) Using a wider aperture on the lens. It is noted that a wider aperture gives a 

smaller depth of field, but also yields brighter images [12]. 

(3) Setting the camera to a longer exposure time. This works well for quasi-static 

testing but a longer exposure time is more prone to motion blur, especially for vibration 

and dynamic loading experimentation [13].  

(4) Increasing the gain on the camera amplifier. This is usually the worst option 

since it makes images become noisy and grainy [14]. 

Theoretically, DIC should work independently of temperature as long as the 

contrast of speckle pattern is within an acceptable range [15, 16]. However, at extreme 

temperatures, the specimen emits its own light in addition to reflecting the light supplied. 

This results in the degradation of speckle contrast making the cross correlations weaker 

[11, 17]. It is known that the glow is much brighter at longer wavelengths (i.e., red and 

infrared) than it is at shorter wavelengths (i.e., blue), and this can be mitigated using blue 

optical bandpass filters [18–20]. More recently, our group introduced an adapted technique 

called ultraviolet digital image correlation [11] (UV-DIC), which uses a UV filter to extend 
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the temperature range of DIC even farther while simultaneously providing sufficient 

lighting through UV illumination, as needed. 

In each study where blue or UV filtering was used, various investigators have 

reported different upper temperature limits for DIC depending on their camera settings. For 

example, Novak and Zok [20] estimated that the maximum temperature for blue-filtered 

DIC was around 1500°C. However, Wang et al. [8] reported being able to perform blue-

filtered DIC at temperatures as high as 2000°C. Conversely, we showed when comparing 

blue-filtered DIC against UV-DIC that, under the (fixed) camera settings used in that study, 

blue-filtered DIC instead saturated as low as 900°C [11]. It is clear that a limiting factor in 

performing DIC at extreme temperatures is not only the wavelength of light that images 

are recorded at, but also the sensitivity of the camera to the light at those wavelengths. 

In this paper, the influence of exposure time is examined on DIC measurements at 

extreme temperatures. Exposure time is chosen as the parameter to study since, of the four 

ways listed to control light, it is the easiest to manipulate while introducing minimal errors 

into the measurement. All tests are quasi-static to avoid motion blur from the specimen. 

Although the specimen is quasi-static, we still get minimal motion blur due to the 

movement of air, which is largely negated by performing the test in vacuum. Experiments 

were performed at four different temperature levels: room temperature, 1300oC, 1450oC 

and 1600oC. Three sets of measurements were made: (i) baseline noise calculations, in 

which no motion or deformation is applied between two DIC images; (ii) isothermal rigid 

motion experiments, in which DIC results were computed from pairs of images taken at 

fixed temperatures; and (iii) thermal expansion measurements, in which DIC was 
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performed using a reference image at room temperature and deformed images at elevated 

temperature. The isothermal measurements were performed over exposure times ranging 

from 500 µs to 61,000 µs in order to assess the error of UV-DIC. The thermal expansion 

measurements demonstrated the ability for UV-DIC to span a broad temperature range 

when the emitted light was sufficiently filtered. Finally, in our discussion section, we 

evaluate a simple metric for assessing whether a speckle image had sufficient contrast to 

perform DIC, and made further recommendations to promote good contrast when 

performing DIC at extreme temperatures. 

2.4. Methods 

Experiments were performed using graphite rods purchased from GraphiteStore.com 

[21]. The graphite has a melting point of 3000oC in vacuum but oxidizes aggressively in air, 

and thus all high temperature tests were performed in vacuum. For all experiments, the level 

of vacuum in the test chamber is on the order of 10-9 torr. Specimens were machined from 

graphite rods with a length of 152.4 mm (6 in) and diameter of 12.7 mm (0.5 in) by using a 

manual knee mill. The gauge region was a square cross section of 7.62 mm (0.3 in) in order 

to provide a flat, planar surface on which to perform DIC. Figure 2.1 shows a schematic and 

photograph of the machined specimens. The graphite, which is naturally dark, provides the 

dark background on which to create a speckle pattern for DIC. A white speckle pattern was 

then applied directly onto the surface of the square cross-section gauge region of the sample 

using a splattering method. This splattering method consisted of flicking the bristles of a 

toothbrush dipped in paint to splash white paint onto the flat surface of the specimen. The 

speckle size created by this method is relatively coarse; however, for the scale of millimeters 
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used in this work it offers sufficient accuracy to perform DIC. The paint was Pyro-Paint 634-

AL from Aremco Products Inc. (Valley Cottage, NY, USA) which has melting point of 

1760oC. The paint was dried at room temperature for 2 hours and then cured for 2 hours in a 

box furnace at 93oC (200oF), per the manufacturer’s instructions. 

 

Figure 2.1. Schematic of square gauge region test specimen (left), a photo of specimens 

with speckled gauge region (middle) and a close-up of the speckle pattern (right) 

The specimen was then tested in a Gleeble 1500D thermo-mechanical system which 

consists of a load frame inside of a vacuum chamber, and which can heat a specimen up to 

3000oC. Heating is accomplished by running a high voltage through the electrically-

conducting specimen. In order to heat the specimen in the Gleeble, a K-type thermocouple 

is required as a feedback control. The highest temperature level employed in this paper is 

1600oC occurring in the middle of specimen. However, a K-type thermocouple is only rated 
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to 1250oC [22]. Therefore, a method was devised to extend the range of available testing 

temperatures beyond the K-type thermocouple range. Two K-type thermocouples (called 

TC1 and TC2) recorded temperatures at two different locations 35 mm apart, as shown in 

Figure 2.2. A thermal gradient was then applied along the length of the specimen, resulting 

in the temperature recorded by TC1 in the middle always being higher than temperature 

recorded by TC2 towards one end. The temperature relationship between TC1 and TC2 is 

also shown in Figure 2.2. In subsequent experiments, TC1 was removed so as not to obscure 

the view of the speckle pattern from the cameras. TC2 was then used to provide temperature 

control by assigning temperatures which corresponded to the desired temperature in the 

middle. In this fashion the controller K-type thermocouple (TC2) always remained below its 

limit of 1250°C, while in the middle of the gauge section a higher temperature was achieved. 

 

Figure 2.2. Schematic of the 2-thermocouple placement (left) and temperature 

relationship of the two thermocouples (right) 



26 

 

To further support the validity of the 2-thermocouple method, Figure 2.3 shows a 

temperature map captured from a FLIR A6751sc IR camera. The temperature varies in the 

horizontal direction and is hottest in the middle of specimen, which agrees with the 

temperatures measured by TC1 and TC2 in Figure 2.2. There is of course a temperature 

gradient in the sample as seen in Figure 3, which is the basis of using the 2-thermocouple 

method. However, since the present work is concerned with determining the influence of 

exposure time on DIC results, uniformity of temperature is not required. Note that it was 

not possible to use the FLIR measurement as a temperature control variable. Only a K-type 

thermocouple can be used as a control signal with the Gleeble 1500D. 

 

Figure 2.3. The temperature map from FLIR IR camera at 1600oC, data bar shows 

temperature (oC) map inside dashed rectangle 
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A fixture was designed using aluminum T-slot framing to appropriately mount the 

UV camera, UV lights and UV filter above the Gleeble, as shown in Figure 2.4. The 

specimen was monitored through a borosilicate glass window, which transmits both UV 

and visible light. The thickness of the window is 16.40 mm. The window is held in position 

by an aluminum frame and it is sealed by a rubber O-ring to keep vacuum pressure. The 

camera model was a CM-140GE-UV camera manufactured by JAI, which detects both 

visible and ultraviolet light. The camera was equipped with a UV lens from Universe 

Kogaku Inc. with a focal length of 50 mm and was fitted with an XNite 330C M58 

ultraviolet bandpass filter from LDP LLC. The UV lights, which emit at a peak wavelength 

of 365 nm, were purchased from CCS Inc. Figure 2.5 shows the transmissivity of the UV 

camera and related optics, as provided by the manufacturers. 

 

Figure 2.4. Photograph of the fixture with experimental setup 
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Figure 2.5. Transmissivity of UV camera and related optics 

At high temperature, the temperature of the window could potentially cause errors 

to DIC measurement due to air heating outside the window and curvature of the window. 

However, this issue is expected to be minimal. Since the specimen is heated via an 

electrical current, only the specimen is directly heated, not the entire volume of the 

chamber. The tests are in vacuum to minimize the heat transfer from conduction and 

convection. Although the radiation can be transmitted in vacuum, it is expected to be small. 

Even when the specimen is at 1600°C, the window is safe to touch. 

The specimen was heated to temperatures corresponding to room temperature (RT) 

and multiple extreme temperatures (1300oC, 1450oC and 1600oC) at the middle of the 

specimen. The loading condition is purely static. Since the goal of this paper is to examine 

the influence of exposure times, any other factors contributing to camera sensitivity (i.e., 

UV light intensity, aperture, and gain) were kept fixed. Specifically, the aperture of the 
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lens was set to an f-number of 4 and the gain of the camera was set to 0. The brightness of 

the UV source was not measured, but is given as 20.4 mW/cm2 corresponding to a working 

distance of 116.5 mm, which is significantly shorter than the working distance in this paper. 

In general, the brightness of the UV source decreases with longer working distance. In this 

paper, both the working distance and the intensity of the lights are kept constant throughout 

the test. Therefore, the brightness of UV light, though unmeasured, is unchanged during 

the test. Images were taken at multiple exposure times ranging from the shortest exposure 

time that the camera is capable of (500 µs) to the longest exposure time (61,000 µs). 

Even at room temperature, when the Gleeble is on, the vacuum pump causes the unit 

to vibrate. To explore the possible relative motion between the camera (outside the vacuum 

chamber) and the specimen (inside the chamber), an investigation was performed, which 

confirmed that there is such relative motion caused by the vacuum pump, but the motion is 

small in comparison to the precision of the measurements. At room temperature, the two 

following cases were tested, and at extreme temperatures a third case was also tested: 

- Case 1: No motion applied to the specimen. For each value of exposure time, two 

images at the same state were taken in succession. 

- Case 2: A rigid motion was applied. The camera was moved away from the 

reference state in mostly the horizontal direction, producing a relative motion in the 

recorded images. A third image was then recorded at each exposure time. 

- Case 3: Thermal expansion measurements. Case 1 images at high temperature are 

correlated against case 1 reference images at room temperature. No new images are 

recorded. 
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Additionally, in the tests at high temperatures, another factor limiting the precision 

of the measurements is out of plane thermal expansion which is proportional to Δz/z=tαΔT/z 

where Δz is the out of plane thermal expansion, z is the distance between the lens and the 

front of specimen (for this test z=44.5 cm), t is the thickness of the specimen (t = 7.62 mm), 

α is coefficient of thermal expansion (varies with temperature) and ΔT is the temperature 

change in the test. For example, if the test is at 1300°C, α = 2.6020 (10-6K-1) (taken from 

Results section), so the precision of the measurements is proportional to Δz/z = 58µε. 

A commercial DIC software from Correlated Solutions Inc. named Vic-2D (version 

2009) was employed to compute displacement and strain distributions over the gauge 

length region. The subset size was 61x61 pixels, the step size was 25 pixels, and the strain 

window was 15 subsets. The calculation was performed separately for each temperature 

and exposure time, such that each use of the software involved only three images at room 

temperature (Case 1 and Case 2 with the same reference image) or two images at high 

temperatures (Case 1 only). The same images were later used to compute thermal 

expansion strains (i.e., Case 3) by assigning a reference image at room temperature and 

deformed images at the elevated temperatures. 

After all data was collected, the data was post-processed using MATLAB to find 

the mean and 95% confidence interval. The 95% confidence interval was computed by 

sorting the data in ascending order, then finding the thresholds which indicate values 

between 2.5% and 97.5% of the data. In Figure 2.6, only u displacement is presented while 

in Figure 2.7, Figure 2.9, and Figure 2.14 only strains are presented. 
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2.5. Results 

A. Room temperature 

The mean displacement and axial normal strain are presented in Figure 2.6 and 

Figure 2.7, respectively, with uncertainty bands showing the 95% confidence intervals. 

Since displacements were mostly applied in the axial direction, only the axial components 

are included. Each figure contains three datasets: case 1 (no applied motion) with the 

Gleeble turned off, case 1 with the Gleeble turned on, and case 2 (applied rigid motion) 

with the Gleeble turned on. For clarity, the first and last dataset have been staggered 

horizontally slightly by adding ±500 µs to exposure time in order to avoid excessive 

overlapping of the uncertainty bands. Each dataset also features a horizontal line to indicate 

the combined mean of all points in the set, which should be nominally zero (for case 1 

displacements and all strains) and non-zero (for case 2 displacements). The left vertical 

axis (written in pink) refers to Case 1 including Gleeble turned off and Gleeble turned on 

whereas the right axis (written in blue) is used for Case 2. 

As can be seen in Figure 2.6, when the Gleeble is on, it imposes a small relative 

motion between the cameras and specimens according to the mean line. However, when 

comparing to Figure 2.7, strains are all consistently around zero over the whole range of 

exposure time. This justifies that the relative motion is purely rigid-body motion, which 

we believe may be due to the vibration of the vacuum pump. Accordingly, at high 

temperatures only the strains (not the displacements) will be reported in later figures. 
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Figure 2.6. Mean u displacement at room temperature, compared between case 1 (no 

applied motion) and case 2 (non-zero rigid motion) with the Gleeble on or off as 

indicated. Each uncertainty band is the 95% confidence interval 
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Figure 2.7. Mean strain 𝜀𝑥𝑥 at room temperature, compared between case 1 (no applied 

motion) and case 2 (non-zero rigid motion) with the Gleeble on or off as indicated. Each 

uncertainty band is the 95% confidence interval 

Since the displacement and strain fields are not uniform, Table 2.1 shows the mean 

and variance of displacement and strain field in Figure 2.6, Figure 2.7 and Figure 2.9. The 

mean value represents the bias error and the variance shows how far a set of data points 

spread out from their mean value. 
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Table 2.1. Mean and variance of displacement and strain field 

Figure Temperature Mean Variance Collected data 

Figure 2.6 

Case 1, 

Gleeble off 

Room 

temperature 

0.0057 7.0652e-04 

Horizontal 

displacement 

(pixel) 

Case 1, 

Gleeble on 
-0.0092 9.5563e-04 

Case 2, 

Gleeble on 
25.8432 9.7073e-04 

Figure 2.7 

Case 1, 

Gleeble off 

Room 

temperature 

7.1348e-06 2.4994e-09 

Horizontal 

strain 

Case 1, 

Gleeble on 
-1.2978e-05 2.1891e-09 

Case 2, 

Gleeble on 
-3.0635e-05 7.5206e-09 

Figure 2.9 

(a) 1300°C -3.8209e-05 1.8446e-08 
Horizontal 

strain 
(b) 1450°C 1.9566e-05 5.5766e-09 

(c) 1600°C -7.1006e-05 1.0632e-08 

B. Extreme temperatures 

A series of images showing the speckled surface of the specimen are arranged in 

Figure 2.8 at different temperatures (room temperature, 1300oC, 1450oC and 1600oC) and 

select exposure times (20,000 µs, 30,000 µs, 50,000 µs and 61,000 µs) along with 

histograms of the corresponding greyscale values. As both temperature and exposure time 

increase, the images become visibly brighter. Eventually, some images became so saturated 

that Vic-2D could no longer perform a correlation. The speckle images where Vic-2D was 

unable to correlate are marked with red crosses. 
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Figure 2.8. Raw speckle images of specimen surface at different temperatures (increasing 

from left to right) and exposure times (increasing from top to bottom) respectively, and 

histograms of the greyscale values corresponding to the images. Images which are too 

saturated to perform DIC are indicated with a red cross 
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Figure 2.9 shows comparisons of εxx at room temperature (RT) vs 1300oC (a), 

1450oC (b) and 1600oC (c) respectively when there are no applied displacements (i.e., Case 

1). At the highest temperatures and longest exposure times (including the cases indicated 

by red crosses in Figure 2.8), data is unavailable because the images were too saturated for 

Vic-2D to perform its correlation. 

 

Figure 2.9. Comparison of 𝜀𝑥𝑥 at room temperature and (a) 1300oC, (b) 1450oC and  

(c) 1600oC when there is no applied displacement 

Figure 2.10(a) shows the non-uniform thermal strain distribution over the gauge 

length due to the thermal gradient in Figure 2.3. The thermal strain (i.e., Case 3) is 

computed by comparing a reference image at room temperature and a deformed image at 

1600oC. Figure 2.10(b) presents the εxx strain contour at 1600oC when there is no applied 

change in temperature or displacement. The exposure time is 20,000 µs since generally it 

gives a small uncertainty band at high temperatures. The data is overall centered around 

zero which is in good agreement with the condition of no applied displacement. Note that 
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the data in Figure 2.10(a) is of thermal strain at 1600oC while data in Figure 2.10(b) is 

nominally of zero-strain at 1600oC when there is no applied temperature or displacement. 

 

Figure 2.10. (a) The thermal strain 𝜀𝑥𝑥(pixel/pixel) map at 1600oC obtained with Vic-2D 

from comparing a reference image at room temperature and a deformed image at 1600oC, 

(b) The 𝜀𝑥𝑥(pixel/pixel) strain map at 1600oC obtained with Vic-2D from two images 

with no applied temperature or displacement. All images were recorded at  

an exposure time of 20,000 µs 

Figure 2.11 shows thermal strains (i.e., Case 3) at 1300oC, 1450oC and 1600oC as a 

function of position along the gauge length. Unlike the strains in the previous figures, the 

thermal strain was computed by correlating between a reference image at room temperature 

and corresponding deformed images at high temperature. The exposure time was set to 

20,000 µs. As can be seen in Figure 2.11, thermal strain becomes larger and less uniform at 

higher temperature. The dashed horizontal lines are the mean thermal strains. They are 

calculated by taking average of all thermal strain points along gauge length. The solid 



38 

 

horizontal lines are 95% confidence interval of mean thermal strain. The coefficient of 

thermal expansion (CTE) is computed by the formula: CTE = εavg/Tmax where εavg is the mean 

thermal strain and Tmax is the maximum temperature occurring in the middle of specimen. 

Particularly, the mean thermal strain (dashed horizontal lines in Figure 2.11) is 0.0034, 

0.0055, and 0.0063 at 1300oC, 1450oC and 1600oC, respectively, which corresponds to mean 

coefficients of thermal expansion (CTE) of 2.6020 (10-6K-1), 3.8087 (10-6K-1) and 3.9362 

(10-6K-1), respectively. For a temperature of 1600oC, the standard deviation of CTE is 0.1367 

(10-6K-1) which is relatively small when compared to its mean value (around 5%). The CTE 

from the manufacturer is 2 (10-6K-1) [21]. Although it is unknown over which temperatures 

the manufacturer measured CTE, our results are generally of the same order of magnitude as 

the specifications of the manufacturer. In addition, Figure 2.11 shows that thermal strains 

over the gauge length become less uniform at higher temperatures due to thermal gradients. 

 

Figure 2.11. Thermal expansion strain at multiple temperatures over the gauge length 
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2.6. Discussion 

In general, results at room temperatures from Figure 2.6 and Figure 2.7 showed that 

the uncertainty bands are much wider in Case 2 compared to Case 1. Any error caused by 

the vibration of the Gleeble (i.e., the difference between the two grand mean lines in Case 

1) is well within the precision of the system (i.e., the size of the uncertainty bands of Case 

2). Therefore, the influence of Gleeble vibration is expected to be negligible in a real 

experiment with non-zero motion. Another observation is that the uncertainty bands are 

wider at extreme exposure times and narrower at moderate exposure times. This is 

reasonable since the contrast of images at extreme exposure times is degraded, resulting in 

deteriorating the correlation. 

The upper temperature limit of DIC depends on the light sensitivity of the camera 

system. As can be seen in Figure 2.9, when an exposure time of 61,000 µs was used, the 

upper temperature limit of UV-DIC was 1300oC, whereas when it was reduced to 58,000µs, 

the limit was 1450oC and by using 45,000 µs and below it was able to reach 1600oC. In 

other words, the variation of exposure time alters the contrast of the image resulting in a 

change of the upper temperature limit. 

For a given exposure time, the uncertainty bands are wider at extreme temperatures 

compared to room temperature as shown in Figure 2.9. This is reasonable since images get 

brighter at higher temperatures resulting in weaker correlation. Additionally, as 

temperature increases, images tend to saturate at progressively lower exposure times than 

they saturated at lower temperatures, resulting in dropped data points (at the very highest 

exposure times) and larger uncertainty bands (at less high exposure times). 
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The above observations are based upon camera settings which are specific to the 

particular model of camera. Thus, to provide more robust recommendations, it is preferable 

to adopt a metric that can be applied to other cameras. One notable metric was proposed by 

Phillip Reu [23], who suggested that the best minimum contrast (for an 8 bit camera) is 

when the difference between the greyscale value of a typical dark pixel and typical bright 

pixel is at least 50 counts. He later presented a similar recommendation, where he plotted a 

histogram comparable to those in Figure 2.8 and recommended that the maximum value to 

appear in that histogram should be at least 50 counts [14]. While the latter suggestion makes 

for a very convenient metric to calculate quickly, it is very susceptible to outliers if one pixel 

happens to be much brighter or darker than the overall speckle pattern. Also, in the case of 

extreme temperature measurements involving over-saturation, the maximum count is often 

limited by the camera sensor (255 for an 8 bit camera) but the minimum count will continue 

to increase with temperature, resulting in poor contrast due to over-saturation. 

Reverting to Reu’s earlier metric [23], the following discussion presents a more 

quantitative approach to determine which dark pixels and which bright pixels should be 

considered “typical” by computing the 90% confidence interval. In this new approach, we 

integrate the histogram from 0 until we reach 5% of the total pixels, and that greyscale value 

would represent a “typical dark pixel” which we call Z1. Similarly, we integrate the histogram 

from 0 until we reach 95% of the total pixels, and that greyscale value would represent a 

“typical bright pixel” which we call Z2. The contrast, given the symbol Δ, is defined as the 

difference in grey values between the typical dark speckles and the typical bright speckles 

[14]. In other words, Δ = Z2 - Z1 such that 90% of all pixels lie within the span of Δ. An 
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example of this approach is shown in Figure 2.12 at three different exposure times which 

represents (a) low exposure time, (b) intermediate exposure time and (c) high exposure time. 

Figure 2.12(a) illustrates a bad contrast (Δ < 50) while Figure 2.12(b) presents a good contrast 

(Δ > 50). In Figure 2.12(c), Δ is higher than 50 but is still considered as a bad case due to 

saturation of the camera sensor (Z2 = 255). So in addition to a requirement that Δ should be 

at least 50 counts, an additional constraint should be Z2 ≠ 255. 

 

Figure 2.12. Example of 90% confidence interval approach, using room temperature data 

at exposure time of a) 2,500 µs, b) 20,000 μs and c) 61,000 µs  

Figure 2.13 presents the relationship between exposure time and Δ at four different 

temperature levels. The figure shows that low Δ happens not only when exposure time is 

too low, but also when exposure time is too high. Under the camera settings used in this 

study, Δ is linearly proportional to exposure time if exposure time is below 30,000 µs and 

inversely proportional if exposure time is above 30,000 µs. In addition, when exposure 

time is below 30,000 µs, there is no remarkable difference in Δ at multiple temperature 
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levels whereas when exposure time is above 30,000 µs, higher temperatures lead to lower 

Δ (low contrast) when compared at the same value of exposure time. In other words, high 

temperature greatly affects the contrast of images when camera sensitivity is above a 

certain limit. In this case, the difference between various temperatures is clearly noticeable 

when exposure is beyond 30,000 µs. 

 

Figure 2.13. Relationship between exposure time and Δ at different temperatures 

Figure 2.14 shows the relationship between strain εxx and Δ at four different 

temperature levels, using the data presented in Figure 2.9. Data was recorded at multiple 

exposure times ranging from 500 µs to 61,000 µs. The vertical black dashed line is at Δ=50, 

which is the boundary of good camera sensitivity recommended by Reu [23]. It is 

noticeable that when Δ is bigger than 50, uncertainty bands tend to be smaller whereas if 

Δ is much smaller than 50, uncertainty bands are larger. 
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Figure 2.14. Strain 𝜀𝑥𝑥 vs Δ at (a) RT, (b) 1300oC, (c) 1450oC, and (d) 1600oC when 

there is no applied displacement 

Based on our definition of Δ, it is therefore recommended that before heating a 

sample and performing DIC at high temperature, an initial image should be recorded at 

room temperature and Δ should be higher than 50. For the conditions used in this study, 

this recommendation consistently covers all images recorded at exposure times of 10,000 

μs and above. As can be inferred from Figure 2.14, data is unavailable at 61,000 µs, 58,000 

µs, 55,000 µs, 50,000 µs for 1600oC and 61,000 µs for 1450oC while we have full data for 

1300oC and room temperature. It is thus further recommended that before testing at higher 

temperatures, the exposure time should be kept as low as possible while maintaining 

sufficient Δ to avoid over-saturation in the higher temperature images. 
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The metric of Δ is intended as a quick and convenient metric for DIC users to 

quickly assess the quality of a DIC speckle pattern at high temperature. Readers who desire 

a more meticulous method of error assessment are referred to three works by Wang et al. 

In the first work, Wang et al. [24] considered various sources of error including 

interpolation method, subpixel motion, intensity noise, image contrast, level of uniaxial 

normal strain and subset size. They then constructed a mathematical framework for 

considering those errors for 1D and 2D motion. The next paper [25] extends the 

consideration of error to 3D motion. Extensive numerical simulations were performed to 

verify the capability of the developed framework in estimation of bias and variance for a 

3D motion measurement. The last paper [26] is an experimental validation of the 

theoretical framework presented in [24] and [25]. Between these three papers, the authors 

introduced a thorough and robust framework for error assessment of DIC measurement that 

is essential for designing a DIC code. However, for readers who just want a convenient 

metric to assess saturation at high temperature, we have presented Δ which can be obtained 

relatively quickly. 

2.7. Conclusions 

In summary, the influence of exposure time on DIC at extreme temperatures was 

investigated thoroughly in this paper. Since the uncertainty bands on displacement and 

strain measurements are wider at extreme exposure times, it is recommended to avoid 

setting the exposure time too short (5,000 µs and below for the camera settings used in this 

paper) at all temperatures. Additionally, at high temperatures, it is advised to avoid setting 

the exposure time too long to avoid overexposing the images. For the example used in this 
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study, exposure times of between 10,000 µs to 40,000 µs are a good range for this camera 

system to test from room temperature up to 1600oC. To better apply results from this paper 

to other cameras, a normalized metric called Delta (Δ) is presented to ensure that 90% of 

all pixels span a sufficiently broad range of greyscale values. Exposure time should be 

selected to allow as low light sensitivity as possible while maintaining Δ > 50. Most 

importantly, the upper temperature limit of DIC depends on the light sensitivity of the 

camera system which depends on multiple factors – including exposure time – and can be 

effectively extended by reducing the sensitivity of the system. 

2.8. Acknowledgements 

This work was funded in part by a grant from NASA’s Marshall Space Flight Center (award 

# 80MSFC18M0009) and by the Utah State University Office of Research and Graduate 

Studies. JL also wishes to acknowledge the support of the Air Force Office of Scientific 

Research (AFOSR) through grant number FA9550-16-1-0055. 

2.9. References 

[1]  Sutton MA, Orteu JJ, Schreier H (2009) Image Correlation for Shape, Motion and 

Deformation Measurements: Basic Concepts, Theory and Applications. Springer 

US 

[2]  Chu TC, Ranson WF, Sutton MA (1985) Applications of digital-image-correlation 

techniques to experimental mechanics. Exp Mech 25:232–244. 

https://doi.org/10.1007/BF02325092 

[3]  Ramos T, Braga DFO, Eslami S, et al (2015) Comparison Between Finite Element 

Method Simulation, Digital Image Correlation and Strain Gauges Measurements in 

a 3-Point Bending Flexural Test. Procedia Eng 114:232–239. 

https://doi.org/10.1016/j.proeng.2015.08.063 



46 

 

[4]  Berfield TA, Patel JK, Shimmin RG, et al (2007) Micro- and Nanoscale 

Deformation Measurement of Surface and Internal Planes via Digital Image 

Correlation. Exp Mech 47:51–62. https://doi.org/10.1007/s11340-006-0531-2 

[5]  Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2010) An experimental 

methodology to relate local strain to microstructural texture. Rev Sci Instrum 

81:083703. https://doi.org/10.1063/1.3474902 

[6]  Gradl PR (2016) Digital Image Correlation Techniques Applied to Large Scale 

Rocket Engine Testing. In: AIAA Propulsion and Power 2016 Conference. Salt 

Lake City, UT, United States 

[7]  Carr J, Baqersad J, Niezrecki C, Avitabile P (2016) Full-Field Dynamic Strain on 

Wind Turbine Blade Using Digital Image Correlation Techniques and Limited Sets 

of Measured Data From Photogrammetric Targets. Exp Tech 40:819–831. 

https://doi.org/10.1007/s40799-016-0082-0 

[8]  Wang W, Xu C, Jin H, et al (2017) Measurement of high temperature full-field 

strain up to 2000 °C using digital image correlation. Meas Sci Technol 28:035007. 

https://doi.org/10.1088/1361-6501/aa56d1 

[9]  Yoneyama S (2016) Basic principle of digital image correlation for in-plane 

displacement and strain measurement. Adv Compos Mater 25:105–123. 

https://doi.org/10.1080/09243046.2015.1129681 

[10]  Meyer P, Waas AM (2015) Measurement of In Situ-Full-Field Strain Maps on 

Ceramic Matrix Composites at Elevated Temperature Using Digital Image 

Correlation. Exp Mech 55:795–802. https://doi.org/10.1007/s11340-014-9979-7 

[11]  Berke RB, Lambros J (2014) Ultraviolet digital image correlation (UV-DIC) for 

high temperature applications. Rev Sci Instrum 85:045121. 

https://doi.org/10.1063/1.4871991 

[12]  Reu P (2013) Stereo-rig Design: Lens Selection – Part 3. Exp Tech 37:1–3. 

https://doi.org/10.1111/ext.12000 

[13]  Reu P (2013) Calibration: A good calibration image. Exp Tech 37:1–3. 

https://doi.org/10.1111/ext.12059 

[14]  Reu P (2015) All about speckles: Contrast. Exp Tech 39:1–2. 

https://doi.org/10.1111/ext.12126 

[15]  Lyons JS, Liu J, Sutton MA (1996) High-temperature deformation measurements 

using digital-image correlation. Exp Mech 36:64–70. 

https://doi.org/10.1007/BF02328699 



47 

 

[16]  Grant BMB, Stone HJ, Withers PJ, Preuss M (2009) High-temperature strain field 

measurement using digital image correlation. J Strain Anal Eng Des 44:263–271. 

https://doi.org/10.1243/03093247JSA478 

[17]  Chen X, Xu N, Yang L, Xiang D (2012) High temperature displacement and strain 

measurement using a monochromatic light illuminated stereo digital image 

correlation system. Meas Sci Technol 23:125603. https://doi.org/10.1088/0957-

0233/23/12/125603 

[18]  Blaber J, Adair BS, Antoniou A (2015) A methodology for high resolution digital 

image correlation in high temperature experiments. Rev Sci Instrum 86:035111. 

https://doi.org/10.1063/1.4915345 

[19]  Pan B, Wu D, Wang Z, Xia Y (2011) High-temperature digital image correlation 

method for full-field deformation measurement at 1200 °C. Meas Sci Technol 

22:015701. https://doi.org/10.1088/0957-0233/22/1/015701 

[20]  Novak MD, Zok FW (2011) High-temperature materials testing with full-field 

strain measurement: Experimental design and practice. Rev Sci Instrum 82:115101. 

https://doi.org/10.1063/1.3657835 

[21]  GraphiteStore.com, Inc. Fine Extruded Graphite Rod, 0.5"OD x 12"L. 

http://www.graphitestore.com/fine-extruded-graphite-rod-0-5od-x-12l-nc001325. 

Accessed 9 Apr 2018 

[22]  OMEGA Engineering, Inc. Thermocouple Type K Reference Table. In: 

Thermocouples. https://www.omega.com/prodinfo/thermocouples.html. Accessed 

11 Mar 2018 

[23]  Reu P (2013) Stereo-rig Design: Lighting—Part 5. Exp Tech 37:1–2. 

https://doi.org/10.1111/ext.12020 

[24]  Wang Y. Q., Sutton M. A., Bruck H. A., Schreier H. W. (2009) Quantitative Error 

Assessment in Pattern Matching: Effects of Intensity Pattern Noise, Interpolation, 

Strain and Image Contrast on Motion Measurements. Strain 45:160–178. 

https://doi.org/10.1111/j.1475-1305.2008.00592.x 

[25]  Wang Y-Q, Sutton MA, Ke X-D, et al (2011) On Error Assessment in Stereo-based 

Deformation Measurements. Exp Mech 51:405–422. 

https://doi.org/10.1007/s11340-010-9449-9 

[26]  Ke X-D, Schreier HW, Sutton MA, Wang YQ (2011) Error Assessment in Stereo-

based Deformation Measurements. Exp Mech 51:423–441. 

https://doi.org/10.1007/s11340-010-9450-3  



48 

 

CHAPTER 3 

CHANGE OF EXPOSURE TIME MID-TEST IN HIGH TEMPERATURE  

DIC MEASUREMENT 

3.1. Prologue 

This chapter presents a full-text paper which was accepted in Measurement Science 

and Technology in March 2020 under the title “Change of Exposure Time Mid-Test in 

High Temperature DIC Measurement”. The paper is currently in press and will be 

published shortly. The experiment and data were performed and processed at Utah State 

University, Logan, UT. The author list is Thinh Q. Thai, Adam J. Smith, Robert J. Rowley, 

Paul R. Gradl, and Ryan B. Berke. The original paper is entirely presented below. 

3.2. Abstract 

Performing Digital Image Correlation (DIC) at extreme temperatures has been 

greatly challenging due to the radiation which saturates the camera sensor. At such high 

temperatures, the light intensity emitted from an object is occasionally so powerful that 

acquired images are overwhelmingly saturated. This induces data loss, potentially ruining 

the test, thus requiring the user to restart the test. For this reason, selection of an appropriate 

camera sensitivity plays a crucial role prior to beginning the test. Exposure time is a factor 

contributing to camera sensitivity and it is the easiest setting to manipulate during the test 

since it introduces minimal errors when comparing to other factors, especially in quasi-

static tests. This paper examines the influence of changing exposure time mid-test on DIC 

measurement uncertainty. The investigation was conducted by rigid body motion 
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experiments at room temperature and 1600°C, respectively. Thereby, some 

recommendations are given to help DIC users assess their images at room temperature to 

extrapolate the exposure at extreme temperatures along with accompanying solutions to 

salvage data at high temperature. 

Keywords: DIC, extreme temperature, exposure time, ultraviolet light, graphite, Gleeble. 

3.3. Introduction 

Acquisition of deformation and strain measurements is an important step in 

designing engineering applications, but deformation and strain are frequently non-uniform. 

In such cases, it is necessary to get a full field strain map for the purpose of material 

characterization. Digital Image Correlation (DIC) [1,2] is a non-contacting method which 

is widely used to obtain full field strain maps by comparing images acquired from high 

resolution cameras before and after deformation. DIC has many advantages [3,4], including 

(1) it is non-contacting, (2) it is able to collect full field data and (3) it can be applied in a 

broad range of length scales from nanoscale [5,6] to meter-scale [7,8] as long as appropriate 

camera and lenses are provided. 

To make meaningful image comparisons, it is pivotal to acquire images with 

sufficient monochromatic grayscale contrast [9]. There are four main methods to control 

image contrast [10] including: (i) the aperture on the lens, (ii) the exposure time of the 

camera, (iii) the intensity of the supplied light source and (iv) the gain of the camera 

amplifier. Each method has its own pros and cons and, depending on testing conditions, 

one method could be technically superior to others. For example, during a dynamic test, 
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exposure time must be kept short to avoid motion blur, but during a quasi-static test, 

exposure time is allowed to be variable [11]. 

When performing DIC at temperatures above 550°C, one of the primary challenges 

is the glowing of objects from black body radiation which deteriorates image contrast 

[12,13]. It is known that the radiation is much brighter at longer wavelengths (i.e. red and 

infrared) than it is at shorter wavelengths (i.e. blue and ultraviolet (UV)). Researchers [14–

16] have used a blue band-pass filter and external blue illumination to screen out some of the 

brightest glow, raising the temperature limit at which DIC can be applied without 

oversaturation to as high as 2000oC [17]. Berke and Lambros introduced a novel variation of 

DIC named UV-DIC [18], which utilizes UV optics in order to increase the temperature limit 

even further compared to blue. Under the camera settings used in that study, blue-filtered DIC 

saturated at as low as 900°C while UV-DIC remained minimally saturated to at least 1125°C. 

UV-DIC has since been demonstrated to at least 1600°C [19] but its upper temperature limit 

remains unknown. Thanks to its shorter wavelength, UV-DIC can potentially perform to 

even higher temperatures than the 2000°C reported for blue-filtered DIC. 

Recently, Thai et al. [19] recognized that the upper temperature limit of DIC 

depends on the camera’s sensitivity to light. In that paper, he proposed a normalized metric 

called Delta (Δ) as a general guideline for setting the exposure time of cameras with 

different sensitivity. However, his recommendation only considered how to select exposure 

time at the beginning of a test, which is then left constant for the duration of the test. High 

temperature tests are expensive and unpredictable, and in some cases, the specimen may 

emit more light than anticipated prior to testing. The image contrast is thus degraded by 
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powerful radiation, so maintaining the initial exposure time during the whole test becomes 

unfeasible. By changing the exposure time during mid-test, DIC users may still be able to 

get some meaningful data instead of being presented with no data or restarting the 

experiment. 

In this paper, we investigate the influence on DIC measurement uncertainty when 

changing exposure time during a test. Compared to paper [19], in which camera settings 

(e.g. exposure time) were selected prior to performing high temperature tests and remained 

constant, this paper emphasizes changing exposure time in situ during the course of 

measurement. The effect on DIC measurement is then examined (A) when both images are 

taken at room temperature; (B) when both images are taken at high temperature; and (C) 

when the reference image is at room temperature but the deformed image is at high 

temperature. Experiments were performed at room temperature (RT) and 1600°C, 

respectively. Having done so, some suggestions are given to DIC users about the alteration 

of exposure time during a test. 

3.4. Methods 

Specimens as shown schematically in Figure 3.1(a) were machined from super fine 

grain, high density, extruded graphite rods purchased from Graphtek LLC. The rods had a 

length of 152.4 mm (6 in) and diameter of 12.7 mm (0.5 in). A square cross section of 7.62 

mm (0.3 in) was machined in order to provide a flat, planar surface on which to perform 

DIC. The graphite was chosen as the material since it is inexpensive, easily machinable, 

and has a melting point of 3000oC in vacuum which is beyond the highest temperature in 

this work (1600oC). A white speckle pattern as shown in Figure 3.1(b) and (c) was applied 
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using Pyro-Paint 634-AL from Aremco Products Inc. which has a maximum temperature 

rating of 1760oC, also above the highest temperature explored in this work. The white 

speckle pattern was applied directly on the graphite’s naturally dark background by a 

splattering method. Prior to testing, the paint was dried at room temperature for 2 hours 

and then cured at 93oC (200oF) for 2 hours according to the manufacturer’s manual. 

Additionally, an optical imaging system including a UV camera, UV lens, UV lights and 

UV filter was mounted on a T-slot fixture as shown in Figure 3.1(d). More information on 

the camera system and related optics can be found in Reference [19]. 

 

Figure 3.1. (a) A specimen schematic, (b) a photograph of testing specimen,  

(c) a magnification of speckle pattern, (d) experimental setup of UV optics imaging system 

Due to the aggressive oxidation of graphite in air environments, all high 

temperature testing was performed in vacuum using a Gleeble 1500D thermo-mechanical 
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system, which heats electrically-conducting specimens via joule heating. A K-type 

thermocouple was used as feedback control during temperature heating. However, K-type 

thermocouples are only rated to 1250°C [20] while tests were performed up to 1600°C. For 

this reason, a modified method was introduced to heat beyond the range of the K-type 

thermocouple. Since the two ends of specimen were held by cooled grips, a thermal 

gradient results along the axis of the specimen, with the hottest temperature occurring in 

the middle of specimen. The specimen was heated twice: first with two thermocouples, 

TC1 in the middle and TC2 at one end, until TC1 reached a maximum temperature of 

1250°C. This established a linearly proportional relationship between the temperatures 

recorded by the two thermocouples. TC1 was then removed so to not block any cameras’ 

view of the surface for DIC, and TC2 was used for feedback control. More details were 

presented in [19]. Figure 3.2 shows a thermal image of a heated specimen captured from a 

FLIR A6751sc IR camera. As can be seen from the figure, the temperature is highest in the 

middle at 1600oC and decreases steadily towards two ends. Temperatures are linearly 

proportional to those observed at lower temperatures by both thermocouples. 

In order to investigate the effect of only exposure time, all other parameters 

contributing to camera sensitivity (i.e. UV light intensity, aperture, and gain) remained 

unchanged. Specifically, the UV light intensity was set to around 60%, the aperture of the 

lens was 4 and the gain of the camera was 0. The specimen was tested at two different 

temperature levels: room temperature (RT) and 1600oC. No loads were applied throughout 

testing. At each temperature level (RT and 1600°C) and at each of value of exposure time 

(totaling 12 values spanning the full capability of the camera from 500 µs to 61,000 µs), 
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two consecutive images at the same state were taken. In total, 12 x 2 = 24 images were 

captured at room temperature and 24 more at high temperature corresponding to Experiment 

A and Experiment B in the Results Section. 

 

Figure 3.2. The thermal map at 1600oC taken by FLIR IR camera, vertical color bar 

displays temperature (oC) scale inside white dashed rectangle 

Images were then processed using Vic-2D (version 2009), a commercial DIC 

algorithm from Correlated Solutions Inc. As summarized in Table 3.1, an image at each of 

the 12 exposure times was correlated against a second image at each of the 12 exposure 

times, such that each use of Vic-2D involved only 2 images and the analysis was performed 

12 x 12 = 144 times for a given temperature. Three cases were studied: (A) both images at 

room temperature (144 image pairs), (B) both images at 1600oC (144 more image pairs), 
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and (C) a reference image at room temperature correlated with a deformed image at 1600oC 

(144 more image pairs). In every correlation, the subset size was 61x61 pixels, the step size 

was 25 pixels, and the strain window was 15 subsets. The majority of the image pairs did 

not correlate, and are excluded from the presented data. 

Table 3.1. Summary of image pairs used in correlations 

 Reference Image  Deformed Images  Image Pairs 

A 
12 Exposure Times 

at RT 
x 

12 Exposure Times 

at RT 
= 144 Image Pairs 

B 
12 Exposure Times 

at 1600°C 
x 

12 Exposure Times 

at 1600°C 
= 144 Image Pairs 

C 
12 Exposure Times 

at RT 
x 

12 Exposure Times 

at 1600°C 
= 144 Image Pairs 

Next, the output from Vic-2D was post-processed by MATLAB to compute the 

mean strain and 95% confidence interval. Since no load was applied, all strain should be 

nominally zero at any fixed temperature. The mean strain is an indicator of the accuracy of 

DIC under changing exposure times, while the confidence interval is an indicator of 

precision. The 95% confidence interval was computed by sorting the strain data in 

ascending order, then calculating the distance between the 2.5% and 97.5% thresholds of 

the data. 

Exposure time varies from camera to camera. For example, high speed cameras 

have short exposure time while the slower-speed UV cameras used in this study lean 

towards longer exposure time. For this reason, a metric of image contrast, Δ, was 
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introduced in order to let DIC users know how to choose an appropriate exposure time 

value which can be applied to any camera. A detailed computing procedure was presented 

in [19], but is summarized as follows. The contrast Δ = Z2 - Z1 is the difference in grey 

values between a “typical” dark speckle (Z1) and a “typical” bright speckle (Z2), as 

recommended by Phillip Reu [21]. In this case, Z1 and Z2 are selected by the range of the 

median 90% of pixels in the image. As illustrated in Figure 3.3, the histogram is integrated 

from 0 until reaching 5% of the total pixels, and that greyscale value represents a “typical 

dark pixel” which is called Z1. Similarly, the histogram is integrated from 0 until reaching 

95% of the total pixels, and that greyscale value represents a “typical bright pixel” called 

Z2. A “good” contrast is when Δ ≥ 50 [22] and Z2 < 255 (less than 5% of saturated pixels) 

for an 8-bit camera. 

 

Figure 3.3. Example of 90% confidence interval approach with respective speckle 

pattern, using room temperature data at exposure time of 20,000 μs 
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Table 3.2 shows the Z1, Z2, and Δ for each of the 12 exposure times at RT and 

1600°C, respectively. In general, Z1 and Z2 increase with higher temperature and higher 

exposure times until Z2 reaches 255 (saturation). Consequently, Δ decreases at very high 

exposure times. The table also shows the percentage of pixels which are saturated in each 

of the images. Note that whenever this percentage is 5 or larger, Z2 is always 255. 

Table 3.2. Raw data of Δ calculation at RT and 1600°C 

Exposure 

time 

Room temperature 1600oC 

Z1 Z2 Δ 

% of 

saturated 

pixels 

Z1 Z2 Δ 

% of 

saturated 

pixels 

500 µs 8 12 4 0 9 12 3 0 

2,500 µs 15 28 13 0 19 31 12 0 

5,000 µs 23 49 26 0 30 55 25 0 

10,000 µs 38 89 51 0 53 103 50 0 

20,000 µs 70 170 100 0 99 196 97 0 

30,000 µs 100 249 149 3.57 144 255 111 20.00 

40,000 µs 131 255 124 31.41 190 255 65 56.10 

45,000 µs 146 255 109 41.45 213 255 42 73.83 

50,000 µs 161 255 94 49.86 236 255 19 88.28 

55,000 µs 176 255 79 57.81 255 255 0 95.85 

58,000 µs 185 255 70 62.81 255 255 0 97.92 

61,000 µs 194 255 61 67.96 255 255 0 98.93 
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3.5. Results 

A. Change of exposure time during isothermal testing (Room temperature) 

Figure 3.4 shows all pairs in which images at room temperature are able to be 

correlated against each other. There are 27 pairs which are successfully corelated in the 

total of 144 pairs as introduced in Table 3.1 at room temperature. The blue dashed line 

indicates no change of exposure time. It can be seen that for low exposure times (10,000 

µs and below in this paper), exposure time cannot be changed. However, for high reference 

exposure times, exposure time can be changed and higher reference exposure times give 

narrower ranges of alteration. 

 

Figure 3.4. Image pairs which successfully correlated at room temperature 
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Figure 3.5 shows the (a) axial displacement u and (b) axial normal strain εxx 

measured by DIC for each correlation pair from Figure 3.4, along with the 95% uncertainty 

band. Only the image pairs which successfully correlated are included in the figure. The 

legend indicates the reference exposure time while the horizontal axis indicates the 

exposure time of the deformed images. For any data points having the same value of 

exposure time, they are displaced slightly in order to avoid excessive overlapping of data 

markers. The experiment was purely static, therefore u displacement and strain εxx should 

both nominally be zero. As can be confirmed from Figure 3.5, zero falls within the 95% 

uncertainty bands of about 95% of all displacement and strain measurements, which is in 

good agreement with no applied loading.  Due to the similarity in results of u displacement 

and strain εxx, only strain εxx are presented in the subsequent figures to keep the writing to 

be more concise. Furthermore, as the mean strains are all nominally zero, subsequent 

figures will compare just the sizes of the uncertainty bands instead of showing full-range 

of the uncertainty bands. 

In order to present results which can be generalized to other cameras, the exposure 

times of the deformed images have been converted into Δ as shown in Figure 3.6. The 

vertical axis is the size of the 95% uncertainty band while the horizontal axis is Δ of the 

deformed images. It can be inferred that of the image pairs studied, when Δ < 50 the 

exposure time is unable to change and still successfully correlate between two images. If 

Δ > 50, it is possible to change exposure time, but the size of the uncertainty band always 

increases to result in V-shaped plots. In cases when there is no change of exposure time, 

higher Δ generally gives lower uncertainty. 
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Figure 3.5. 95% uncertainty band when changing exposure time at room temperature 

illustrated by (a) u displacement and (b) strain εxx 
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Figure 3.6. Influence of changing exposure time on uncertainty band at RT illustrated via Δ 

Figure 3.7 shows the relationship between the size of the uncertainty band vs how 

far Δ is changed. It can be deduced that at higher reference exposure times, a minor variation 

of Δ results in a marked increase in uncertainty. This is demonstrated in Figure 3.7 thanks 

to the steeper slope of the dashed lines at longer reference exposure times. 

Figure 3.8 is a further investigation where the slope of the data in Figure 3.7 is 

compared to Δ of the reference images. Overall, once Z2 = 255, longer reference exposure 

times lead to smaller Δ and higher slope. 
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Figure 3.7. Relationship of 95% uncertainty band and Δ variation at various exposure times 

 

Figure 3.8. Investigation of slope with respect to Δ of reference images 
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B. Change of exposure time during isothermal testing (Extreme temperature – 1600°C) 

The testing in this section is similar to Result A with the only difference being that 

the tests were performed at 1600°C. At such high temperatures, the specimen emits light in 

the form of blackbody radiation which can saturate the recorded images [18]. For this reason, 

there are 10 pairs which are successfully correlated in the total of 144 pairs as shown in 

Figure 3.9. This is lower when compared to the 27 successfully correlated pairs at room 

temperature. For the camera equipment and settings used in this study, images with exposure 

times above 45,000 µs were too saturated to perform DIC, regardless of which other images 

they were correlated against as indicated by the red shaded region in Figure 3.9. Accordingly, 

only exposure times of 45,000 μs and below are plotted in this section. 

 

Figure 3.9. Image pairs which successfully correlated at 1600°C 
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Figure 3.10 presents the 95% uncertainty band of (a) u displacement and (b) strain 

εxx during alteration of exposure time at 1600°C, comparable to Figure 3.5. The exposure 

time of the reference images are listed in the legend of the figure. In general, all 

displacements and strains are centered around zero which matches the condition of no 

applied loading. This is demonstrated that the 95% uncertainty bands cover zero in about 

95% of all measurements which is in good agreement with the definition of 95% 

uncertainty band. Once again, only the size of the uncertainty bands in Figure 3.10(b) are 

reported in subsequent figures. 

Figure 3.11 shows the conversion of the exposure time from the deformed image 

to Δ at 1600°C, similar to the result of Figure 3.6 at room temperature. Once again, if the 

initial Δ < 50, there is no chance for two images of different exposure times to be correlated. 

At high temperature, there is less chance for two images of different exposure times to be 

correlated due to the considerable decrease of how many images have Δ > 50. In this data 

set, only two image pairs with differing exposure times are able to correlate, so no further 

examination of slopes is performed. 
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Figure 3.10. 95% uncertainty band when changing exposure time at 1600°C illustrated by  

(a) u displacement and (b) strain εxx 
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Figure 3.11. Influence of changing exposure time on uncertainty band at 1600°C 

illustrated via Δ 

C. Change of exposure time during mid test (i.e. different temperatures) 

In this section, the analysis of the previous two sections is repeated again, using a 

reference image at room temperature and a deformed image at 1600°C. Compared to the 

previous high temperature result (Result B), in which all exposure times over 45,000 µs 

failed to correlate, Figure 3.12 shows that exposure times of 50,000 µs and 61,000 µs at 

room temperature were able to correlate against images at 30,000 µs and 40,000 µs, 

respectively. Similarly, initial exposure times of 30,000, 40,000, and 45,000 µs at room 

temperature were unable to correlate against images at the same exposure time at high 

temperature, but were able to correlate with other images at reduced exposure times. For 
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the cameras used in this paper, all initial exposure times exceeding 20,000 µs at room 

temperature are required to reduce at high temperature in order to get successful 

correlation. Otherwise, they lose correlation due to saturation as indicated by the red shaded 

region in Figure 3.12. 

 

Figure 3.12. Image pairs which successfully correlated at RT vs 1600°C 

Figure 3.13 adopts the identical approach of Figure 3.5 at room temperature as well 

as Figure 3.10 at high temperature. However, the mean displacement and strain are no 

longer zero indicating non-uniform thermal expansion which takes place between the 

reference and deformed images. Consequently, the size of the uncertainty band is no longer 

a meaningful metric of measurement uncertainty, so no analysis of slopes is performed. 
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Instead, Figure 3.14 shows the non-uniform thermal strain due to the non-uniform 

temperature gradients as demonstrated in Figure 3.2. 

 

Figure 3.13. 95% uncertainty band when changing exposure time during mid test 

illustrated by (a) u displacement and (b) strain εxx 
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Figure 3.14. Non-uniform thermal strain from correlation of 45,000 µs at room 

temperature against 30,000 µs at 1600°C 

3.6. Discussion 

In our previous paper [19], we recommended two criteria for good contrast when 

performing DIC at extreme temperature. First, at room temperature the exposure time 

should be kept as small as possible while maintaining Δ > 50, leaving the most room for 

Z1 and Z2 to increase as the images brighten at high temperature. Second, we recommended 

avoiding any images in which Z2 equals the maximum value of the sensor (255 for an 8-

bit camera), as this would indicate that over 5% of all pixels have already saturated at the 

start of the test, and contrast can only worsen with increasing temperature. In that study, 

exposure time remained constant for each image pair. 

It can be inferred from Figure 3.4 and Figure 3.5 that there is no possibility of 

changing exposure time even at RT when initial exposure time is set too low (≤ 10,000 μs 

for the camera in this paper). The reason comes from the excessive darkness of the images, 

as is demonstrated at low values of Δ in Figure 3.6. This confirms that, of the image pairs 

studied, there is no chance to alter exposure time if Δ < 50. When Δ > 50, it becomes possible 

to change exposure time within a limited range from the reference exposure time, but the 
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uncertainty band becomes larger as demonstrated by the V-shaped plots in Figure 3.6. This 

is reasonable since varying the exposure time of the correlated images leads to a change of 

contrast which results in higher uncertainty of the DIC algorithm. In general, higher Δ gives 

a smaller uncertainty and allows for modest changes in exposure time. 

Figure 3.7 and Figure 3.8 further explore how far exposure time can be changed 

from the initial value at a fixed temperature. In general, larger initial values of Δ have more 

space to change exposure time and show a smaller increase of uncertainty when exposure 

time is changed. Additionally, when changing exposure time, it is advised to change by 

small amounts. Larger changes result in higher uncertainty (as presented in Figure 3.7). 

Moreover, it is interestingly noted from Figure 3.8 that even at the same Δ, higher slopes 

(i.e. higher sensitivity of error) take place at higher reference exposure times (when 

comparing 20,000 µs to 45,000 µs and 50,000 µs). This can be explained using Table 3.2, 

which shows that the images with exposure times of 45,000 µs and 50,000 µs have Z2 = 

255. Such images have more than 5% of their pixels already saturated and thus are more 

likely to add more errors into DIC when exposure time is changed. 

When it comes to high temperature, it is once more observed that when Δ < 50 

exposure time cannot be changed at a fixed temperature, and in all cases when exposure 

time can be changed Δ > 50. Also, it is noted that since images get brighter at high 

temperature due to thermal radiation, it is advised to set the initial exposure time low at 

room temperature in order to avoid saturation at high temperature. 

In the event when images glow brightly at high temperatures, camera settings which 

produced sufficient contrast at low temperature may produce saturated images at high 
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temperatures. For those situations, in order to salvage some data, it may be better to reduce 

the exposure time rather than lose all data due to saturation. To illustrate, Figure 3.12 shows 

all pairs in which an image at room temperature (horizontal axis) successfully correlated 

against an image at high temperature (vertical axis). The blue dashed line indicates no 

change of exposure time. It can be seen that for low exposure times (green circle data 

points), it is not necessary to change exposure time at high temperatures. However, for high 

initial exposure times (green square data points), the only successful correlations involved 

reducing exposure time at high temperature. Thus, by reducing exposure time at high 

temperature, a DIC user can salvage some data rather than no data, but should expect higher 

uncertainty as a trade-off. 

Figure 3.15 shows Z1, Z2, and Δ for all 144 image pairs between room temperature 

and high temperature. The data are sorted into four quadrants depending on whether Z2 = 255 

in the room temperature image, high temperature image, neither, or both. Additionally, the 

image pairs which correlated in Figure 3.12 are plotted as circles or squares. Each plot also 

includes a red dashed line, indicating no change of Z1, Z2, or Δ; and a blue dashed line, 

indicating no change of exposure time. The dashed lines include image pairs which did not 

successfully correlate. 

Figure 3.15(a) shows that when neither image saturates (Z2 = 255), no change of 

exposure time is needed; but if one or both images saturate, successful correlations 

occurred when the exposure time was reduced to maintain similar values of Z1 in both 

images. Figure 3.15(b) contains many overlapping points in which one or both images have 

Z2 = 255, but in general the successful correlations also occur when Z2 of both images 
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remain similar. Figure 3.15(c) is much messier than parts (a) or (b), but generally agrees 

with Figure 3.15(a) that when neither image saturates no change of exposure time is 

needed, but when one or both images saturate Δ can only change and still result in 

successful correlation if it started relatively large (on the order of 100). Figure 3.15(c) also 

shows that changes of exposure time must be relatively small to maintain correlation. 

 

Figure 3.15. Correlation of image pairs at RT vs 1600°C when investigating via  

(a) Z1, (b) Z2 and (c) Δ 
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It is known that there are other ways to manipulate brightness besides exposure time 

and the findings from this paper can potentially apply to most of them. In this paper, 

exposure time was manipulated since the tests were quasi-static. In other cases like a 

dynamic test, exposure time must be kept short to prevent motion blur. In that case, by using 

the metric of Δ, similar results are expected by (i) increasing or decreasing the amount of 

externally supplied light, (ii) broadening or narrowing the aperture on the lens, or (iii) 

increasing or decreasing the gain on the camera sensor – though it should be noted that the 

Vic-3D documentation strongly advises against using gain as a source of brightness [23]. 

3.7. Conclusions 

This paper investigated the effect of changing exposure time during the use of 

Digital Image Correlation (DIC) in (A) isothermal testing at room temperature, (B) 

isothermal testing at high temperature, and (C) variable temperature testing from room 

temperature to 1600°C. In summary, the contrast of an image can be quickly judged by the 

metric of delta (Δ), which takes the difference between a typical dark pixel (Z1) and a 

typical bright pixel (Z2), spanning 90% of all pixels in the image. As long as Δ > 50 and Z2 

does not equal 255 (for an 8-bit camera), exposure time can be changed in the middle of 

test, although it results in higher uncertainty. In order to minimize uncertainty and 

maximize the ability to correlate with different exposure times, Δ should be as high as 

possible in the room temperature image. Although changes to exposure time should be 

minimal in order to minimize uncertainty, in some cases it may be better to change 

exposure time in order to salvage some data rather than lose the data completely. 



74 

 

3.8. Acknowledgements 

This work was funded in part by a grant from NASA’s Marshall Space Flight Center (award 

# 80MSFC18M0009) and by the Utah State University Office of Research and Graduate 

Studies. 

3.9. References 

[1] Sutton M A, Orteu J J and Schreier H 2009 Image Correlation for Shape, Motion 

and Deformation Measurements: Basic Concepts, Theory and Applications 

(Springer US) 

[2] Pan B 2018 Digital image correlation for surface deformation measurement: 

historical developments, recent advances and future goals Meas. Sci. Technol. 29 

082001 

[3] Pan B, Qian K, Xie H and Asundi A 2009 Two-dimensional digital image 

correlation for in-plane displacement and strain measurement: a review Meas. Sci. 

Technol. 20 062001 

[4] Gradl P R 2016 Digital Image Correlation Techniques Applied to Large Scale 

Rocket Engine Testing 52nd AIAA/SAE/ASEE Joint Propulsion Conference AIAA 

Propulsion and Energy Forum (American Institute of Aeronautics and Astronautics) 

[5] Wang X, Pan Z, Fan F, Wang J, Liu Y, Mao S X, Zhu T and Xia S 2015 Nanoscale 

Deformation Analysis With High-Resolution Transmission Electron Microscopy 

and Digital Image Correlation J. Appl. Mech. 82 121001-121001–9 

[6] Sabaté N, Vogel D, Gollhardt A, Marcos J, Gràcia I, Cané C and Michel B 2006 

Digital image correlation of nanoscale deformation fields for local stress 

measurement in thin films Nanotechnology 17 5264 

[7] Li L-G, Liang J, Guo X, Guo C, Hu H and Tang Z-Z 2014 Full-field wing 

deformation measurement scheme for in-flight cantilever monoplane based on 3D 

digital image correlation Meas. Sci. Technol. 25 065202 

[8] Rizo-Patron S and Sirohi J 2017 Operational Modal Analysis of a Helicopter Rotor 

Blade Using Digital Image Correlation Exp. Mech. 57 367–75 

[9] Yoneyama S 2016 Basic principle of digital image correlation for in-plane 

displacement and strain measurement Adv. Compos. Mater. 25 105–23 



75 

 

[10] Thai T Q 2018 Importance of Exposure Time on Digital Image Correlation (DIC) 

at Extreme Temperatures All Graduate Theses and Dissertations. 7067 (Utah State 

University) 

[11] Reu P 2013 Calibration: A good calibration image Exp. Tech. 37 1–3 

[12] Grant B M B, Stone H J, Withers P J and Preuss M 2009 High-temperature strain 

field measurement using digital image correlation J. Strain Anal. Eng. Des. 44 263–

71 

[13] Chen X, Xu N, Yang L and Xiang D 2012 High temperature displacement and 

strain measurement using a monochromatic light illuminated stereo digital image 

correlation system Meas. Sci. Technol. 23 125603 

[14] Novak M D and Zok F W 2011 High-temperature materials testing with full-field 

strain measurement: Experimental design and practice Rev. Sci. Instrum. 82 115101 

[15] Pan B, Wu D, Wang Z and Xia Y 2011 High-temperature digital image correlation 

method for full-field deformation measurement at 1200 °C Meas. Sci. Technol. 22 

015701 

[16] Blaber J, Adair B S and Antoniou A 2015 A methodology for high resolution digital 

image correlation in high temperature experiments Rev. Sci. Instrum. 86 035111 

[17] Wang W, Xu C, Jin H, Meng S, Zhang Y and Xie W 2017 Measurement of high 

temperature full-field strain up to 2000 °C using digital image correlation Meas. 

Sci. Technol. 28 035007 

[18] Berke R B and Lambros J 2014 Ultraviolet digital image correlation (UV-DIC) for 

high temperature applications Rev. Sci. Instrum. 85 045121 

[19] Thai T Q, Hansen R S, Smith A J, Lambros J and Berke R B 2019 Importance of 

Exposure Time on DIC Measurement Uncertainty at Extreme Temperatures Exp. 

Tech. 43 261–71 

[20] OMEGA Engineering, Inc. Thermocouple Type K Reference Table Thermocouple 

Types 

[21] Reu P 2015 All about speckles: Contrast Exp. Tech. 39 1–2 

[22] Reu P 2013 Stereo-rig Design: Lighting—Part 5 Exp. Tech. 37 1–2 

[23] Simonsen M Vic-3D Application Note: Using Gain in Vic-Snap 

  



76 

 

CHAPTER 4 

SPECKLE PATTERN INVERSION IN HIGH TEMPERATURE  

DIC MEASUREMENT 

4.1. Prologue 

This chapter presents a paper which is in preparation to be submitted to a peer-

reviewed journal. The experiment and data were performed and processed at Utah State 

University, Logan, UT. The entire paper is presented below. 

4.2. Abstract 

During hot fire rocket engine testing, non-contacting measurements are superior to 

bonded gauges because they are immune to burning, shaking loose, or damage due to the 

harsh testing conditions. Additionally, when compared to instruments which register at 

single points, Digital Image Correlation (DIC) has the added benefit in that it collects full-

field displacement and strain maps over the duration of the test. However, for certain 

materials and paints under some circumstances of temperature and camera sensitivity, 

portions of the speckle pattern which were darker at room temperature may emit more light 

compared to the initially lighter portions of the pattern, resulting in a high temperature 

pattern which is inverted in comparison with that at room temperature. To address this 

inversion, a post-processing method is introduced wherein an inverted image containing 

only emitted light is subtracted from an image containing both emitted and reflected light, 

thereby generating an un-inverted image. The artificial high temperature image is 

subsequently correlated against the room temperature image to obtain full-field strains. The 
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subtraction technique is then validated using optical bandpass filters to prevent significant 

amounts of emitted light from reaching the camera sensor. 

Keywords: DIC, high temperature, inversion, ultraviolet light, graphite, Gleeble. 

4.3. Introduction 

High temperature applications create an extremely demanding environment for 

which engineered components must survive [1]. One such application is for liquid rocket 

engine combustion device components, such as nozzles and combustion chambers [2, 3]. 

As components are developed for these applications, validated test data is required to 

understand performance and predict life in these extremely challenging environments for 

continued operation. Strain gauges are a common traditional technique to obtain the 

response to surface stresses and attached with an adhesive or through spot welding [4]. 

There are a few challenges with strain gauges in these high temperature environments. The 

first challenge with this contact instrumentation method is the durability in the environment 

and rarely survives more than a few seconds. The second challenge is that strain gauges 

measure only a discrete and local response. A third challenge is the selection of orientation 

through uni, bi, or triaxial applications. This limits the directional response of which the 

strains are measured and could also result in inaccurate predictions. 

One such solution to resolve the issues with strain gauges is the use of non-contact 

methods, such as Digital Image Correlation (DIC) [5]. DIC offers full two-dimensional or 

three-dimensional line of sight non-contact measurement technique to obtain surface strain 

independent of location. DIC uses a single camera for 2D or a pair of digital cameras for 3D 

along with a stochastic speckle pattern on the surface being measured to obtain full surface 
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strain measurements and deflections of the surface [6, 7]. This provides significantly more 

data than traditional methods using contact instrumentation. 

DIC techniques have been successfully demonstrated through a host of aerospace 

applications. For example, the National Aeronautics and Space Administration (NASA) 

demonstrated the use of DIC during J-2X engine development testing on components that 

had surface temperatures greater than 200°C [8]. For high temperature uncooled nozzle 

extensions on liquid rocket engines, DIC techniques have been successfully applied to 

Carbon-Carbon (C/C) and Ceramic Matrix Composite (CMC) materials in laboratory testing 

[9]. Additionally, NASA and commercial partners have demonstrated their use during hot-

fire testing at elevated temperatures above 1370°C [10, 11]. More recently, DIC is reported 

to measure strains at 2000°C [12] or even up to 3000°C [13] in laboratory environments by 

using a blue filter and blue optics to mitigate the powerful glowing due to radiation. 

Recently, NASA attempted to collect DIC data during hot-fire testing, but 

discovered a challenge that was not previously observed [10]. The nozzle extensions were 

speckled with the black and white stochastic pattern per standard methods. Visibly at room 

temperature, the white paint had good contrast with the black C/C composite material. 

During heating of the nozzle extension, a majority of the elevated temperature was 

saturated and the contrast inversed where the C/C material was high intensity and the paint 

was low intensity. This data was collected in the visible spectrum with no filtering. 

In this paper, we investigate the physical principle behind the speckle pattern 

inversion. It is well known that objects at high temperature emit light to the black body 

radiation of Planck’s law [14, 15]. Due to the difference in emissivity of the light speckle 
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paint and the dark background material, then at high temperatures the background can emit 

more light than the speckle. Thus, the inverted pattern is due only to emitted light, while 

the initially un-inverted pattern is due only to reflected light. If the camera sensitivity is 

high enough, the inverted pattern emitted by the specimen can overwhelm the non-inverted 

pattern reflected by the specimen. Two methods are presented to mitigate this inversion: 

(A) subtracting an inverted image which contains only emitted light from an inverted image 

which contains both emitted and reflected light, thereby artificially producing an un-

inverted image; and (B) using an ultraviolet (UV) bandpass filter to prevent the emitted 

light from ever reaching the camera sensor. The UV-DIC technique was first presented by 

Berke and Lambros at 1125°C [16] and later extended by Thai et al. to 1600°C [17]. 

Compared to the subtraction technique, UV-DIC is preferable because the subtraction 

technique requires two images which could potentially have applied motion between them, 

although both techniques are sufficient under quasi-static conditions. 

4.4. Methods 

A series of thermo-mechanical experiments were performed using the equipment 

and procedures previously established in references [18, 19]. The specimens were graphite 

rods with diameter of 12.7 mm (0.5 in) purchased from Graphtek LLC. Graphite rods were 

then machined with a length of 152.4 mm (6 in) and a square cross-section gauge length of 

7.62 mm (0.3 in) in the middle as depicted in Figure 4.1(a). The speckle is created by 

applying the white paint of Pyro-Paint 634-AL on the naturally dark background of 

graphite. The paint was cured according to the manufacturer’s manual prior to starting the 

experiment. The specimens were monitored throughout testing by a UV camera (JAI CM-
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140GE-UV) equipped with a 60 mm optical lens (Nikon AF Micro Nikkor) and a UV 

bandpass filter (XNite 330C M58 from LDP LLC) as shown in Figure 4.1(b). The filter 

was fixed to a swivel mount such that it could be repositioned without disturbing the 

camera. The specimen was additionally illuminated by a pair of UV LED ring lights 

purchased from CCS Inc. that emit at a peak wavelength of 365 nm. The specimen was 

then heated by a direct current using a Gleeble 1500D shown in Figure 4.1(c), which 

includes a vacuum chamber to prevent oxidation. The Gleeble chamber also features a 

window of sufficient size and transparent material through which to take camera-based 

measurements. More details can be found in references [19]. 

The speckle pattern recorded by the camera can be described as the superposition 

of reflected and emitted light. Specifically, at room temperature, the light coming to the 

camera sensor comes totally from the external light reflected off the surface of the 

specimen. At high temperature, the specimen emits light in addition to the light supplied 

from external light sources. However, due to the difference in emissivity of the white paint 

and the dark graphite background, the intensity of the light emitted from the dark 

background is brighter than the intensity of the light emitted from the lighter paint pattern. 

Under the right circumstances, this can result in images at high temperature which appear 

inverted when compared to images at low temperatures. 
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Figure 4.1. (a) Graphite specimen used in the experiments including a magnification of 

the speckle region (right), (b) a photograph of the experimental setup and related optics 

and (c) a photograph of the Gleeble 1500D system 

To account for the relative contributions of reflected and emitted light, a series of 

four images were collected as summarized in Table 4.1. First, an image is recorded at room 

temperature with no externally applied light, producing a uniformly dark image which 

contains no reflected or emitted light. Second, the external lights are turned on, resulting 
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in an image composed solely of reflected light. Third, the specimen is heated to a 

temperature of ~1100°C at which the specimen glows visibly brightly by eye, producing 

an image which contains both reflected and emitted light. Fourth, the external lights are 

turned off to produce an image which contains only emitted light. The four images were 

recorded twice: first with no UV bandpass filter, then with a UV bandpass filter, producing 

a total of 8 images. The camera settings for all 8 images were as follows: the UV light 

intensity was set to around 60%, the aperture of the lens was 11, the exposure time of the 

camera was 61,000 µs (maximum for this camera model) and the gain was 125. 

Table 4.1. Test matrix with an explanation of light coming to the camera sensor 

 

Low temperature High temperature 

Post-

Processing Lights 

Off 
Lights On Lights On Lights Off 

Test A 

(No UV 

bandpass 

filter) 

(A.1)  

No light 

(A.2)  

Reflected 

only 

(A.3)  

Reflected + 

Emitted 

(A.4)  

Emitted only 

(A.5) = (A.3) – 

(A.4) 

Reflected + 

Thermal strain 

Test B 

(UV 

bandpass 

filter) 

(B.1)  

No light 

(B.2)  

Reflected 

only 

(B.3)  

Reflected + 

Emitted (restricted 

by filter) 

(B.4)  

Emitted only 

(restricted by 

filter) 

 

From the explanation of light sources in Table 4.1, it is recognized that in order to 

convert high temperature images to an un-inverted state, the emitted light should be 
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somehow removed from the images while preserving the displacement and strain to be 

computed from the images. Therefore, to exclude the emitted light but still keep the 

displacement, the high temperature images with no reflected light (A.4 and B.4) are 

subtracted from the high temperature images with both reflected and emitted light (A.3 and 

B.3) to produce new high temperature images that contain only reflected light. The new 

subtracted images are numbered A.5 and B.5, respectively. However, as the UV filter is 

very good at eliminating emitted light, B.4 is almost entirely dark, and thus B.5 is 

indistinguishable from B.3. 

Images A.5 and B.3 are then correlated against the reference images A.2 and B.2 

in order to compute full-field displacements and strains due to heterogeneous thermal 

expansion. The correlation is performed using Vic-2D (version 2009) from Correlated 

Solutions Inc. The subset size was 41x41 pixels, the step size was 19 pixels, and the strain 

window was 15 subsets. MATLAB was then used for post-processing and comparison 

purposes. 

Although the images in Tests A and B are both recorded by the same test setup 

viewing the same specimen, the UV bandpass filter in test B has a finite thickness, which 

causes the field of view in Test B to shift when compared to that in Test A due to the light 

bending. To assess the agreement between Test A and Test B, the computing procedure 

presented in Figure 4.2 ensures that both tests use the same region of interest in Vic-2D. In 

particular, all images are correlated against Image A.2 (i.e. the same reference image for 

all correlations), Correlated B.2 are then subtracted from Correlated B.3 to get thermal 

expansion only. With this computation process, results from Test A and Test B are 
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guaranteed to be plotted in exactly the same coordinates hence making good conditions for 

comparison of consistency. Results of the subtracted images are subsequently compared to 

Correlated A.5 to give the agreement of two separate methods. 

 

Figure 4.2. Flowchart to map Test A and Test B 

4.5. Results 

Figure 4.3 shows the speckle images from Test A (No UV bandpass filter) and Test 

B (UV bandpass filter) as defined in Table 4.1. The images are recorded at low temperature 

(~60°C) and high temperature (~1100°C) with conditions of UV external lights on or off, 

respectively. Images A.1 and B.1 are uniformly dark and are thus omitted from the figure. 

As can be seen from Figure 4.3, inversion is visibly present in images A.3 and A.4 when 

there is no UV bandpass filter (Test A) whereas in image B.3, a UV bandpass filter (Test 

B) visibly eliminates the inversion at high temperature. Although Image A.3 is a 

superposition of reflected and emitted light, in the case of this test, the emitted light far 

outweighs the reflected light. Image B.4 is uniformly dark since its light source is only 

from emitted light which is effectively eliminated by the UV bandpass filter. 
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Figure 4.3. Speckle images recorded at low temperature and high temperature when there 

is no UV filter and a UV filter, respectively. For legibility, the images from test B in this 

figure have been artificially brightened by multiplying all pixel values by 2, but image 

B.4 still remains uniformly dark. No artificial brightening was used in DIC calculations 
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As mentioned in the above Methods section, the speckle inversion is observed to 

occur when not using a UV filter. In such cases, a method is needed to remove inversion 

in post-processing. Figure 4.4 presents a method to remove inversion by subtracting 

images. As shown in the figure, images A.3 and A.4 are at the same temperature and thus 

show the same deformed state of the specimen, but in A.3 the external lights are turned on 

while in A.4 the external lights are off. The emitted light is then removed by subtracting 

A.4 from A.3, resulting in image A.5. Compared to the room temperature image A.2, both 

A.2 and A.5 get all their light from reflected light but not emitted light, and thereby, image 

A.5 is able to correlate against image A.2 in order to detect full-field displacement and 

strain. 

Figure 4.5 presents validation of the subtraction method by comparing the two 

results from Test A and Test B, respectively. The difference is calculated directly (i.e. 

comparison of subset-by-subset) with the following formula: 

Difference (%) =  
|Strain from Test A –  Strain from Test B|

Average of Strain from Test A and Strain from Test B
 (4.1) 

It can be seen that between the two methods, most subsets agree within 10%. The 

most notable exceptions are near the corners of the region of interest, where strains are 

computed using fewer subsets [20]. The differences might also be explained by thick glass 

distortions due to the UV filter. 
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Figure 4.4. Graphical depiction of the subtraction-based method for excluding inversion 

at high temperature when a UV bandpass filter has not been used 
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Figure 4.5. Thermal strain map from Vic-2D of Test A (a) and Test B (b) 

along with its differences (c) 

4.6. Discussion 

As stated previously, each speckle pattern detected by a camera is a superposition 

of reflected and emitted light. The reflected speckle pattern depends on the reflectivity of 

the sample surface while the emitted speckle pattern is affected by emissivity. Given the 

right combination of materials which compose the dark and light speckles, a material which 

appears darker at room temperature may emit more light at high temperature and thus 

produce speckle patterns which are inverted. This is evidenced by images A.2 and A.4, in 

which all light is either reflected at room temperature or emitted at high temperature, 

respectively. 



89 

 

It is advised to avoid speckle pattern inversion in high temperature DIC 

measurements since it confuses the correlation algorithm, thus corrupting the measurement 

output. Since high temperature testing is often time-consuming and expensive, it is 

desirable to salvage any data possible after such inversion occurs. One idea to salvage data 

is to develop a computer algorithm which artificially converts the inverted images back to 

the un-inverted stage. Archer et al [21] presented one such method based on the known 

emissivities of their two speckle materials, but this needs to be performed very carefully as 

it involves the direct manipulation of raw image data. If the emitted light is removed 

improperly, it can directly corrupt the results by introducing artificial strain into the 

measurement. The subtraction-based method presented in our study makes no assumptions 

about the emissivities of the speckle materials, and thus all post-processing is performed 

from images recorded during the experiment itself. However, this method remains 

significantly limited because (1) the camera sensitivity must be set sufficiently low so that 

the combinations of emitted and reflected light (e.g. image A.3) do not saturate the camera 

sensor, and (2) the subtraction only works in quasi-static cases where there is no motion 

between the “lights on” and “lights off” images (A.3 and A.4, respectively). 

As an alternative to the subtraction method, utilization of a UV bandpass filter is 

preferable since it can be applied to in-situ experiments without interruption of the test. 

According to the black body radiation of Planck’s law, it is well known that higher 

temperature objects emit more powerfully at longer wavelengths. As evidenced by Test B, 

the inversion is effectively prevented at high temperature by performing the test using 

cameras and optics which monitor at shorter wavelengths. It remains likely that the 
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inversion may reassert itself at temperatures high enough to evade the bandpass filter. 

However, by reducing camera sensitivity (e.g. by reducing the aperture on the lens or the 

exposure time on the camera) the upper temperature limit of UV-DIC can be effectively 

extended to higher temperatures [17, 19]. 

Although UV cameras and filters were used in this paper, in principle this approach 

should also work with visible cameras and blue filters if the temperature and camera 

sensitivity are set sufficiently low. The superiority of UV is that it works to higher 

temperatures [16, 17] thanks to its shorter wavelength compared to blue lights. The 

advantage to blue is that it can be paired with high speed cameras, which do not tend to 

inherently detect UV light. Additionally, UV optics is less popular than blue one due to its 

more hazardous testing condition and the common availability of blue optics devices. 

Although temperature is assumed to be a primary factor which produces speckle 

inversion, there is no one specific temperature at which inversion occurs. The inversion 

further depends on the specific cameras, lights, optics, and testing conditions. Overall, the 

speckle pattern inversion is determined by (1) the emissivities of the dark and light speckle 

materials; (2) the temperature at which light is emitted; (3) the light sensitivity of the 

camera system (specifically, aperture, exposure time and gain amplification) to detect the 

emitted pattern; and (4) the relative brightness of the initial reflected pattern. 

It is also worth noting that the emitted and reflected speckle patterns were observed 

to have slightly different focal lengths. Additional results which demonstrate this finding 

are presented in Figure 4.6 and Figure 4.7. 
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In Figure 4.6, images are collected using a lens with a larger aperture (i.e. smaller 

depth of field). The lens is initially focused at room temperature (image (a)), when the 

speckle pattern results only from reflected light. The specimen is then heated to high 

temperature to produce image (b) which contains both reflected and emitted light. The 

external lights are then switched off to produce an image (c) with only emitted light. Images 

(b) and (c) are both visibly blurry compared to image (a). The lens is then re-focused to 

produce image (d) which contains only emitted light. The external lights are then switched 

back on to produce image (e) which contains both emitted and reflected light. The specimen 

is subsequently cooled back room temperature to produce image (f). Having refocused the 

lens between images (c) and (d), although image (d) now appears more in-focus compared 

to image (c), image (f) appears to be less in-focus compared to image (a). This indicates 

that the emitted and reflected speckle patterns have different focal lengths, which produce 

blurry image if the focal plane is not within the depth of field. 

In Figure 4.7, the same general procedure is repeated with a smaller aperture (i.e. 

larger depth of field) with the change in brightness offset by a longer exposure time. In this 

case, the emitted light remains in focus in all images, and thus there is no need to re-focus 

the lens at high temperature. Thus, when encountering speckle inversion at high 

temperature, it is critical to ensure that the measurement be performed with a sufficiently 

large depth of field such that both the reflected and emitted patterns remain in focus. 
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Figure 4.6. Reflected and emitted speckle patterns at low and high temperature under 

small depth of field. The lens is initially focused based on the reflected pattern (top row), 

and re-focused based on the emitted pattern (bottom row) 
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Figure 4.7. Reflected and emitted speckle patterns at low and high temperature under 

large depth of field. All images are captured in a fixed focal length. Refocus of the lens is 

not necessary since the difference of focal length is negligible when compared to the 

large depth of field 

4.7. Conclusions 

In summary, this study investigated the phenomenon of speckle pattern inversion 

which is occasionally reported at high temperature. The physical principle behind the 

inversion comes from the superposition of reflected and emitted light. Under the right 

circumstances of temperature and camera sensitivity, the inversion occurs when the emitted 

light is significantly bright in comparison to the reflected light. Additionally, this paper 
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introduced a method to isolate the reflected speckle pattern at high temperature by 

subtracting two images with the external lights on and off, respectively, thereby eliminating 

the emitted light. Having eliminated the emitted light, the reflected speckle pattern at high 

temperature successfully correlates against the reflected speckle pattern at room 

temperature. However, there are two limitations of the subtraction-based method as 

follows: (1) camera sensitivity must be set low enough that the “lights on” image at high 

temperature can contain a superposition of both the emitted and reflected pattern without 

saturating; and (2) the subtraction only works in quasi-static cases where no motion occurs 

between the “lights on” and “lights off” images. For this reason, the best solution to avoid 

speckle pattern inversion is to prevent the inversion from reaching the camera sensor in the 

first place, which can be achieved with optical bandpass filters. 
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CHAPTER 5 

DISCUSSION 

This chapter presents a short further discussion about the relationship of Δ with 

respect to exposure time and temperature. The discussion mainly results from my first two 

papers (Chapter 2 and Chapter 3). 

Table 5.1 is an extension of Table 3.2 which includes 1300°C and 1450°C. As can 

be seen in the first 5 or 6 rows, under fixed temperatures, Δ scales linearly with exposure 

time – for example, at room temperature and an exposure time of 10,000 µs, Δ = 51 and if 

exposure time increases to 20,000 µs (i.e. double) or 30,000 µs (i.e. triple) Δ is scaled 

linearly to 100 and 149, respectively. 

The table also shows that for a given exposure time, Z1 and Z2 shift rightward as 

temperature increases (i.e. the histogram shifts rightward too), such that Δ remains constant 

with respect to temperature for a given exposure time. This result is valid as long as Z2 is 

lower than 255 (i.e. there is no occurrence of saturation). For example, at a fixed exposure 

time of 10,000 µs, Δ is 51, 51, 49 and 50 corresponding to RT, 1300°C, 1450°C and 1600°C 

respectively. Z1 and Z2 in these cases increase gradually to keep Δ unchanged. 

Based on the relationship of Δ with respect to exposure time and temperature, it is 

concluded that we can get a rough prediction of Δ in absence of saturation (i.e. if camera 

sensors could detect Z2 > 255). In other words, we can predict and have initial assessment 

of histogram if saturation is assumed to not occur when we have camera with higher 

dynamic range. For example, at exposure time of 30,000 µs and room temperature, Δ = 149. 

The camera used in this dissertation is 8-bit monochromatic which has limit of 255 counts. 
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For this reason, if we increase exposure time to 40,000 µs at room temperature, Δ = 124 as 

shown in Table 5.1. If we use a high dynamic range camera (e.g. 10-bit with the limit of 

1023 counts), Δ is expected to be 149*40000/30000 = 199. At 1600°C, Δ is expected to be 

the same which is approximately 199, not 65 as 8-bit camera in this case. 

Table 5.1. Δ calculation of RT, 1300°C, 1450°C and 1600°C at multiple exposure times 

Exposure 

time (µs) 

Room 

temperature 
1300oC 1450oC 1600oC 

Z1 Z2 Δ Z1 Z2 Δ Z1 Z2 Δ Z1 Z2 Δ 

500 8 12 4 8 12 4 9 12 3 9 12 3 

2,500 15 28 13 15 28 13 16 29 13 19 31 12 

5,000 23 49 26 22 49 27 26 51 25 30 55 25 

10,000 38 89 51 38 89 51 44 93 49 53 103 50 

20,000 70 170 100 68 170 102 81 178 97 99 196 97 

30,000 100 249 149 98 249 151 117 255 138 144 255 111 

40,000 131 255 124 128 255 127 154 255 101 190 255 65 

45,000 146 255 109 143 255 112 172 255 83 213 255 42 

50,000 161 255 94 158 255 97 191 255 64 236 255 19 

55,000 176 255 79 173 255 82 209 255 46 255 255 0 

58,000 185 255 70 182 255 73 221 255 34 255 255 0 

61,000 194 255 61 191 255 64 232 255 23 255 255 0 
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CHAPTER 6 

CONCLUSIONS 

In summary, this dissertation introduced a comprehensive and robust analysis of 

UV-DIC which facilitates DIC measurement at high temperature. With the contributions 

stated explicitly via a series of three journal articles, the UV-DIC technique is going to 

expand the application and robustness when performing DIC at extreme temperatures. 

Through my first two papers (Chapter 2 and Chapter 3), a simple and convenient metric 

was presented to help DIC users choose appropriate camera settings not only at the start of 

the test but also during mid-test. In brief, the metric of Δ calculates the difference in the 

median 90% thresholds of the histogram. If Δ > 50, it is considered as a good contrast since 

it covers most part of greyscale histogram which is likely to provide enough information 

for correlation. The metric was validated in both pre-testing conditions and on-going 

testing. That metric along with useful recommendations are expected to give DIC users 

more insights regarding the experimental setup of DIC measurement. 

My third paper (i.e. Chapter 4) explained explicitly the physical principles behind 

the speckle inversion. Based on the principle, the paper showed an optical method which 

used the UV bandpass filter to evade or at least delay the inversion when performing DIC 

at high temperature. That paper also offered an alternative solution to modify the 

experimental setup in situations we have inversion data thereby excluding the inversion 

and obtaining a meaningful measurement. 

Furthermore, all results from the dissertation have been presented through oral 

presentations or poster sessions in annual conferences of Society for Experimental 
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Mechanics (SEM) and American Society of Mechanical Engineers (ASME). Several 

posters have been presented during student events at Utah State University. 

Based on my conclusions, I foresee three primary areas for future work: 

1. The experimental mechanics community has demonstrated DIC across many 

temperature, time, and length scales, but so far UV-DIC has only been demonstrated at 

relatively slow speeds. Most high speed cameras are designed only to detect visible light, 

but our lab recently purchased UV amplifiers which effectively extend high speed imaging 

to UV wavelengths. This high speed UV-DIC is currently being investigated by my 

labmate, Robert Rowley, who expects to publish his findings to Review of Scientific 

Instruments with me as a co-author. 

2. To extend UV-DIC capabilities to temperatures beyond 2000°C, it is especially 

challenging to develop new speckle patterns which can survive the harsh testing 

environment. All commercial refractory paints are reported to be discolored and damaged 

at that temperature. For this reason, it is required to develop a novel high temperature 

speckle pattern which is stable beyond 2000°C. An initial idea is to use a native speckle 

pattern produced via the surface roughness of the test specimen, which is assumed to work 

up to the melting point of the material. 

3. For the inversion of speckle pattern, one of drawbacks of the subtraction method 

is that the method does not work if the object moves in between images when external 

lights are turned on and off. Accordingly, it is preferable to acquire both images at the same 

time. An initial idea is to use a color camera with a blue light source. The red and green 

sensors would detect minimal reflected pattern in comparison with the blue. Since the 
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emitted pattern is brighter at longer wavelengths, the red and green images would detect a 

brighter emitted speckle than the blue. An extrapolation scheme is needed to reproduce the 

blue image using only data from the red and green images. Thanks to that, we can produce 

a blue reflected image with no time in between.  
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