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ABSTRACT
Flow decomposition methods provide systematic ways to extract the flow modes, which can be regarded as the spatial distribution of a
coherent structure. They have been successfully used in the study of wake, boundary layer, and mixing. However, real flow structures also
possess complex temporal patterns that can hardly be captured using the spatial modes obtained in the decomposition. In order to analyze
the temporal variation of coherent structures in a complex flow field, this paper studies the recurrence in phase space to identify the pattern
and classify the evolution of the flow modes. The recurrence pattern depends on the time delay and initial condition. In some cases, the flow
system will revisit a previous state regardless of the initial state, and in other cases, the system’s recurrence will depend on the initial state.
These patterns are determined by the arrangement and interactions of coherent structures in the flow. The temporal order of the repetition
pattern reflects the possible ways of flow evolution.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5144978., s

I. INTRODUCTION

Flow fields of jets and wakes usually contain coherent structures
that possess various spatial and temporal scales. The co-existence
and interactions of these structures lead to patterns, such as the
well-known Karman vortex street. In the past few decades, many
techniques have been developed to identify coherent structures. For
example, vortices can be captured using the Q-criterion, swirling
strength, or λ2 method.1,2 These methods are widely used to study
turbulence and engineering flows. However, there are other types
of coherent structures than just vortices. To extract general flow
structures from a complex flow without relying on any conditional
criterion, the proper orthogonal decomposition (POD) is used in
fluid dynamics.3,4 Briefly, the POD extracts flow modes based on
spatial correlation. These modes are the orthogonal basis of a vector
space. They can be regarded as the spatial distribution of coherent

structures. The flow field can be decomposed using the modes, ω(x,
t) = Σiai(t)Mi(x), where ω can be any distribution in the field x,
a is the decomposition coefficient that varies with time, and M is
the mode that depends only on x. The field can be reconstructed
using low order modes that contain a larger portion of the field
energy; hence, the POD provides a framework for reduced order
modeling.3,5–9 The high order modes are usually considered to be
incoherent. The POD has been used to study the structures in pipe
flow, shear layer, jets, and boundary layers, among others. Never-
theless, the POD modes, Mi(x), are stationary distributions contain-
ing no temporal information. To investigate spatial–temporal vari-
ations, Schmid proposes a dynamic-mode-decomposition (DMD)
algorithm.10 The dynamic modes approximate the eigenvectors of
the Koopman operator.11 Each mode is associated with a complex
eigenvalue, ρeiθ. This eigenvalue attributes a time-evolution fac-
tor to each mode. If ρ > 1, the related mode becomes infinite as
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the time increases; if ρ < 1, the corresponding mode reduces to
0; the modes with ρ = 1 form a set of oscillators. The DMD is
also widely used to extract flow structures,11,12 and the usefulness
of POD and DMD is sometimes compared in analyzing the same
flow.13

Because the POD modes possess no direct temporal informa-
tion and the DMD essentially regards a flow field as a linear system,
neither of them is ideal to represent the temporal evolution of coher-
ent structures in a complex flow, which is highly nonlinear. There-
fore, researchers have developed other decomposition and analysis
technologies, some of which include the temporal aspect of the flow
modes. Bagheri14 analyzed the wake dynamics of a flow over a sta-
tionary cylinder and established a relationship between Koopman
modes with the DMD algorithm. It is shown that the reduced model
obtained by Koopman modes reflects the nonlinear global mode in
Hopf bifurcation under a certain condition. Glaz et al.15 found a
new normal form model based on Koopman mode decomposition
to analyze the quasiperiodic intermittency phenomenon in the non-
linear field. Noack et al.16 combined the features of POD and DMD
to analyze flow structures that evolved coherently in both space and
time, which lead to modes that contain a single frequency and are
spatially orthogonal to all other modes at all frequencies. Clainche et
al.17 proposed the higher order dynamic mode decomposition and
applied sequentially in time and space to obtain a spatiotemporal
expansion of the flow field. This method can analyze complex signals
and noisy data. Towne et al.18 developed the spectral POD, in which
POD was done in the frequency domain of the flow. This method has
been used to analyze the turbulent jet flow and shown better results
than POD.

In fact, the temporal variation of modal coefficients can be
more important than the mode, as the coefficients reflect the evo-
lution of a system in the phase space. The purpose of this paper
is to show that the recurrence of modal coefficients in the phase
space can be used to identify and classify the temporal evolution of
coherent flow structures. A wake flow downstream of two cylinders
will be used as an example. The phase space is constructed using
POD results. Due to the development of large data and compu-
tational power, the recurrence network method has recently been
widely used to study the nonlinearity with high dimensionality,19,20

and the trajectories of the system in the phase space reveal global
features of the flow. The concept of recurrence originates from the
pioneering work of Poincaré.21 The state of a system is X(t) = [a1(t),
a2(t), . . ., an(t)]T , where the entries are measures of the system. In
a finite state space, the system usually revisits the neighborhood
of a previous state. In other words, there exist ε and τ, which sat-
isfy ∥X(t + τ) − X(t)∥ < ε, where ||⋯|| is the norm of a vector.
Recurrence is a fundamental property of a deterministic system.
Intuitively, the re-visitation implies that the system finishes a loop
of evolution and returns to the original state, within the tolerance
of ε. In the following time, the system will start a new evolution.
Therefore, by studying the way a system repeats itself, its dynamics
can be analyzed and predicted to a certain extent. The recurrence
network has been applied to study the phase space geometry, char-
acterize the temporal patterns, and identify sudden changes in a
dynamical system.20,22–24 In the early development of recurrence net-
work methods, the state X(t) is usually constructed using retarded
single-point measurements.25–27 Recently, multiplex recurrence net-
works are developed to analyze multi-variant time series,28 but these

variables are not necessarily related to any coherent structure. In
this study, we use the POD modes to construct the state space, i.e.,
the entries of the state vector X(t) are composed of POD coeffi-
cients. The state vector reflects the temporal evolution, and it is also
related to specific flow modes. Hence, the so-constructed network
carries both spatial and temporal information of a complex flow
field.

In the following, the numerical simulation of the wake flow
downstream of two cylinders will be presented, construction of the
recurrence map will be described, and the repetition patterns and
their relationship with each POD mode will be discussed.

II. NUMERICAL SIMULATION AND NETWORK
CONSTRUCTION
A. Computation setup

The flow studied in this paper is the wake downstream of two
cylinders with the same diameter (Fig. 1). The upstream cylinder
is fixed, and the downstream cylinder oscillates transversely in the
flow. The immersed-boundary method is employed to simulate the
flow, as it is effective in dealing with moving structures and no body-
conforming mesh is required around objects in motion. Specifically,
the improved direct-forcing immersed-boundary method29 is used,
in which the solid cylinders are considered as a porous medium30

with a large resistivity. The model equations are the Navier–Stokes
equations for incompressible flow, with the modified Zwikker–
Kosten (Z–K) equation31 for flow inside the cylinder body. All the
equations and variables are nondimensionalized with the free stream
velocity and the diameter of the cylinder. The modified govern-
ing equations for incompressible, unsteady, viscous fluid flow are
written as

∂u
∂t

+ u ⋅ ∇u = −∇p +
1
Re
∇2u + f , (1)

∇ ⋅ u = 0, (2)

where f is the body-force term representing the virtual boundary
force, and Re is the Reynolds number defined as ρU∞D/μ, where
U∞ is the free stream velocity and D the diameter of the cylinder.
In order to restrict the flow to two dimensional, the simulation is
performed at a Reynolds number of 100, which is the same as that
in Zhang and Zheng.32 The flow, both outside and inside the cylin-
ders, can be simulated by the same format of the above governing
equations, with the definition of the forcing term as

f = {−σ(u −V) inside the solid body
0 outside the solid body , (3)

where σ is the dimensionless flow resistivity of the cylinders in the
flow and V is the moving velocity of the objects. For the upstream
cylinder, V is zero; for the downstream cylinder, V is the oscillating
velocity of the cylinder. Thus, the original Navier–Stokes equations
are used for fluid flow region and the modified equations, with a
source term in Eq. (3) applied, are used inside the cylinders. The
equations are solved on a nonmoving staggered Cartesian grid.

The simulation domain and the configuration of the prob-
lem are shown in Fig. 1, where a pair of cylinders in tandem
arrangement is placed in a uniform, incompressible, viscous flow.
The computational domain size for the two-dimensional study is
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FIG. 1. Sketch of the simulation domain and selected
window for POD and recurrence analysis.

[0, 38.4] × [0, 25.6], where the length and width of the domain
are nondimensionalized by the cylinder diameter, D. The center of
the upstream cylinder is located 8D from the inlet flow boundary
to reduce the inlet effect and 30.4D away from the outlet bound-
ary to ensure unstrained vortex wake development. The center-to-
center distance between the cylinders is 6, by which the flow is in
the vortex formation regime.33 The size of the uniform, nonmoving
grid used in this study is Δx = Δy = 0.025 for the computational
case. The check for grid-independent solution has been carried out
in our previous work.29 The Dirichlet-type boundary condition is
employed at the inlet for velocity; the symmetry boundary condition
is used for both upper and lower boundaries; and the outlet is spec-
ified with the Neumann-type boundary condition. In addition, the
computational scheme uses a low-storage third-order Runge-Kutta
scheme for time,34 the fifth order WENO-Z method for convec-
tion,35 and the second-order central difference for viscous terms.
The incompressibility condition is satisfied by solving a Poisson
equation for pressure correction using MUDPACK.36 For the trans-
versely oscillating downstream cylinder, the sinusoidal motion is
specified as

y(t) = h sin(2πfct), (4)

where h = 0.15 is the heaving magnitude, f c = 0.211 is the oscillating
frequency, and t is time. The computational scheme has been veri-
fied and validated with numerous computational and experimental
data.37,38

B. POD for the vorticity field
A 3.75 × 12.5 domain is selected for POD and recurrence net-

work analysis (see Fig. 1). This location is chosen because the vortex

shedding pattern changes around 11D away from the downstream
cylinder center.33 In this study, vorticity is used to analyze the flow
dynamics. Using POD, the vorticity field can be decomposed into
orthogonal modes with the corresponding time coefficients.39 The
energy contained in the modes is measured using the sum of the
eigenvalues, and the energy percentage captured by the ith POD
mode is given by λi/∑Ne

k=1 λk, which is also referred to as the energy
of each mode, where Ne is the total number of eigenvalues. The
cumulative energy up to the ith POD modes can be represented by
∑i

k=1 λk/∑Ne
k=1 λk.40

After the simulation reaches 100 oscillating cycles, the vortic-
ity results of 70 oscillation cycles (from 101T to 170T, where T
= 1/f c) are chosen for POD and recurrence map analysis. There are
2048 time steps in each oscillating cycle. To ensure the convergence
of the POD modes, sampling at two different time intervals (T/64
and T/128 between two successive snapshots) is tested. The L2 norm
difference for the first twelve modes is calculated and the detail of
the calculation is explained in Ref. 40. The results show that the
maximum difference is below 0.5% for time interval equal to T/64.
Thus, the flow information in the selected domain with time inter-
val T/64 is used. In this way, we totally obtained 4480 time series
data.

The first twelve eigenvalues, corresponding to the first twelve
energetic modes, are listed in Table I with their percentages of
energy contribution and cumulative energy. Clearly, the first two
modes dominate and comprise more than 55% of the total energy
of the motion. The first twelve modes collectively contain more
than 95.5% of the energy. Thus, within these modes we have almost
captured the entire spatial structure of the flow field. The vortic-
ity contours of modes 1 through 6 and the time histories of the

TABLE I. The energy and cumulative energy of the first twelve modes.

Modes 1 2 3 4 5 6 7 8 9 10 11 12

Energy of each mode (%) 32.95 23.93 7.64 7.50 6.90 5.90 4.41 1.86 1.79 1.24 0.88 0.85
Cumulative energy (%) 32.95 56.88 64.52 72.02 78.92 84.82 89.23 91.09 92.88 94.12 95 95.85
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FIG. 2. (a) The POD modes (first 6
modes only). (b) Coefficient variations
(first 2 modes only).

first two modal coefficients are shown in Fig. 2. The first four
modes show symmetric structures with respect to the wake cen-
terline, while the fifth and sixth modes are anti-symmetric. In
addition, the coefficients of the first two modes illustrate no exact
periodicity.

C. Recurrence network construction
As discussed before, the phase space is constructed using the

POD coefficients X(t) = [a1(t), a2(t), . . ., an(t)]T , where a1–an are
the modal coefficients. For this study, n = 12, i.e., the first twelve
modes that contain more than 95% energy. For convenience, we
refer to the state at time ti as the ith state Xi. The recurrence in
the phase space can be represented using the recurrence network,
which is obtained in the following way. Given the states of a system
Xi and Xj at the time ti and tj, two nodes are used to represent these
states. If the distance between two states is smaller than a threshold
ε, recurrence happens and the corresponding nodes in the network
can be connected. In other words, the network’s adjacency matrix is
Rij = H(ε − ∥Xi −Xj∥), where H is the Heaviside function and ||⋯|| is
the norm of a vector. The standard L2 norm is used for this research
though other norms yield similar results. The R matrix is symmet-
ric, Rij = Rji. This matrix can be conveniently plotted using binary
images, i.e., regarding Rij as a pixel (i, j) on an image. Figure 3 shows
the recurrence plot using ε = 60. The determination of the value
of ε will be discussed in the following paragraphs. The black and

white pixels are inverted for clarity, i.e., 1 – R is shown in the fig-
ure. Hence, a black pixel (i, j) indicates that the nodes i and j are
connected. Note that in the recurrence plot, the vertical axis j is
pointing upward, which is different from the normal arrangement
of pixels on an image. Since a state is always similar to itself, Rii = 1.

FIG. 3. Recurrence plot with ε = 60. The black and white pixel is inverted, i.e.,
1 – R is shown. A black stroke is a connected region. Its length is l.

AIP Advances 10, 035317 (2020); doi: 10.1063/1.5144978 10, 035317-4

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

Consequently, the secondary diagonal line must be black. In the
recurrence plot, both indices i and j indicate a time direction. The
lines parallel to the secondary diagonal represent the recurrence after
a certain time interval i − j. When studying the temporal variation,
we can fix one index and vary the other. These line patterns will be
discussed in detail in Sec. III.

The primary issue in the network construction is to determine
the parameter ε. Figures 4(a) and 4(b) show the recurrence matrices
obtained using ε = 10 and 100. The ε threshold defines the similarity
threshold between two states. Since a chaotic system never exactly
repeats itself, a tiny ε excludes the recurrences that actually char-
acterize the dynamic system. As a result, fewer recurrences can be
recognized [Fig. 4(a)]. On the other hand, a large ε allows too many
states to be regarded as recurrent states. Figure 4(e) shows the mag-
nitude of ∥Xi − Xj∥ using a contour line. The strokes become fatter
as ε increases. At ε = 100, the line patterns are so swollen that they
cease to exist. The black regions [Fig. 4(b)] extend so much that they
get connected to each other, i.e., they percolate through the entire
recurrence plot.

To select a proper ε, we need to employ the recurrence quan-
titative analysis. As illustrated in the inset of Fig. 3, we first define
a connected line structure or a stroke as the set C = {(i, j) | Rij = 1
and all path-connected elements are included}. In other words, the
stroke is a path-connected black region on the recurrence plot, and
there are many such strokes on the plot. The stroke length is defined
as l = 1/2[max (i + j) − min (i + j)], for any (i, j) ∈ C. The collection
of all structures allows us to calculate the mean structure length ⟨l⟩ε
and the probability p(l). Consequently, the Shannon entropy of this
distribution can be computed as

Eε = −Σp(l)log2(p(l)). (5)

The Shannon entropy is a proper way to examine the selec-
tion of ε because it considers both the total number of structures
on the recurrence plot and their length distribution. If ε is too small
and there are few structures, the Shannon entropy is small; on the
other hand, if ε is too big, the probability concentrates at strokes of
a large l, and the entropy is also small. The property of the Shan-
non entropy and the related probability distribution are extensively

FIG. 4. Recurrence plots generated using various ε. (a) ε
= 10 and (b) ε = 100. (c) The average structure length on
the recurrence plot. (d) The Shannon entropy as a function
of ε. (e) The contour line of the recurrence plot, a magnified
portion is shown.
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studied in statistical physics.41–44 Figure 4(c) shows the variation of
⟨l⟩ε vs ε. The ⟨l⟩ε remains at a low level and suddenly increases at
ε > 70. The Eε − ε curve also has a significant change at ε > 70
[Fig. 4(d)]. The transition at ε ∼ 70–90 reflects the percolation of
swollen line strokes on the recurrence plot. In addition, the value
of entropy is also small at ε < 40, as there are fewer strokes on the
recurrence map and the probability p(l) concentrates at a few l’s.
As ε increases, more structures can be identified and the entropy
increases. Based on the above observation, a proper ε should be cho-
sen so that it is slightly smaller than the percolation transition. In
this paper, ε = 60 is used.

III. RESULTS AND DISCUSSION
For the convenience of analysis, we use the following trans-

form to rotate and stretch the recurrence plot: η = (i + j) and
ξ = (j − i). Clearly, ξ is the time delay between i and j states, and
ξ = 0 corresponds to the secondary diagonal of the recurrence plot
(Fig. 3). The resulting image is in Fig. 5. Since the adjacency matrix
is symmetric, only ξ ≥ 0 part is plotted. The plot is largely white
with many horizontal lines. These recurrence structures form a lay-
ered pattern that looks like an Egyptian pyramid. The thickness of
each layer is nearly a constant. Note that there are two major time
scales in the flow: the oscillation period T and the vortex shedding
period T′. In our flow, T′ = 1.3T. For a flow system to repeat a
state, the boundary condition should be the same. After a period
of mT, where m is an integer, the oscillating cylinder returns to
the same position with the same velocity. Therefore, the boundary
condition restores and this facilitates the repetition of vorticity dis-
tribution. However, this time may not be an integer time of T′. As a
result, the inception of recurrence depends on the initial flow state
Xj. This is manifested by the discontinuous horizontal lines in the
recurrence plot. If the time delay is an integer time of both T and
T′ (e.g., t = 13T = 10T′), the system has a much higher chance to
repeat.

Figure 5 reveals four types of horizontal line patterns: solid
line (pattern A), dashed line with longer stroke (pattern B), dashed
line with shorter stroke and dots (pattern C), and staggered dashed-
dotted line (pattern D). Note that the dashes and dots in pattern
C do not have the same ξ value, and pattern D can be considered
as a composition of two dished-line structures. In the ξ direction,
these patterns seem to appear sequentially. In the following, we will
analyze these patterns and their appearance order.

A. Horizontal line patterns in the η–ξ frame
Our analysis begins with the simplest pattern—-the solid lines,

which are located at

ξ = {0, 245, 835, 1080, 1675, 1918, 2506, 2747, 3344, 3587, . . .}
≈ {0, 4T, 13T, 17T, 26T, 30T, 39T, 43T, 52T, 56T, . . .}.

Note that 4T ≈ 3T′, 13T = 10T′, 17T ≈ 13T′. . .. All these numbers
are also close to integer times of T′, where the vortex shedding pat-
tern should repeat itself. In addition, the repetitions appear in pairs
(0 and 4T, 13T and 17T, 26T and 30T, . . .). The interval between
each pair is always 4T, i.e., another solid line is located after a 4T
period following the first recurrence. A solid line means that the
system always revisits a previous state after time ξ, i.e., ∥Xi − Xj∥
≤ ε for a fixed ξ = I − j, where j is arbitrary. To show how the
recurrence happens, a component-wise analysis is carried out to
study each mode. We choose the ξ = 835 line as an example and
examine the difference between each individual mode. The coeffi-
cient difference of the kth mode is Sjk = ak(ti) − ak(tj) (ξ is fixed
at 835). The coefficient differences of all modes are illustrated in
Fig. 6(a), where the modes are listed along the vertical axis and the
time index j is arrayed along the horizontal direction. The color
represents the value of Sjk. The extreme values of Sjk of the first
9 modes are on the order of ±10, and their magnitudes are much
larger than those of the other 3 modes. The temporal variation of
the norm ∥Xi − Xj∥ is also shown in Fig. 6(a). It fluctuates around
10 and stays far below the ε = 60 threshold. Along the j axis, the
extreme values of Sjk appear at a regular pace. Note that the first
two modes contain more than 55% cumulative energy (Table I), and
the extreme values of the coefficients a1 and a2 are on the order
of ±60. Therefore, in terms of the extremes, the coefficient differ-
ence Sj1 and Sj2 is an order of magnitude smaller than a1 and a2,
respectively. In other words, the energetic modes repeat themselves
very well.

As a comparison, the modal coefficients of non-recurrence
cases are studied, a horizontal line at ξ = 900 is randomly chosen. The
coefficient differences are shown in Fig. 6(b). The magnitudes of Sj1
and Sj2 are on the order of 100, which are nearly twice of a1 (or a2)
and are much larger than the other Sjk (for k > 2). This is in contrast
to the Sjk behavior in the above pattern A. Examination of other non-
recurrent ξ values shows a similar result. Therefore, recurrence only
happens at these ξ values where the low order energetic modes repeat
themselves. As discussed before, the oscillating cylinder moves back

FIG. 5. The recurrence map in the
η–ξ frame. Four line patterns can be rec-
ognized: solid line, dashed line, shorter
dashed line, and staggered line.
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FIG. 6. (a) Mode by mode analysis of the solid line pattern where recurrence
occurs for all j, ξ = 835. (b) The coefficient differences of a constant ξ line with
no recurrence, ξ = 900.

to a previous position only at certain ξ values, creating a repeated
boundary condition. At other ξ values, the boundary conditions are
different, the large-scale flow profile is not the same, and no rep-
etition occurs. Hence, recurrence only occurs at a set of discrete ξ
values.

Pattern B (dashed line with long strokes) indicates that, at
a certain ξ, the recurrence is switched on and off, depending on
the starting time. We choose ξ = 1320 as an example to study the
modal behaviors along pattern B. Figure 7(a) shows the magni-
tudes of Sjk. Generally speaking, the magnitude of Sjk with a small
k is larger than that with a big k. The extreme values of Sjk for
the first 6 modes are on the order of ±50, which is close to the
extreme values of coefficients a1 and a2. The norm ∥Xi − Xj∥ fluc-
tuates around the ε threshold [Fig. 7(a)], so it is not surprising to
see the on-and-off pattern. In order to find out which mode causes
the on-and-off of recurrence, we define the significance of each
mode as a product of weight and correlation, Wk = Pk ⋅Qk. The
weight for the kth mode is measured using an average percentage Pk
= ΣN

j=1(S2
jk/ΣkS2

jk)/N, where N is the total number of index j and ΣkS2
jk

is ∥Xj+ξ −Xj∥2. Pk measures the contribution of a mode to the norm.

FIG. 7. (a) The coefficient differences along the dashed line pattern. (b) Contribu-
tions from every mode to ∥X i − X j∥.

The correlation Qk of mode k characterizes the synchronization
between the mode’s variation, Sjk − ⟨Sjk⟩, and that of the overall
norm, ∥Xj+ξ − Xj∥ − ⟨∥Xj+ξ−Xj∥⟩,

Qk =
Σj(Sjk − ⟨Sjk⟩)(∥Xj+ξ − Xj∥ −⟨∥Xj+ξ − Xj∥⟩)

[Σj(Sjk − ⟨Sjk⟩)
2 ⋅ Σj(∥Xj+ξ − Xj∥ −⟨∥Xj+ξ − Xj∥⟩)

2]
1/2 ,

where j = 1, . . ., N and the correlation is normalized. A large posi-
tive Wk means that the kth mode significantly contributes to ||Xj+ξ
− Xj|| and is positively correlated with Sjk. Figure 7(b) shows the sig-
nificance factor Wk of each mode. Mode 1, containing the largest
energy, is the most significant. It is interesting that the second
important mode is actually mode 5, not mode 2 or 3 though their
modal energy is larger (Table I).

Pattern B shows that a higher order mode can be more impor-
tant than a lower order mode in terms of recurrence dynamics. In
fact, modes 5 and 6 are crucial because they are the first pair of
anti-symmetric modes, as shown in Fig. 2(a). Note that the vortic-
ity field of a cylinder wake (e.g., the Karman vortex street) is nearly
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anti-symmetric after shifting along the wake axis. Hence, the coeffi-
cients of modes 5 and 6 are closely related to the stream-wise posi-
tion of vortices. For example, if the modal coefficient a5 is large, a
strong vortex is located at the center of the selected window; if a6
is large, the vortices are near the edge of the window. The repeti-
tion of the field requires the vortex to be at the same location; hence,
the coefficients of anti-symmetric modes should be the same. If the
vortex shedding at time i and j are not in-phase, the recurrence is
broken. Therefore, pattern B becomes a partial recurrence pattern.
These observations show that anti-symmetric modes are crucial to
the description of wake flow structures; even these modes are of
high-order and possess less energy than the low-order symmetric
modes.

The above modal analysis method is used to analyze pattern
C (dashed-dotted line). Here, the pattern near ξ = 1176 is selected
as an example. For the dashes, the temporal variation of Sjk looks
similar to that of pattern B, but the modal significance has a different
order: the 5th mode is significant but less important than mode 2
[Fig. 8(a)]. Regarding the small dots between the dashed lines, they
have a ξ = 1222 that slightly differs from the dashed lines. The mode
significance analysis along the dots indicates that the first two modes

FIG. 8. The importance factor of modes in the dashes (a) and dots (b) of pattern C.

FIG. 9. The significance factor of all modes in pattern D.

are crucial to the appearance of the dots in pattern C, but mode 5
has no significance [Fig. 8(b)]. Therefore, the comparison between
patterns B and C (including both dashes and dots) shows that the
first mode is always the most important mode for partial recurrence,
and the importance of higher-order modes is related to the length of
the stroke in the recurrence plot: a higher importance is related to a
longer stroke. For the dots, the Ws of high-order modes (especially
for k ≥ 5) are tiny.

Pattern D is composed of two rows of strokes that are shorter
than dashes but longer than dots in pattern C. According to the pre-
vious observation about the modal significance, we anticipate that
the first two modes are the dominant modes and modes 3 and 4
have small Wk. In addition, the significance of modes 5 and 6 should
be between those of dashes and dots in pattern C. The results in
Fig. 9 confirm the expectations. Based on the above results, we here,
discuss the relationship between the mode energy and its signifi-
cance factor in recurrence. In general, low-order modes are more
important since they possess higher energy. However, their signifi-
cance factor is largely independent of the energy in the sense that,
if the energetic mode repeats itself very well, it contributes noth-
ing to recurrence breakdown. In the partial recurrence patterns, the
low-order modes become less significant because they are in phase,
hence the high-order modes determine the inception of recurrence,
i.e., they are significant.

B. Flow evolution and patterns in the vertical
direction

The above horizontal patterns reflect the behavior of all modes
as a collection. In this section, we will examine the appearing order
of the patterns in the vertical ξ direction, which reflects the way
all modes evolve in time. Pattern A indicates definite recurrence,
regardless of the initial time. Hence, we partition the vertical order
of all patterns according to the appearance of pattern A. In our
case of low-Re wake behind two tandem cylinders, the first par-
tition (from ξ = 0 to 245) is ADA, followed by ABBBCA, ADA,
ACBBCA, ADA, . . ., as illustrated in Fig. 10, which is the cen-
ter portion of Fig. 5. The fact that some letter sequences (e.g.,
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FIG. 10. The vertical order of patterns.

ADA) keep reappearing suggests that these patterns have temporal
coherence.

These repeated pattern sequences in fact reflect the way-of-
evolution of the system. Taking the ADA partition from ξ = 835
–1080 as an example, we can select any initial state Xj. After γ
= 835 steps, a definite repetition occurs, ||Xj+γ − Xj||< ε; after
δ = 1080 steps, another definite repetition occurs ||Xj+δ − Xj||< ε. In
the phase space, the loop from Xj+γ to Xj+δ forms a quasi-closed loop
with a gap ∣∣Xj+δ − Xj+γ∣∣ ≤ ∣∣Xj+δ − Xj∣∣ + ∣∣Xj+γ − Xj∣∣ ≤ 2ε. For some
initial state Xj, this loop has a twist as the system revisits the ini-
tial state between Xi+γ and Xi+δ , which is dubbed partial repetition
in the previous discussion. The combination of partial and definite
repetition can be used to classify the system’s temporal evolution. In
our simulation, the most commonly appeared evolution is ADA and
ACBBCA.

IV. SUMMARY
In this paper, we examine the POD modes and the recurrence

of flow dynamics in the phase space to analyze the temporal fea-
tures of coherent structures. The POD modes are spatial distribu-
tions of vorticity, which do not have time variation. Although the
wake flow in our study is chaotic, as discussed in Ref. 33, the recur-
rence results show that the system keeps revisiting a previous state
after a longer period of time. Here, the recurrence is not exact,
and the tolerance is selected to be slightly smaller than the perco-
lation threshold. For the studied low-Re wake flow, its recurrence
is determined by two factors. The first is the oscillation period of
the downstream cylinder, and the second is the vortex-shedding
period. The system has a high chance to revisit a previous state
once the flow boundary condition is similar and the vortex shed-
ding is in accordance. The first factor indicates that the recurrence
plot should occur at nearly integer times of the oscillation period
(and perhaps the vortex shedding period), which is shown as the
patterns parallel to the secondary diagonal in the recurrence plot.

The second factor results in partial recurrence, which is reflected by
discontinuous lines in the plot. If the flow boundary condition is dis-
tinctive, the large-scale vorticity profiles are considerably different.
As a result, the first few POD modes, which are the most energetic
and describe the large-scale field profile, cannot repeat themselves
and recurrence is generally impossible. However, the modal energy
is not the only critical parameter that defines the role of a mode
in the recurrence. If the energetic modes repeat themselves very
well after a certain period of time, the recurrence may still break
down due to high-order modes. As in the partial recurrence cases,
higher-order modes (especially the first anti-symmetric mode 5)
play a key role. The organization of full and partial recurrence con-
tains a few sequences of patterns, which have a fixed order such as
ADA. They reveal the coherence in the time direction. The analysis
methodology presented in this study can be applied to investigate the
quasi-periodic flow structures that appear intermittently in a turbu-
lent flow.
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