
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2020

Applications of Machine Learning in High-Frequency Trade Applications of Machine Learning in High-Frequency Trade

Direction Classification Direction Classification

Jared E. Hansen
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Statistical Models Commons

Recommended Citation Recommended Citation
Hansen, Jared E., "Applications of Machine Learning in High-Frequency Trade Direction Classification"
(2020). All Graduate Theses and Dissertations. 7764.
https://digitalcommons.usu.edu/etd/7764

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7764&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.usu.edu%2Fetd%2F7764&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7764?utm_source=digitalcommons.usu.edu%2Fetd%2F7764&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

APPLICATIONS OF MACHINE LEARNING IN HIGH-FREQUENCY TRADE

DIRECTION CLASSIFICATION

by

Jared E. Hansen

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Statistics

Approved:

Kevin Moon, Ph.D. D. Richard Cutler, Ph.D.
Major Professor Committee Member

Tyler Brough, Ph.D. Todd Griffith, Ph.D.
Committee Member Committee Member

Richard S. Inouye, Ph.D.
Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2020

ii

Copyright c© Jared E. Hansen 2020

All Rights Reserved

iii

ABSTRACT

Applications of Machine Learning in High-Frequency Trade Direction Classification

by

Jared E. Hansen, Master of Science

Utah State University, 2020

Major Professor: Kevin Moon, Ph.D.
Department: Mathematics and Statistics

The correct assignment of trades as buyer-initiated or seller-initiated is paramount in

many quantitative finance studies. A variety of simple decision rule methods have been

used for signing trades since many data sets available to researchers do not include the sign

of each trade executed. Utilizing these older methods and originally-engineered features

as predictors, we have demonstrated that machine learning models outperform existing

methods, achieving state-of-the-art results. Out-of-sample predictive accuracies of random

forests exceeded those of older methods by 4.5 percentage points overall, were higher for all

securities tested, and improved prediction for some securities up to 12.1 percentage points.

Since finance and economics departments pay thousands of dollars in annual data service

subscription fees they are often reluctant to fund order book data purchase. The use of

our best trade signing model as an alternative to the purchase of order book data has the

potential to collectively save universities millions of dollars in additional subscription fees,

facilitate more reliable research, and remove the burden of order-level data processing for

researchers in need of accurate trade signs.

(98 pages)

iv

PUBLIC ABSTRACT

Applications of Machine Learning in High-Frequency Trade Direction Classification

Jared E. Hansen

The correct assignment of trades as buyer-initiated or seller-initiated is paramount in

many quantitative finance studies. Simple decision rule methods have been used for signing

trades since many data sets available to researchers do not include the sign of each trade ex-

ecuted. By utilizing these decision rule methods, as well as engineering new variables from

available data, we have demonstrated that machine learning models outperform prior meth-

ods for accurately signing trades as buys and sells, achieving state-of-the-art results. The

best model developed was 4.5 percentage points more accurate than older methods when

predicting onto unseen data. Since finance and economics departments pay thousands of

dollars in annual data service subscriptions they are often reluctant to fund purchase of ad-

ditional data containing trade signs when methods for predicting these signs exist. The use

of our best trade signing model as an alternative to the purchase of additional data has the

potential to collectively save universities millions of dollars in additional subscription fees,

facilitate more reliable research, and lighten the burden of data processing for researchers.

v

ACKNOWLEDGMENTS

I am incredibly fortunate to have had the opportunity to work with, get to know,

and learn from each member of my committee in a way that I don’t think most graduate

students do. Dr. Moon, thank you for pushing me hard in your courses while being patient

and allowing me to push myself in research. You have instilled in me an appreciation of

deeply understanding how things work rather than simply applying them. Dr. Cutler, thank

you for your mentorship and wisdom from my undergraduate days through until now. Much

of my decision to pursue this degree and field of work is thanks to your fantastic teaching

and encouragement. Dr. Griffith, thank you for your help with so many of the finance-

related specifics of this work. If it weren’t for your advice regarding time management and

career choices I might still be writing this thesis and looking for a job. Dr. Brough, thank

you for helping me get out of my academic comfort zone and exemplifying an attitude of

continual growth and evolution. By exposing me to new ideas, academic and otherwise,

you have helped me to adjust my prior and change my outlook on statistics and on life.

To fellow students, thank you for your friendship throughout my graduate experience.

Eric, thank you for putting up with my questions and letting me bounce ideas off of you.

Matt, thank you for your example and encouragement to get after it. Dan, Sam, and

Brandon, thank you for enlarging my perspective and always being up for an engaging

conversation. Ronak and Sharad, thank you for your guidance regarding a career in industry

and advice on how to set myself up for success.

Gary Tanner, you are the unsung hero of mathematics and statistics graduate students

at USU. Thank you for helping me to stay on top of administrative necessities and always

taking the time to answer my questions.

Finally, thank you Mom, Dad, Amanda, Natalie, and Rebeka for putting up with

me throughout this process. Without your encouragement, patience, comedic relief, and

support none of this would have been possible.

Jared E. Hansen

vi

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . x

ACRONYMS . xv

1 INTRODUCTION . 1
1.1 Prominent Prior Studies . 1
1.2 Why Machine Learning and Feature Engineering 2
1.3 Relevance of This Work . 3

2 FINANCE BACKGROUND . 6
2.1 Traders and Dealers . 6
2.2 Orders and the Limit Order Book . 6
2.3 Prominence of High-Frequency Trading . 10
2.4 NASDAQ Details . 10

3 TRADE SIGNING LITERATURE . 12
3.1 Determining Trade Direction . 12
3.2 The Tick Test and the Quote Test . 13
3.3 The LR Method . 14
3.4 The EMO Method . 15
3.5 The CLNV Method . 16
3.6 Rosenthal’s Method . 17

4 DATA: DESCRIPTION, CREATION, AND EXPLORATORY ANALYSIS 21
4.1 Original Data Sources . 21

4.1.1 TAQ Data . 21
4.1.2 ITCH Data . 22

4.2 Data Engineering and Pre-Processing . 22
4.2.1 ITCH Data Cleaning . 22
4.2.2 Study Data Creation . 23
4.2.3 Train-Test Split . 27

4.3 Exploratory Data Analysis . 27
4.3.1 Financial Descriptions of Data . 28
4.3.2 Examination of Data for Predictive Modeling 32
4.3.3 Insights Gained from EDA . 40

vii

5 PREDICTION METHODS . 42
5.1 Modeling Methods Used . 42
5.2 Model Development Overview . 43

5.2.1 Assessment Schemes . 44
5.3 Stage 1: Initial Model Prototyping . 45

5.3.1 Baseline Model . 45
5.3.2 Initial Feature Engineering . 47
5.3.3 Initial Results . 50

5.4 Stage 2: Final Model Development . 55
5.4.1 Additional Feature Engineering . 55
5.4.2 Feature Selection . 57
5.4.3 Addressing Class Imbalance via Sampling 61
5.4.4 Hyperparameter Tuning . 63
5.4.5 Specifications of Final Model . 65

6 FINAL RESULTS . 66
6.1 Design of Performance Assessment . 66
6.2 Final Model Results . 66
6.3 Insights into the Final RF Model . 69

7 FUTURE WORK AND CONCLUSION . 73

REFERENCES . 74

APPENDICES . 78
A Additional Tables . 79

viii

LIST OF TABLES

Table Page

2.1 A contrived order book example from the view of the exchange listing the
fictional USU stock. Order precedence is determined by price, visibility, then
time, and the concepts of best bid, best ask, and the spread are illustrated. 9

3.1 A contrived example exhibiting the tick test and quote test for classifying
trades. Until a differing price is observed the tick test is unable to make a
prediction (see the first trade). Similarly, the quote test is unable to make
predictions for trades occurring at the midpoint (see the eighth trade). . . . 14

3.2 A contrived example exhibiting the tick test, LR, EMO, and CLNV methods
for classifying trades. Note that the LR, EMO, and CLNV methods agree
most of the time, generating the same predictions for seven of the nine trades
here. Using the output of these methods as predictors will leverage their high
performance on well-characterized trades. However, these decision rules fail
to reach a consensus on two of the trades in the example. It may be that
these trades can be more accurately predicted by a more intricate model. . 18

4.1 Descriptive financial statistics for the stocks sampled for study data. The
ten stocks used for study data vary in market capitalization, volatility, and
liquidity, acting as a somewhat representative sample of broader markets. . 29

4.2 A comparison of the distribution of trade prices relative to quotes from the
LR, EMO, CLNV study and our study. For the CLNV study and our study,
test data was used for the given percentages. Our study data bears a strong
resemblance to the data used by EMO. 33

5.1 All-but validation results of eight different sampling approaches. None of
the sampling schemes for rectifying the slight class imbalance in study data
resulted in an appreciable improvement in accuracy. Therefore, no sampling
method was used for the final model. 63

A.1 A complete listing of features included in final cleaned study data prior to
any feature engineering or standardization. 79

A.2 Proportion of trades relatives to quotes for training and test data. We observe
that the training and test data share a very similar distribution, and most
trades occur at the quotes. The percentages in this table correspond to the
visual representation of the data in Figure 4.5. 80

ix

A.3 Correlation matrix for microsTIME analogues. All pairwise correlations for
this group of variables are at least 0.995. See Figure 4.7 for a visual repre-
sentation. 80

A.4 Correlation matrix for buysell S analogues. Pairwise correlations for the
four variables with prefix buysell are quite high. The fact that these corre-
lations are high indicate valuable predictive information, while also indicating
that there is room for improvement in predictive accuracy. See Figure 4.7 for
a visual representation. 81

A.5 Correlation matrix for standardized PRICE analogues. All pairwise correla-
tions for this group of variables are at least 0.996. See Figure 4.7 for a visual
representation. 81

A.6 First 27 features in the final random forests model containing 53 features. . 82

A.7 Last 26 features in the final random forests model containing 53 features. . 83

x

LIST OF FIGURES

Figure Page

4.1 Pseudocode for cleaning ITCH data. This process removes redundant mes-
sages, correctly replaces and adjusts values for size and price fields, and keeps
columns needed to match ITCH data with the corresponding TAQ data. . . 24

4.2 Pseudocode for steps 1-7 from Holden and Jacobsen’s SAS code. This process
cleans TAQ trades, calculates values of new fields, and matches trades to
cleaned ITCH data so that they have the correct response value (buysell S).
Construction of training data will be complete after quotes are matched with
trades and a few additional fields are calculated as described in steps eight
and nine. 25

4.3 The head of a Pandas dataframe containing cleaned data. Fields shown are
a selection of the basic features listed in Table A.1. The data can now be
explored, new features can be engineered, and models can be developed. . . 27

4.4 The volume of shares traded per day for each stock represented as boxplots.
A broad range of trading volumes present in study data bolsters the argument
that our models will generalize well to other stocks, regardless of how often
the new stocks are traded. 31

4.5 The distribution of trade prices relative to quotes for training and test study
data. The training and test data exhibit nearly identical distributions, with a
large majority of trades occurring at the quotes. A small proportion of trades
occur inside of the quotes, with very few of them at the midpoint. Hardly
any trades execute outside of the quotes. The exact percentages represented
can be found in Table A.2. 32

4.6 The proportion of trades which are sells for each stock, represented as box-
plots. The median proportion of sells for most of the ten stocks is fairly near
the overall 0.42 proportion of sells. A few stocks exhibit trading days with
far more sells than this (BABY or HA) while other stocks exhibit trading
days with far fewer sells than this (DAIO or GABC). Although this graphic
does not indicate a severe class imbalance we will explore this during model
development. 35

4.7 Correlations of standardized variables. Notice the three distinct groupings of
microsTIME, buysell S, and std PRICE analogues. The numerical pairwise
correlations for these groups are found in Table A.3, A.4, and A.5 respectively.
Although SIZE variables are also analogues of each other they exhibit hardly
any correlation. 36

xi

4.8 Overlaid KDE plots of direction2 (non-zero tick) values for buys and sells.
Kernel density estimates for each distribution were smoothed with bandwidth
parameters of 0.006. A direction2 cutoff of 0.0, which implements the tick
test, decently classifies trades. However, a non-trivial number of trades are
misclassified by this simple rule. 37

4.9 Overlaid KDE plots of std SIZE values for buys and sells. Kernel density
estimates for each distribution were smoothed with bandwidth parameters of
0.05. The EMO and CLNV studies cite trade size as impacting how easily
a trade is predicted; unfortunately, we see no discernible difference between
std SIZE density estimates of buys and sells. 38

4.10 Overlaid KDE plots of microsDifTQ (quote distance) values for buys and
sells. Kernel density estimates for each distribution were smoothed with
bandwidth parameters of 0.004. Similar to std SIZE, we see no discernible
difference in the density estimates of buys and sells. 39

4.11 The first two PHATE dimensions of March 12th data, colored by ticker. The
fact that trades from individual tickers do not group together is encouraging,
indicating that trades represented in a low-dimensional space are generally
similar to each other regardless of ticker. This aids the argument that our
models will generalize well to unseen trades. 40

4.12 The first two PHATE dimensions of March 12th data, colored by trade sign.
The homogeneous mixing of buys and sells illustrates that we are not able
to predict sign based on a low-dimensional, continuous representation of the
data. 41

5.1 Depiction of same-ticker validation and all-but validation using 03/12/2018
data for training and 03/27/2018 data for validation. The all-but validation
scheme is of primary importance since it represents out-of-sample prediction
by using training and validation data which are disjoint both temporally and
in terms of tickers. 44

5.2 All-but validation accuracy of baseline RF model (only original features and
scaled features) plotted against the accuracies of the LR, EMO, and CLNV
methods. The performance of RF is nearly indiscernible from the results of
the older decision rule methods. RF does somewhat better on DAIO trades,
but does the same or worse than LR, EMO, and CLNV for the other nine
tickers. 46

5.3 Tuning max depth parameter for the decision tree model. The highest vali-
dation accuracy occurs at a max depth value of seven. We use a max depth

value of seven for all subsequent decision tree models. 50

xii

5.4 Determining the minimum number of training epochs for the neural network
model. Although training accuracy rises to 100%, validation accuracy sta-
bilizes around 86.5% after 10 epochs. We use 15 epochs for all subsequent
network models. 50

5.5 Diagram of the neural network model. The number of neurons in the input
and hidden layers have been reduced by a factor of 25 to allow for visualiza-
tion. The architecture employed is a fully-connected, feedforward network
which uses backpropogation to learn weights and biases. 51

5.6 All-but validation accuracies training on 03/12 data and validating on 03/27
data. Simpler methods fared poorly while tree-based methods achieved the
best results. RF and gradient-boosted trees performed the best, obtaining
nearly identical results. 52

5.7 Same-ticker validation accuracies training on 03/12 data and validating on
03/27 data. The results here are similar to those of all-but cross-validation.
Simple methods did poorly and tree-based methods achieved the highest
accuracies. The neural network model also showed improvement for this
validation scheme. 52

5.8 The first three levels of splits for the all-but BABY decision tree model. The
predictions of the EMO method prove to be the most valuable split, achieving
89% accuracy. Subsequent splits tend to be upon features which are scaled
differences involving PRICE and one of its analogues, such as NBO, midpoint,
or bid30. 53

5.9 Prototyped all-but accuracies of the QDA, RF, and neural network models
versus the LR, EMO, and CLNV decision rule methods. QDA performs quite
poorly and the network model achieves similar results to the LR, EMO,
and CLNV methods. The RF model outperforms all other models shown
here, indicating that feature engineering has helped to substantially improve
performance. 54

5.10 Numerical illustration of the priceRelQuotes feature. This feature quan-
tifies the position of a trade’s price relative to quotes in a single number.
Trades with a priceRelQuotes value of 1.0 occur at the NBO, trades with
a priceRelQuotes value of 0.0 occur at the NBB, and all other trades are
similarly quantified based on the possition of the trade’s price relative to the
quotes. Values of priceRelQuotes are comparable across all trades, regard-
less of that trade’s specific execution price, NBO value, or NBB value. 56

5.11 Variable importance of top 20 features for the prototyped RF model contain-
ing 85 features. Engineered features sumOfBuysellCols, priceRelQuotes,
and scaled difference features involving PRICE and its analogues dominate
the list. Features containing the predictions of old methods are also highly
important, with EMO predictions coming in as the second most important
feature. 59

xiii

5.12 Distribution of variable importance for the prototyped RF model containing
85 features. Notice that feature importance drops off somewhat after the top
20 most important variables and drops again after the 40 most important
variables. 60

5.13 Proportional distribution of sumOfBuysellCols for misclassified and training
trades. Notice that trades confidently classified as buys (value of 0) by older
methods are the most misclassified. 60

5.14 Density esimates of priceRelQuotes for misclassified and training trades.
Notice that most misclassified trades have a priceRelQuotes value near 1.0. 60

5.15 OOB and all-but validation accuracy as a function of the number of trees.
Since validation accuracy levels off after 100 trees, we will use n estimators

= 100 in our final RF model. 64

6.1 Depiction of all-but testing using March 5-27 data for training and March
1, 2, 28, and 29 data for testing. This scheme emphasizes out-of-sample
prediction to measure final model performance, furthering the argument of
the model generalizing well onto unseen data. 67

6.2 All-but test accuracies of the final RF, neural network, and QDA models.
QDA performs poorly, achieving roughly 70% accuracy. RF and the neural
network do quite well; the RF model performs better overall, as well as for
each individual out-of-sample ticker. 67

6.3 All-but test accuracies of the final RF model, LR, EMO, and CLNV methods.
The final RF model substantially outperforms the older methods overall (dot-
ted lines), as well as for each individual ticker (solid lines). The RF model
improves upon the predictions of older methods for the DAIO and GABC
tickers by more than 10 percentage points. 68

6.4 Variable importance of the 20 most importance features in the final RF
model. Aside from buysell EMO and buysell CLNV, the ten most impor-
tant features are all engineered. The sumOfBuysellCols feature is by far
the most important, with priceRelNBO, priceRelNBB, and priceRelQuotes

rounding out the top five. 70

6.5 Partial dependence plot of the priceRelQuotes features from the final RF
model. The marginal effect of the priceRelQuotes feature on the predicted
response is closely aligned with the intuition of the quote test. Trades with
a priceRelQuotes value of 0.0 are predicted to be sells and trades with a
priceRelQuotes value of 1.0 are predicted to be buys. The shelf in the middle
of the graphic is at 0.58 (rather than 0.5) since this is the proportion of buys
in the data. A predicted probability above (below) 0.58 corresponds to a sell
(buy) prediction. 70

xiv

6.6 Proportional distributions of sumOfBuysellCols for training trades and mis-
classified test trades. Most misclassified trades are tentatively predicted to
be sells by this feature (have a sumOfBuysellCols value of 2). 71

6.7 Density esimates of priceRelQuotes for training trades and misclassified
test trades. Most misclassified trades occur at the NBO (a priceRelQuotes

value near 1.0). We would expect these trades to be buys, but this graphic
suggests that some of them are sells. 71

xv

ACRONYMS

AMEX American Stock Exchange

CLNV Chakrabarty, Li, Nguyen, and Van Ness

EDA Exploratory Data Analysis

EMO Ellis, Michaely, and O’Hara

FOMC Federal Open Market Committee

HFT High-frequency trading

KDE Kernel Density Estimate

k-NN k-Nearest Neighbors

LR Lee and Ready

NASDAQ National Association of Securities Dealers Automated Quotations

NBB National Best Bid

NBO National Best Offer

NBBO National Best Bid and Offer

OOB out-of-bag

PCC percent correctly classified

PHATE Potential of Heat-diffusion for Affinity-based Trajectory Embedding

QDA Quadratic Discriminant Analysis

RF Random Forests

SEC Securities and Exchange Commission

SVM Support Vector Machine

TAQ Trades and Quotes

VIMP variable importance

wab-PCC weighted-all-but percent correctly classified

WRDS Wharton Research Data Services

CHAPTER 1

INTRODUCTION

In many quantitative finance studies, the correct assignment of trades as buyer-initiated

or seller-initiated is paramount. Various methods have been used for signing trade direction

since many data sets available to financial researchers do not include the sign of each trade

executed. Most of these methods are simple decision rules, and the only data they rely

on are the best quotes on the order book just prior to a trade’s execution and the price

of a trade relative to prices of previous trades. By utilizing these decision rule methods,

as well as engineering new predictive features from available data, we have demonstrated

that machine learning models achieve state-of-the-art results for accurately signing trades.

Adoption of our best model has the potential to collectively save universities millions of

dollars in order book data subscription fees, to facilitate more reliable research, and to

relieve the burden of processing order-level data for those in need of accurate trade signs.

1.1 Prominent Prior Studies

Several well-known studies which have explored the problem of trade signing will be

referenced throughout this thesis. They will be introduced here and then discussed in further

depth in Chapter 3. The seminal work of Lee and Ready (LR hereafter) [1], which primarily

relies upon the midpoint of the best quotes for classification, is well-known in financial

literature and has been cited over 3,000 times. Ellis, Michaely, and O’Hara (EMO hereafter)

[2] used NASDAQ (National Association of Securities Dealers Automated Quotations) data

to demonstrate a new algorithm which principally classifies trades based on the price of

execution relative to the prevailing best bid and ask. The work of Chakrabarty, Li, Nguyen,

and Van Ness (CLNV hereafter) [3] uses prevailing quotes to calculate five ranges of values,

using the quote test (see Section 3.2) to classify trades in the second and fourth ranges,

and the tick test (also see Section 3.2) to classify trades in the first, third, and fifth ranges.

2

Rosenthal moved from the simplicity of decision rules to a statistical modeling approach,

employing logistic regression to predict trade sign [4].

1.2 Why Machine Learning and Feature Engineering

A key difference between previously-used decision rules and the machine learning meth-

ods employed in this work is the degree to which data is fully used. Decision rule methods

rely on only three pieces of information: bids, asks, and prices. Our new approaches take ad-

vantage of these features as well as others, including: time of trade execution, time between

trades (trade distance [3, p. 3808]), time of best quote placement immediately prior to trade

execution (quote distance [3, p. 3808]), the size of the order executed (number of shares

traded), the size of the best quotes, and the predicted signs of these older decision rules.

Additionally, we engineer many new features from these original ones. Rosenthal’s model [4]

encoded prices and quotes into original and once-lagged metrics for use as predictors, and

was influential in inspiring our feature engineering.

Engineered features make more predictive information available, allowing machine

learning methods to characterize a more complex model for predicting trade sign [5]. In

turn, this results in a higher accuracy for classification of trade signs than the methods used

by LR, EMO, and CLNV. While older methods are somewhat successful, they can only cor-

rectly classify trades that conform to their rigidly-defined pattern, systematically biasing

results [2]. The beauty of the machine learning methods tested here is their flexibility; they

can essentially learn to use older methods to sign trades that fit a certain profile, or alter-

natively use a more intricate method for anomalous trades. However, there is a downside

to this intricacy. These more complex models can be difficult to interpret [6, p. 25] whereas

the decision rule based approaches are quite transparent. However, the primary interest

of researchers is that trades be signed accurately, so lack of interpretability is a negligible

concern. Nonetheless, some insights into the behavior of our final model are extricated and

discussed in Section 6.3.

3

1.3 Relevance of This Work

Although many institutional traders subscribe to data services which provide trade

direction, some may not. For those who don’t, estimation of important pricing models is

subject to the noise resulting from less than 100% accuracy as obtained by the methods of

LR, EMO, CLNV, and others. This may result in inefficient execution of illiquid orders,

with the trader absorbing the cost of buying or selling at sub-optimal prices. As detailed by

Rosenthal, a modest improvement in trade signing accuracy, even just one or two percent,

would affect estimates of price impact and could potentially results in savings of hundreds

of millions of dollars over the course of a year for a large bank [4].

Another motivator of the work in this thesis is the heavy use of trade direction in aca-

demic research. Financial market microstructure studies often rely on access to accurately

signed trades. Rather than pitting machine learning and traditional econometric model-

ing against each other, we demonstrate that a symbiosis between the two can be achieved.

Machine learning is used here to augment data with more accurate trade directions, which

can then be used to create more accurate econometric models and more reliable empirical

results. Some examples of the use of trade signing in financial literature include:

• Studies of information asymmetry and inventory-control to characterize specialist be-

havior [7] and to model bid/ask spread components [8].

• Research related to stock prices, such as price impermanence in large transactions [9],

order imbalance [10], and explanation of aberrant closing prices [11].

• The examination of market response to information events, such as differing response

of small and large traders to corporate earnings announcements [12], the contradictory

behavior of small traders buying even after negative news [13], and informed trading

with pre-release information from FOMC announcements [14].

• Liquidity measures [15], modeled spread and impact measures such as realized spread,

effective spread, trade-specific price impact, and transaction costs all rely upon trade

directions in their respective calculations [16].

4

• Sophisticated econometric models for prices such as the work of Madhavan et al. [17],

variants of a generalized Roll model for prices and trades [18], and a VMA model [18]

of efficient prices generalized from Glosten and Harris [11].

As noted by Hautsch, “...a noisy buy-sell identification can have a severe impact on these

measures” [16, p. 228]. Therefore, it is of crucial importance to financial research validity

that trades be signed accurately.

If having accurate data is of such importance for research, then why are researchers

estimating trade signs instead of using databases that already have them available with

100% accuracy? The short answer is money. Wharton Research Data Services (WRDS)

is used as a research data source by more than 400 institutions throughout the world [19],

universities in particular. Although no official figures are publicly available on the WRDS

website or otherwise, an estimate from 2005 puts the cost of a base subscription at $35,000

per year [20]. Many economics and finance departments require much more than just the

base subscription data, and end up paying far more than this, often eclipsing the $100,000

mark in yearly fees. Despite the high cost, data needed for a wide array of financial research

can be obtained via WRDS. A notable exception is trade direction, which is not an included

field in available databases. A few services do exist which provide data containing trade

directions. NASDAQ provides a data subscription called ITCH which costs over $1,000

per month [21]. Lobster, a service which reconstructs order book data for NASDAQ-listed

securities, requires a year-long subscription which costs over $6,200 [22]. A reduced version

of Thomson Reuters’ Eikon service can be had for $3,600 per year while a subscription to

the full service costs $22,000 per year [23].

Since departments already pay thousands of dollars in WRDS subscription fees, they

are often reluctant to fund further data purchase when trade signing methods exist, however

inaccurate these methods might be. Individual faculty members often do not have the funds

necessary to buy order book data from a provider like NASDAQ or Thomson Reuters (see

Section 2.2 for an explanation of what a limit order book is). Our approach of applying

machine learning techniques to this problem is an ideal solution. It achieves more accurate

5

results than simpler established methods, enabling more reliable research. Additionally, our

contribution has very real potential to save universities and taxpayers millions of dollars in

order book data subscription fees.

CHAPTER 2

FINANCE BACKGROUND

Before going into the particulars of methods used for predicting trade direction, it is

worth discussing the process that generates this data: the framework for trading itself. For

those not familiar with trading, this will provide needed context for the rest of this work,

and for all readers it will lend insight into data-generating processes which inform modeling

decisions. Discussion here will center around the NASDAQ exchange since this is the source

for our data, but much of the information generalizes to other exchanges.

2.1 Traders and Dealers

Trade is a central feature of markets throughout economies. Participants often deal

directly with their counter-party, exchanging some good or service for cash or credit at an

agreed-upon price. In many financial markets this is often not the case, especially when

trading via an exchange such as the NYSE or NASDAQ. Individual investors are typically

not allowed to trade directly, and must go through a broker or broker-dealer who is a

member of the exchange [16, p. 10]. Brokers trade on behalf of their clients according to

client instructions, while dealers trade for their own account. As one might guess, broker-

dealers can trade on behalf of others as well as for themselves [24]. Broker-dealers often

facilitate trading and increase market liquidity by taking the opposing position of a client’s

trade or lending shares for short selling. Dealers usually only deal with creditworthy clients

with established reputations of reliability, while brokers serve traders without this same

level of trustworthiness, guaranteeing credit when trading with dealers on behalf of their

clients [16, p. 13].

2.2 Orders and the Limit Order Book

Since investors’ participation in trading is facilitated through a broker or broker-dealer,

7

they must submit an order detailing their intentions; which security they want to trade, the

size (number of shares), and the price at which they wish to buy or sell are all necessary

for making an order. An order to buy is known as a bid, while an order to sell is known

as an offer or ask, and either can be generically referred to as a quote. The best bid on

an exchange is the buy order with the highest per-share price and the best offer is the sell

order with the lowest per-share price. We will represent the best bid at time k as Bk and

the best ask at time k as Ak. At any given time, the difference between the best ask and

the best bid gives the bid-ask spread, or just “the spread”:
(
Ak − Bk

)
. Since different

exchanges may have different best bids and asks, the National Market System aggregates

this information and records the National Best Bid (NBB) and National Best Offer (NBO),

collectively referred to as the NBBO [16].

Each exchange maintains what is known as a limit order book, order book for short,

for each security that it lists. Prior to computers, this data was maintained using an actual

book (NYSE) or a chalkboard (Tokyo Stock Exchange), but it is now done electronically

using a computerized data structure [25]. The order book organizes all orders made by

dealers for the given security and is used to match orders for trade execution. A contrived

example of a simple order book is given below in Table 2.1. The order book which market

participants can see would be similar to this with a few exceptions; it would not show the

hidden orders, it would not show the names of other traders, and the information would be

given in a stream of messages rather than in a table like this (to be discussed in Chapter 4).

It should also be noted that exchanges often will not know who the traders are [25, p. 21].

Names are simply given here to illustrate the concept of various traders participating.

Orders on an exchange’s book are arranged according to the (potentially) unique pri-

ority schedule of that exchange. Almost always, orders with the best price (high for bids

and low for asks) have the best position in the book. After ordering by price, many markets

will sort by the time at which the order was received, earlier receipts having higher prior-

ity [25, p. 20-21]. A tertiary sorting criterion is order visibility. Some markets allow traders

to disguise their strategies by submitting orders that are partially or entirely hidden from

8

the rest of the market [16]. After sorting by price, visible orders will often have priority

over hidden orders even if the hidden order arrived earlier. Quote prices are effectively an

advertisement of an exchange’s liquidity and a clear indicator of the exchange’s viability,

explaining this prioritization of visible orders ahead of hidden ones [25, p. 21].

Table 2.1 is a contrived example of a limit order book for the fictitious “USU” stock.

(USU was formerly the ticker for Centrus Energy, which now uses the ticker LEU. It is

surprisingly difficult to find a combination of letters which isn’t already used as a ticker,

therefore we will stick with USU since it is a defunct ticker as well as a fantastic institution.)

In this table we can see several characteristics of order books as described above. The best

bid is from Tony and the best ask is from Meadow. These may not necessarily be the NBB

and NBO respectively, but they are the best bid and ask for this market. The exchange

listing USU stock here prioritizes orders first by price, then by visibility, then by timestamp.

The primary ordering by price is easily observed by the fact that both the bids and ask are

strictly ordered by price “best to worst”: greatest to least for bids, and least to greatest

for asks, with the best prices nearest the center of the book. We can also see a secondary

ordering by visibility on both sides of the book. Although Paulie and Janice have both

placed bids of $158.47 per share and Janice’s bid arrived first, since Janice’s order is hidden

it is entered below Paulie’s. The same holds true for Carmela and Silvio on the sell side

of the book. The tertiary prioritization by timestamp can be seen by comparing the last

two entries on the buy side of the book. Ralph and Richie both placed un-hidden bids at

$158.46 per share; since Ralph’s order was received first it is given higher priority.

Many different types of orders exist. We will focus on market orders and limit orders

and some of their variants, illustrating how they work using our order book in Table 2.1. A

market order is an order to immediately buy or sell at the best possible price(s) [16, p. 11].

If the size of the order (number of shares) is larger than that of the best quote, the trader

must “walk down/up” the book in order to fill the order. For example, if Jennifer wants

to buy 40 shares of USU stock relative to the order book in Table 2.1 she would have to

walk up the book, buying 15 shares from Meadow at $158.52 each, 20 shares from Chris

9

Order book for USU: market maker view

Trader Time Qty Visibility Price

A
sk

s
(s

e
ll

e
rs

)

Junior 9:40 40 $58.66

AJ 9:37 30 $58.65

Silvio 9:33 50 Hidden $58.63

Carmela 9:34 50 $58.63

Chris 9:31 20 $58.60

Meadow 9:35 15 $58.52

Bid-Ask spread of $0.02

B
id

s
(b

u
y
e
rs

)

Tony 9:30 10 $58.50

Paulie 9:37 30 $58.47

Janice 9:33 15 Hidden $58.47

Adriana 9:39 25 $58.46

Ralph 9:40 40 $58.45

Richie 9:42 50 $58.45

Table 2.1: A contrived order book example from the view of the exchange listing the fictional
USU stock. Order precedence is determined by price, visibility, then time, and the concepts
of best bid, best ask, and the spread are illustrated.

at $158.60 each, and five shares from Carmela at $158.63 each. Or if Jennifer wants to sell

10 shares of USU stock Tony would fill the order, paying $158.50 per share. In both cases,

Jennifer ends up paying the bid-ask spread on top each of these transactions. In order to

operate and be profitable, the market (which is often also the dealer) earns the spread for

their services [16, p. 13].

An alternative to a market order is a limit order; the trader specifies a limit price,

instructing the dealer to buy or sell at a price no worse than the limit price [16, p. 11]. If

the limit price is better than the best quote on the opposite side of the book (e.g. a buy

order with a limit price greater than the best ask, or a sell order with a limit price less

10

than the best bid) then the trade executes immediately. Otherwise the order is placed onto

the book according to that exchange’s priority rules as described above. For example, if

Vito places a limit order to buy 12 shares with a limit price of $158.54, his order is filled

by Meadow’s offer, with Vito paying $158.54, the exchange making the spread of $0.02 per

share, and Meadow’s remaining three shares staying on the book. However, if Vito placed

that same order but with a limit price of $158.48 his order would be placed on the book

between Tony and Paulie’s respective bids.

2.3 Prominence of High-Frequency Trading

Thanks to advances in computing and telecommunications, trading has evolved from

limit orders being recorded on chalkboards and in actual books to limit orders being recorded

in high-speed, order book databases. These technological improvements have facilitated an

increase in trading activity and complexity via electronic exchanges such as the NASDAQ.

The use of computerized algorithms to execute high volumes of trades has become known as

high-frequency trading (HFT hereafter). This development has resulted in increased interest

in order placement, optimal trade execution strategy, liquidity dynamics, and intraday

trading [16] from academics and industry practitioners alike. Highlighting the relevance to

this work, study of liquidity dynamics often relies on knowing the signs of trades [15].

As of 2011, it was common to see more than 100,000 trade executions per day for highly-

traded, blue chip stocks [16]. Around this same time, roughly 60-70% of U.S. trading was

HFT, moving up to 3.25 billion shares of stock per day [26]. Although HFT activity has

somewhat declined since this period, it still generates massive amount of granular, high-

quality data which academics can study and industry players can use to develop more

efficient trading strategies.

2.4 NASDAQ Details

The data used in this thesis comes exclusively from the NASDAQ exchange. (All but

two of the stocks used - BABY and CA - are also listed on the NYSE.) NASDAQ is a

quote-driven dealer market, meaning that trades can only be executed by traders and bro-

11

kers through a dealer. Established in 1971, NASDAQ was the world’s first electronic stock

market [27] and was used to connect geographically disparate dealers. Prior to 1995, com-

petitive quotes from traders were not always displayed publicly on the NASDAQ, affording

dealers an informational advantage which they capitalized on by trading for their own ac-

count. From 1995 onward the SEC has required that exchanges display the best quotes,

including those from inter-dealer markets. This caused bid-ask spreads to drop significantly

on the exchange [16, p. 17].

NASDAQ utilizes a form of an electronic limit order book maintained by dealers,

facilitating “...trade execution, reporting, confirmation, and interdealer communication”

[16, p. 17]. By market capitalization, the NASDAQ is the largest U.S. electronic stock

market [16, p. 17] and the second largest U.S. stock market overall [28]. NASDAQ holds a

wealth of information related to activity on their exchange, much of which is available for

purchase. Since WRDS (the data subscription service mentioned in Section 1.3) does not

contain trade directions, we obtained this data via NASDAQ’s data product TotalView-

ITCH 5.0 (ITCH hereafter) [29].

CHAPTER 3

TRADE SIGNING LITERATURE

We now discuss in detail the trade signing methods introduced in Section 1.1. We

use the outputs of some of these methods as features, and their respective approaches

substantially inform other modeling decisions that we make and features that we engineer.

For the tick test, quote test, LR, EMO, and CLNV methods, we will explain the algorithm

along with giving practical, illustrative examples of these methods at work. The work of

Rosenthal, and its impact on our models, is also discussed. We mention the test accuracies

of some methods within studies but do not compare across studies. This is mainly because

each study used different data to obtain their results, effectively invalidating any direct

comparisons.

3.1 Determining Trade Direction

While numerous order types exist, the elementary understanding of market and limit

orders given in Chapter 2 is sufficient for this thesis. Armed with this knowledge, we

can understand the most crucial financial definition for this work; the later-arriving order

is considered the trade’s initiator, determining whether we sign a trade as a buy or a

sell [30, p. 262]. In the example from Section 2.2 in which Vito places a limit order to

buy 12 shares at a limit price of $158.54, Vito is the later-arriving order. Since Vito is a

buyer, the trade which executes at $158.54 for 12 shares is a buy. The example in which

Jennifer places a market order to buy 40 shares results in three separate trades are all

considered buys since Jennifer’s later-arriving order is what initiated the trades. It is also

imperative to note the behavior of the best quotes during these trades, as best quotes are

the bedrock of predictive information when developing models. For Vito’s trade, the best

ask is Meadow’s offer and the best bid is Tony’s. For Jennifer’s three-trade market order,

the best bid remains the same (Tony’s), while the best ask moves up the book each time a

13

trade executes.

3.2 The Tick Test and the Quote Test

The precise origins of the tick test and quote test are a bit murky. Based on mentions

in journal articles by Holthausen et al. [9] and Hasbrouck [7], it appears that they were first

used for assigning trade direction sometime around 1987. Thorough explanations of the

methods can be found in Lee and Ready’s exposition of their own new method [1], which

is a combination of the two. These tests are absolutely foundational for trade signing in

academic financial literature, and both play an integral part in the LR, EMO, and CLNV

methods.

For both tests we will define the following:

• Let our trade-of-interest be at time k, executing at price Pk.

• Let Pj be the price of the trade immediately preceding k, occurring at j (j < k).

• Let Pd be the price of the first trade preceding k for which Pk 6= Pd (it may be that

Pd = Pj).

• Let Ak be the price of the best ask (offer) prevailing when the trade at time k executes.

• Let Bk be the price of the best bid prevailing when the trade at time k executes.

• Let Mk =

[
Ak +Bk

2

]
be the midpoint of the best quotes prevailing at time k.

The tick test is very straightforward, relying solely on the prices of trades in order to

predict their respective directions. Trades are first categorized as being an uptick, zero-

uptick, zero-downtick, or downtick [1]. For the trade at time k we define the four categories

and corresponding trade directions:

uptick buy (Pk > Pj)

zero-uptick buy (Pk = Pj) and (Pk > Pd)

zero-downtick sell (Pk = Pj) and (Pk < Pd)

downtick sell (Pk < Pj)

14

The quote test relies on slightly more information, requiring the price of the trade and

the midpoint of the prevailing best quotes for that trade. According to the quote test,

trades are signed such that if Pk > Mk it is a buy, and if Pk < Mk it is a sell. If Pk = Mk

the quote test fails to make a classification.

A brief illustrative example of these two test is given below in Table 3.1.

Tick Test and Quote Test Results for USU Stock

Time Bk Mk Ak Pk Tick Quote

9:36 58.66 58.69 58.72 58.72 N/A buy

9:37 58.63 58.655 58.68 58.63 sell sell

9:39 58.63 58.655 58.68 58.63 sell sell

9:40 58.60 58.62 58.64 58.63 sell buy

9:41 58.60 58.62 58.64 58.64 buy buy

9:43 58.60 58.64 58.68 58.65 buy buy

9:44 58.65 58.69 58.73 58.66 buy sell

9:45 58.60 58.60 58.62 58.60 sell N/A

9:46 58.58 58.605 58.63 58.60 sell sell

Table 3.1: A contrived example exhibiting the tick test and quote test for classifying trades.
Until a differing price is observed the tick test is unable to make a prediction (see the first
trade). Similarly, the quote test is unable to make predictions for trades occurring at the
midpoint (see the eighth trade).

3.3 The LR Method

The method of Lee and Ready has been foundational for trade signing since its pub-

lication in 1991, both for practical use in signing trades as well as for comparison with

competing methods. Their work demonstrated inefficiencies in using the tick test to clas-

sify trades within the spread due to insufficient information from relative prices as the sole

predictor of sign. Their solution was to use quote data (the best bid and the best ask)

corresponding to a trade to provide further predictive information through the quote test.

Another issue raised in their work was the inconsistent timing of quotes relative to corre-

sponding trades due to human clerical entry. This is no longer a large concern thanks to

15

electronic order books. For the data available at the time, they recommended the use of

quotes with a timestamp five seconds prior to the timestamp for a trade when calculating

the midpoint of quotes [1]. The LR method signs trades by applying the quote test first;

if the quote test fails to make a classification (e.g. the trade executes at the prevailing

midpoint), then the tick test is used to make the classification. Table 3.2 gives an example

of the LR rule at work in comparison to other methods.

3.4 The EMO Method

The study done by Ellis, Michaely, and O’Hara [2] was the first to examine trade signing

using NASDAQ data. The data used consisted of roughly 1.8 million trades and 600,000

corresponding quotes. Using the LR method to sign trades first, they fit a logistic regression

model to characterize how features impact the probability of correct classification. They

showed that proximity of trade prices to quotes is by far the most important predictor

for accurately signing trades. Other factors such as the size of the trade, the size of the

firm trading, trade distance, quote distance, and amount of trading activity also affected

ability to predict signs accurately. Trades occurring inside of the quotes, e.g. (Pk > Bk) &

(Pk < Ak), were particularly hard to classify. The LR method achieved only 55% accuracy

on these trades with prices inside of the quotes. However, trades occurring at the quotes

(either Pk = Ak or Pk = Bk) were classified at a phenomenal 88.68% accuracy.

Since trades inside of the quotes were poorly classified by LR and trades at the quotes

were classified well by LR, the authors proposed a new method for signing trades. Trades

were signed such that if Pk = Ak the trade is a buy, if Pk = Bk the trade is a sell, and

all other trades’ signs are determined using the tick rule; this is the EMO method. This

method yielded a solid improvement for classifying trades inside the quotes (went from 55%

with LR to 61% with EMO) and the accuracy for trades outside of the quotes went from

64.8% to 65.8%. Overall accuracy barely increased from 81.05% with LR to 81.87% with

EMO, but they showed that calculation of the effective spread is much more accurate using

EMO-signed trades than using LR-signed trades [2]. An illustrative example of the EMO

method is also contained in Table 3.2.

16

3.5 The CLNV Method

The key improvement of the trade signing method developed by Chakrabarty, Li,

Nguyen, and Van Ness is their unique treatment of trades occurring inside of the quotes.

They made the keen observation that the quote rule outperforms the tick rule when clas-

sifying trades whose prices are near the quotes, but the tick rule outperforms the quote

rule for trades near the midpoint. Based on this, they developed the following method for

classifying trades:

Above the ask Pk > Ak use tick rule

Top 30% of spread Pk ∈
[
0.7Ak + 0.3Bk, Ak

]
use quote rule =⇒ buy

Middle 40% of spread Pk ∈
(
0.3Ak + 0.7Bk, 0.7Ak + 0.3Bk

)
use the tick rule

Bottom 30% of spread Pk ∈
[
Bk, 0.3Ak + 0.7Bk

]
use quote rule =⇒ sell

Below the bid Pk < Bk use tick rule

The lower bound for the “Top 30% of spread” range comes from simply adding 20% of the

spread to the midpoint and algebraically manipulating that term. Recall from Section 2.2

that the spread = Ak −Bk, and from Section 3.2 that Mk =

[
Ak +Bk

2

]
= 0.5Ak + 0.5Bk.

Therefore we have
[
midpoint + 20% of spread

]
=
[
Mk + (0.2)(Ak −Bk)

]
=[

(0.5Ak + 0.5Bk) + (0.2Ak− 0.2Bk)
]

=
[
0.7Ak + 0.3Bk

]
. The upper bound for the “Bottom

30% of spread” range is obtained in a nearly identical manner, subtracting 20% of the spread

from the midpoint. Although calculations of these ranges aren’t provided in Table 3.2, the

results of the CLNV method for the sample data are given in the table for comparison to

the other methods discussed.

The authors developed the CLNV rule on NASDAQ ITCH data for 750 stocks from

April - June of 2005. In a first for trade signing papers, the researchers adopted a commonly

used paradigm in statistical and machine learning modeling; they split their data into a

training sample (April) used for model development, and a test sample (May-June) for

model evaluation and final test accuracy reporting [3, p. 3809]. Although a ratio of 1:2 for

training versus test data is considerably different than typically-used splits, this modeling

17

paradigm is a strength of this study relative to previous works.

Chakrabarty et al. examined the April training data by using the LR, tick, quote,

and EMO rules to observe patterns which informed the formulation of the resulting CLNV

method. They observed that nearly a third of their trades were executed inside of the

quotes. These trades proved harder to sign, making them especially crucial for achieving

a higher accuracy. Correctly signing these trades is equally crucial for finance applications

such as calculation of effective spread and price impact. The final test accuracies reported

were 74.42% for LR, 75.80% for EMO, 75.40% for the tick rule, and 76.52% for CLNV. Con-

sidering only trades inside of the quotes (exlcuding trades at the midpoint), test accuracies

were 71.85% for LR, 71.35% for the tick rule and EMO, and 76.32% for CLNV.

In order to show the relative importance of variables for correct classification, the

authors performed logistic regression [3, p. 3817] just as EMO did [2, p. 538]. First, they

signed trades using the CLNV method, creating data whose response was 1 if the CLNV

sign agreed with the ground truth and 0 if the CLNV sign disagreed with the ground truth.

They used this data with the new response to construct the regression model, obtaining a

vector of estimated coefficients B. They characterized each variable’s impact on accuracy by

the size and sign of its transformed coefficient. This transformation was performed using the

equation

[
∂θ(x)

∂x
=

eB
TX

1 + eBTX

(
1− eB

TX

1 + eBTX

)
B

]
where X is a vector containing the means

of each variable, and θ(x) is the probability of correctly classifying sample x [3, p. 3818].

The analysis of these transformed coefficients substantiated the idea that trades occurring

at the quotes are the easiest to correctly classify; this finding agrees with the the work of

EMO [2, p. 539]. The authors also found that trades having larger trade distances and

larger quote distances are more easily classified. Zero-tick trades (a trade whose price is the

same as the trade immediately preceding it), trades which occurred when the spread was

tighter, and trades of larger size were all more difficult to correctly classify.

3.6 Rosenthal’s Method

Rosenthal was one of the first researchers to use something other than a basic decision

rule for classifying trades. He employed a logistic regression model which drew from the

18

Trades, Quotes, and Predicted Signs for USU Stock

Time Bk Mk Ak Pk Tick LR EMO CLNV

9:36 58.66 58.69 58.72 58.72 N/A buy buy buy

9:37 58.63 58.655 58.68 58.63 sell sell sell sell

9:39 58.63 58.655 58.68 58.63 sell sell sell sell

9:40 58.60 58.62 58.64 58.63 sell buy sell buy

9:41 58.60 58.62 58.64 58.64 buy buy buy buy

9:43 58.60 58.64 58.68 58.65 buy buy buy buy

9:44 58.65 58.69 58.73 58.66 buy sell buy sell

9:45 58.60 58.6 58.62 58.60 sell sell sell sell

9:46 58.58 58.605 58.63 58.60 sell sell sell sell

Table 3.2: A contrived example exhibiting the tick test, LR, EMO, and CLNV methods for
classifying trades. Note that the LR, EMO, and CLNV methods agree most of the time,
generating the same predictions for seven of the nine trades here. Using the output of these
methods as predictors will leverage their high performance on well-characterized trades.
However, these decision rules fail to reach a consensus on two of the trades in the example.
It may be that these trades can be more accurately predicted by a more intricate model.

intuition of previous methods, relying primarily upon the information contained in quotes

and prices for making predictions. He also made points about the effects which varying

delays between trades and quotes have upon trade direction prediction, proposing a model

for predicting these delays.

As seen in previous methods, the quotes matched with each trade and used for pre-

diction are considered some of the most predictive information available for generating

classifications. Therefore, good quote information is of critical importance in making accu-

rate, unbiased predictions of direction. Most methods just assume some fixed delay between

the trade and its quotes, using the quote values in effect after accounting for that delay.

Rather than picking a single bid and a single ask as the best quotes for a given trade,

Rosenthal models delays as probability density estimates, using these densities to estimate

a single value for the best bid (B̂k) and the best ask (Âk) for each trade.

In the logistic regression model for predicting trade signs, Rosenthal uses information

strength metrics as predictors rather than the actual binary outputs of past rules. He relies

19

on a midpoint metric, a tick metric, and a quote metric, as well as their respective once-

lagged counterparts, as predictors in the model. Additionally, he incorporates an overall

effect for time indices (trades during certain times are more likely to be either buyer or seller

initiated) and a within-sector effect to account for higher likelihood for trades in a given

sector being buyer or seller initiated. Using the terms defined in Section 3.2, the model

specification is:

ηk =
[
β0
]

+
[
β1g(Pk, M̂k)

]
+
[
β2g(Pk, Pd)

]
+
[
β3J(Pk, B̂k, Âk; τ)

]
+
[
β4g(Pk−1, M̂k−1)

]
+
[
β5g(Pk−1, Pd−1)

]
+
[
β6J(Pk−1, B̂k−1, Âk−1; τ)

]
+
[

overall effect
]

+
[

sector effect
]

πk = log

(
ηk

1− ηk

)
πk =

[
P (hk = buy |Pk, Pk−1, Pd, Pd−1, B̂k, B̂k−1, Âk, Âk−1, M̂k, M̂k−1, overall effect, sector effect)

]
(3.1)

where:

• hk is the ground truth of the sign for the trade at k, 1 for buy and 0 for sell.

• g(Xk, Yk) = log(Xk)− log(Yk) is a log-return function.

• J(Xk, Yk, Zk; τ) = exp

(
−
(
Xk − Zk

τ

)2)
− exp

(
−
(
Xk − Yk

τ

)2)
is a proximity func-

tion for measuring information strength, where τ controls the width of the function

near the Yk and Zk values.

• Excluding the bias term β0, the items on the first line of the ηk expression are the

midpoint, tick, and quote metrics respectively.

• The items on the second line of the ηk expression are the once-lagged midpoint, tick,

and quote metrics respectively.

The data source for this work was the December 2004 ArcaTrade dataset. December

1 and 2 data was used for training, containing the 2,836 stocks in the June rebalance of

20

the Russell 3000 index, coming from a wide variety of sectors and encompassing a range

of trading frequencies [4, p. 400]. Only trades with timestamps between the hours of 10:00

A.M. and 3:30 P.M. were kept, resulting in 2,178,307 trades in the final dataset. Since

AMEX trades were a miniscule proportion of total data (roughly 0.13%), only NASDAQ

and NYSE executions were considered.

The last 20 days of the dataset were used for generating test accuracies. For the roughly

15 million NASDAQ trades used for testing, Rosenthal’s model achieved 74.3% accuracy,

the tick test just 66.7%, LR 71.6%, and EMO 72.3%, while the CLNV method was not

used in this study. The EMO method worked best for classifying trades occurring at or

below the bid, the LR/tick method outperformed the other methods for trades inside of the

spread, and Rosenthal’s model achieved the highest accuracies for trades at or above the

ask [4, p. 409].

CHAPTER 4

DATA: DESCRIPTION, CREATION, AND EXPLORATORY ANALYSIS

4.1 Original Data Sources

4.1.1 TAQ Data

As mentioned in Section 1.3, many finance researchers use WRDS to obtain data for

studies. One of their most commonly-used products is the Trades And Quotes (TAQ)

database. TAQ data contains intraday trades and quotes to microsecond granularity for

approximately 8,000 stocks listed on the NYSE, AMEX, NASDAQ, and other U.S. equity

exchanges [31]. We have noted previously that TAQ data available from WRDS does not

contain the directions for each trade. Therefore, researchers must either buy trade sign data

(from a source such as Lobster or NASDAQ), or use a method like LR, EMO, or CLNV to

sign their trades. Since signing trades is a well-accepted practice in academic circles, most

researchers opt to do this rather than buy the data.

The TAQ data we will be using are daily products, and all of them share the descriptive

fields of DATE, TIME M (timestamp in microseconds), EX (exchange), and SYM ROOT (four

character ticker symbol). The three types of TAQ files we use are:

• Trade files: going forward, these files will be referred to as Trade files (capitalized) to

distinguish between specific trades and the files containing them. Trade files contain

all trades for specified tickers and dates. For the 10 tickers we consider, a single day

has approximately 30,000 trades. Relevant fields include SIZE (number of shares) and

PRICE (a trade’s execution price).

• Quote files: going forward, these files will be referred to as Quote files (capitalized) to

distinguish between specific quotes and the files containing them. Quote files contain

all quotes for specified tickers and dates. For the 10 tickers we consider, a single day of

22

trading contains roughly 2,500,000 quotes. Some of the more active trading days have

quote files which take up nearly half a gigabyte of disk space in SAS7BDAT file format

(roughly equivalent to CSV size). Relevant fields include BID (a limit order bid price),

BIDSIZ (number of shares for a bid limit order), ASK (a limit order ask/offer price),

ASKSIZ (number of shares for an ask limit order), and QU COND (quote condition, used

for removing abnormal quotes).

• NBBO files: NBBO files contain sequential NBB and NBO information, updating and

creating a new row whenever either the NBB or the NBO quote changes for a given

stock. These files are slightly larger than the Trade files at about 300,000 quotes per

day for the 10 tickers we consider. In addition to the Quote fields of BID, BIDSIZ, ASK,

ASKSIZ, and QU COND, NBBO files also contain BEST BID, BEST BIDSIZ, BEST ASK, and

BEST ASKSIZ fields.

4.1.2 ITCH Data

Since none of the Trade, Quote, or NBBO files from TAQ contain trade direction

we obtained this information via NASDAQ’s ITCH product. Having 100% accurate trade

signs allows for the creation of training and test data (see Section 4.2.2), as well as a direct

comparison of the performance of our models to the predictions of the LR, EMO, and CLNV

methods. ITCH data comes in the form of streaming messages in binary format [29]. After

converting from binary to alphanumeric characters, we’re left with the messages themselves

in comma-separated text format. The fields we keep are symbol (ticker), nanoseconds

(timestamp in nanoseconds past midnight of that day), buysell (‘B’ if a buy, ‘S’ if a sell),

executed shares, and execution price.

4.2 Data Engineering and Pre-Processing

4.2.1 ITCH Data Cleaning

23

ITCH data contains a variety of messages formats, including system event, stock re-

lated, add order, modify order, trade, net order imbalance indicator, and retail price im-

provement indicator messages [29]. These are indicated by a single alphabetic character

in the msg type field. We are concerned with only three types of messages: “order exe-

cuted” messages (msg type = E), “order executed with price” messages (msg type = C),

and “non-cross trade” messages (msg type = P). E-type trades occur at the listed price

of the original add order, and can be thought of as a regular trade. C-type messages apply

to trades which execute at a price (execution price) different than the display price of

the original add order. Both E-type and C-type trades may be split into several orders; an

example of this could be if a large market order is placed, requiring the initiator to walk

up/down the book. Some C-type trades are called non-printable (marked with the field

printable = N), and must be discarded to prevent double counting of trades [29, p. 13].

P-type messages indicate the execution of hidden orders (mentioned in Section 2.2).

Our pre-cleaned ITCH data are stored as comma-separated text files, with one text

file containing messages for one ticker on one day of trading. These text files are organized

by day, with one folder per trading day. Pseudocode for cleaning all ITCH files is detailed

below in Figure 4.1.

4.2.2 Study Data Creation

To create correctly-signed data for training and testing models, collectively called

“study data”, we require four files for each day-ticker combination: the Trade, Quote,

NBBO, and cleaned ITCH files. Some additional cleaning is required for the NBBO data

as well. In a 2014 study of liquidity measures, Holden and Jacobsen demonstrated that

the NBBO is not always complete, containing quotes which are not actually the NBB or

the NBO. If the NBB and NBO come from the same exchange the NBBO file may con-

tain one or neither of the actual best quotes [15, p. 1764]. By comparing records from the

Quote and NBBO files we are able to recreate the actual NBBO. This is significant; all

methods discussed in Chapter 3 rely heavily on quotes to correctly estimate trade direc-

tion. Additionally, analysis by EMO and CLNV (mentioned in Section 3.5) showed that

24

Let “df” represent a Pandas dataframe containing data for one ticker on one day.
for folder in folders:

for ticker in folder:

• Subset to trades with msg type in [E, C, P]

• Drop ((msg type == ‘C’) and (printable != ‘Y’)) trades

• Replace missing executed shares and execution price values
with shares and price values respectively.

• execution price = (execution price / 10,000) # Gives deci-
mal prices in dollars

• Keep cols [symbol, nanoseconds, buysell, executed shares,
execution price]

• Create dummy buysell S (1=sell, 0=buy) as new response.

Concatenate ticker df’s into a single df per folder (day), write df to CSV.

Fig. 4.1: Pseudocode for cleaning ITCH data. This process removes redundant messages,
correctly replaces and adjusts values for size and price fields, and keeps columns needed to
match ITCH data with the corresponding TAQ data.

trade price relative to quotes was the most valuable information used in generating accurate

predictions.

In addition to constructing the complete NBBO, Holden and Jacobsen’s publicly avail-

able SAS code [32] cleans the Trade, Quote, and NBBO files. The code also matches quotes

from the NBBO with trades and generates the predictions of LR, EMO, and CLNV for

each trade. The authors have the program divided into 13 steps; only the first 9 steps are

needed for our purposes. Detailed below in Figure 4.2, the first seven steps primarily clean

data while steps eight and nine assign quotes to trades and generate predicted signs.

In addition to these steps, we must match ITCH trade signs with TAQ trades to

generate our study data (see Fig 4.2, step 6). Since all other work for this thesis was done

in Python, including matching ITCH and TAQ trades, steps one through seven of Holden

and Jacobsen’s SAS code was translated into Python. Steps eight and nine were performed

using SAS. It should also be noted that we removed the first and last five minutes of trading

(step 1), similar to Rosenthal’s approach [4, p. 400].

25

Let “df” represent a Pandas dataframe containing one day’s data.
for day in days:

1. Read in Trade, Quote, NBBO, and ITCH df’s. Restrict NBBO and Quotes
to entries between 9:00 AM - 4:00 PM, restrict ITCH and Trades to entries
between 9:35 AM - 3:55 PM. Convert ITCH timestamps from nanoseconds
to microseconds to match TAQ units.

2. Clean NBBO df and calculate spread and midpoint values.

3. Drop NBBO quotes that are substantially outside of large once-lagged
spreads.

4. Keep only NBBO rows for which once-lagged values (quotes, sizes) are not
equal to current values.

5. Clean Quotes df and calculate spread and midpoint values.

6. Clean Trades df and subset to only NASDAQ executions (EX = Q). Confirm
that the PRICE and SIZE columns for the respective Trade and ITCH df’s
are in complete, simultaneous agreement. If so, append the buysell S

column from the ITCH df onto the Trade df.

7. Create the complete NBBO using Quotes df and NBBO df. Write out the
complete NBBO df, Trades (now with signs) df, and Quotes df to CSV
files.

Fig. 4.2: Pseudocode for steps 1-7 from Holden and Jacobsen’s SAS code. This process
cleans TAQ trades, calculates values of new fields, and matches trades to cleaned ITCH
data so that they have the correct response value (buysell S). Construction of training
data will be complete after quotes are matched with trades and a few additional fields are
calculated as described in steps eight and nine.

Rather than replicating steps eight and nine in Python, it made most sense to use the

available SAS code. The prime reason for this is step 8, which matches each trade with

the correct prevailing quote. Any attempt to do this in Python necessitated at least one

loop over all trades, as well as performing a search in the NBBO data for every trade. In

contrast, SAS’s RETAIN statement performs this matching with ease.

To match quotes with trades in step eight Holden and Jacobsen assumed a one mi-

crosecond delay. More clearly, the NBBO entry matched to a trade will be the first NBBO

entry with a timestamp of at least one microsecond less than the timestamp of the trade.

One microsecond is added to NBBO quote timestamps, then quotes and trades are merged

based on timestamp. The RETAIN statement is used to match quotes to trades. Essentially,

26

for each trade the values of NBB, NBO, NBBqty, and NBOqty corresponding to the nearest

preceding quote are retained across data steps and are used for each trade until there is a

new quote which applies to the next trade.

Step nine creates a binary variable lock (1 if NBO = NBB and 0 otherwise) and a

binary variable cross (1 if NBB > NBO and 0 otherwise). Observing a crossed market is an

abnormal and unrealistic condition, as a best bid greater than the best offer would have

already resulted in a trade execution. Both locked and crossed markets prevent calculation

of liquidity measures and confound trade signing methods which rely on the quote test.

Therefore, we drop all trades with locked or crossed quotes as suggested by Holden and

Jacobsen [15, p. 1750].

Additionally, step nine creates features to execute different tests. The feature
[
direction =

Pk−Pk−1

]
(essentially upticks, zero ticks, and downticks) is created, and then coupled with

the RETAIN statement to create
[
direction2 = Pk − Pd

]
to facilitate implementation of

the tick test. To allow signing via the CLNV method,
[
bid30 = 0.3Ak + 0.7Bk

]
and[

ofr30 = 0.7Ak + 0.3Bk

]
features are created, defining the upper and lower bounds of the

bottom 30% and top 30% of the spread respectively. After calculation of the final midpoint

associated with each trade, all trades are signed according to the LR, EMO, and CLNV

methods. This is our final study data prior to feature engineering. Table A.1 gives a com-

plete list of features included in the cleaned study data, and Figure 4.3 shows the first few

rows in one such dataframe.

It should be noted that the DATE and SYM ROOT features are only retained for use in

exploratory data analysis and feature engineering but are not included in models. Stan-

dardization of variables must be done within a single
[
day + ticker

]
combination, requiring

us to keep these fields to enable this data separation. As with many models, our ultimate

goal is to achieve high, out-of-sample predictive accuracy. In this case, out-of-sample data

means trades of a different stock (different SYM ROOT) occurring on a different trading day

(different DATE). Therefore, these variables are excluded from all models to prevent data

leakage and to more accurately simulate out-of-sample prediction. The EX column is also

27

Fig. 4.3: The head of a Pandas dataframe containing cleaned data. Fields shown are a
selection of the basic features listed in Table A.1. The data can now be explored, new
features can be engineered, and models can be developed.

dropped since it offers no predictive information (it contains only a single unique value, ‘Q’,

indicating all executions NASDAQ trades).

4.2.3 Train-Test Split

Before moving on to exploratory data analysis (EDA) we must decide how to divide our

data for training and testing. As just discussed, a primary objective of our scheme will be

to simulate out-of-sample performance. This implies that training and test data be disjoint

in terms of tickers and dates. To achieve temporal separation, we reserve the first two days

and last two days as test data and use the middle seventeen days of trading data for training

and validation. This also achieves a commonly-used ratio of 80:20 for partitioning training

and test data. Obtaining separation of tickers for training and test data is further discussed

in the beginning of Chapters 5 and 6.

4.3 Exploratory Data Analysis

Rather than jumping immediately from data cleaning into model development, it is

advisable to perform some kind of exploratory data analysis. Our general goal is to get

28

a feel for the data from the perspective of a financial researcher as well as an accuracy-

concerned model developer. We are centrally interested in gaining insights into our data

which will aid our ultimate goal of high, out-of-sample predictive accuracy. Insights which

inform engineering of valuable features are of particular emphasis. For the purpose of

modeling, Wickham and Grolemund suggest examining variation within variables as well as

covariation between variables [33]. We might also look for anomalous or distinct patterns

within data. We perform all of the above tasks through a combination of data visualization

and numerical summary.

4.3.1 Financial Descriptions of Data

Our data is comprised of information for 10 tickers from the 21 trading days in March

2018. As mentioned in Chapter 4.1, this includes ITCH data from NASDAQ as well as

Trades, Quotes, and NBBO files from the WRDS TAQ database. After constructing study

data as described above in Section 4.2 we have a total of 653,974 trades to be used for

training and testing.

We want to make the argument that our study data is a somewhat representative

sample of broader markets, strengthening the case of models results generalizing well to

other data. To this end, as well as to familiarize readers with some details of the examined

stocks, descriptive statistics for each stock are given in Table 4.1.

To calculate the quantities given in the table we define the following attributes:

• BIDLO: the lowest execution price observed during the trading day.

• ASKHI: the highest execution price observed during the trading day.

• PRC: the closing execution price for the trading day.

• VOL: the cumulative number of shares exchanged during the trading day.

• BID: the closing bid price for the trading day.

• ASK: the closing ask price for the trading day.

29

• SHROUT: the number of shares outstanding for the given company. (Recorded in units

of 1,000).

The fields given in Table 4.1 are calculated as follows for each individual ticker:

• Market cap (in millions of $): =
1

21

21∑
i=1

[
SHROUTi × PRCi × 1, 000

1, 000, 000

]

• Range-based daily volatility [34]: =
1

21

21∑
i=1

[
ln

(
ASKHIi

BIDLOi

)]

• Average quoted spread: =
1

21

21∑
i=1

[
ASKi − BIDi

]
• Estimated transaction cost (in $):

1

21

21∑
i=1

[
2(ASKi − BIDi)

ASKi + BIDi

]

• Average closing price:
1

21

21∑
i=1

[
PRCi

]

STUDY DATA: FINANCIAL DESCRIPTIONS
Ticker Market

Cap
($ MM)

Cap
Category

Daily
Volatility

Average
Spread

Est. Trans-
action
Costs

Average
Price

AAOI 525 Small 0.05088 0.0110 0.00041 26.96
BABY 1,099 Small 0.03654 0.0548 0.00166 33.15

CA 14,684 Large 0.02083 0.0100 0.00028 35.24
DAIO 68 Small 0.05812 0.0200 0.00245 8.27

EA 38,444 Large 0.02888 0.0219 0.00017 125.35
FANG 12,490 Large 0.03171 0.0257 0.00020 127.21
GABC 788 Small 0.02479 0.0243 0.00070 34.35

HA 1,870 Mid 0.03448 0.0500 0.00137 36.52
IAC 12,193 Large 0.02821 0.0705 0.00044 158.86

JACK 2,564 Mid 0.02368 0.0167 0.00019 86.84

Table 4.1: Descriptive financial statistics for the stocks sampled for study data. The ten
stocks used for study data vary in market capitalization, volatility, and liquidity, acting as
a somewhat representative sample of broader markets.

Note that the study data consists of a good mix of small capitalization (cap), mid

cap, and large cap stocks. At the time of these trades (early 2018), large cap stocks were

counted as having a market cap of $10 billion or above, mid cap between $2-10 billion, and

small cap less than $2 billion [35]. The stocks selected also come from a wide variety of

sectors in the economy. Applied Optoelectronics (AAOI) is a telecommuncations company,

30

Natus Medical (BABY) produces medical devices, CA Technologies (acquired by Broadcom

later in 2018) creates systems software, Data Input-Output Corp manufactures computing

equipment, and Electronic Arts (EA) is a well-known video game company. Diaomondback

Energy (FANG) is an oil company, German American Bancorp (GABC) is a bank holding

company, Hawaiian Holdings (HA) operates an airline, InterActiveCorp (IAC) is a TV

broadcasting and internet conglomerate, and Jack in the Box (JACK) is a popular fast

food chain. Having a mix of small, mid, and large cap stocks from varied industries lends

confidence to the idea that our models and results will generalize well to other securities

and other markets.

Another metric of interest is the volume of trading for our collection of stocks during

the sample period of March 2018. Figure 4.4 shows a healthy diversity in relative trading

activity. This is an additional piece of evidence bolstering the claim that our models can

generalize well to unseen data; in this case, unseen data of varying trading volumes. We

observe a roughly proportional relationship between market cap and trading volume. Stocks

with a large market cap generally have a higher volume of trade (CA, EA, and FANG),

stocks experiencing more middling volume of trade tend to be mid cap stocks, and stocks

with a smaller market cap have lower trade volume (DAIO and GABC). Per the work

of CLNV, we would expect that the trades of stocks which are traded less frequently are

easier to classify [3, p. 3819]. By characterizing the trading activity of the stocks here, we

can see if this holds true during our model development by paying close attention to any

abnormalities in predicting onto less-traded stocks.

Drawing from the work of LR, EMO, and CLNV, we also examine the position of

trades’ prices relative to quotes. From their respective work and observations (see Sections

3.4 and 3.5), we know that this might be the most important information in generating ac-

curate predicted trade directions. Figure 4.5 represents this distribution for our study data.

Training and test data have very similar distributions with a nearly identical proportion of

trades occurring either above the ask or below the bid. The test data has a few more trades

31

Fig. 4.4: The volume of shares traded per day for each stock represented as boxplots.
A broad range of trading volumes present in study data bolsters the argument that our
models will generalize well to other stocks, regardless of how often the new stocks are
traded.

occurring at the quotes while the training data has a few more trades occurring inside of

the quotes, but these differences are quite minor at an approximate difference of 1-3% per

category.

The distribution of prices to quotes for the study data is reasonably similar to that

of the data used by LR, EMO, and CLNV as summarized in Table 4.2. LR observed far

fewer trades outside of the quotes (less than 1% total), about 34% each at the bid and

the ask (very similar to our data), and about 30% of trades occurring inside of the quotes

(also similar to our data) [1, p. 740]. Of the three older methods, the data used by EMO

is the most similar to the data used in this study. Our proportion of trades occurring

outside of the quotes and at the quotes is nearly identical. We end up seeing fewer trades

at the midpoint (10% versus 6%) and more trades inside of the quotes which aren’t at

the midpoint (15% versus 22%) [2, p. 534]. On the other hand, CLNV data is somewhat

different from our study data, with the concentration of trades shifted away from the quotes

and a higher density of midpoint trades. Their percentage of trades at the quotes is only

32

Fig. 4.5: The distribution of trade prices relative to quotes for training and test study data.
The training and test data exhibit nearly identical distributions, with a large majority of
trades occurring at the quotes. A small proportion of trades occur inside of the quotes,
with very few of them at the midpoint. Hardly any trades execute outside of the quotes.
The exact percentages represented can be found in Table A.2.

57% compared to our roughly 66%. They also see more trades outside of the quotes (about

5% on either side versus about 3% on either side), and much different behavior inside of

the quotes. About 20% of their trades are at the midpoint (only 6% in our data) while

the remaining non-midpoint trades are only about 13% of their sample (22% of our study

data) [3, p. 3810].

4.3.2 Examination of Data for Predictive Modeling

Attempting to perform a thorough statistical EDA on all 520,000 observations of train-

ing data would be infeasible, particularly when creating visualizations. Therefore, we ran-

domly selected a single day of training day, March 12th, for this purpose. However, some

additional pre-processing of the data is needed before further inspection. The specific scale

of values for some fields differ widely across
[
day + ticker

]
combinations (

[
d+ t

]
for short).

33

DISTRIBUTIONS OF TRADE PRICES RELATIVE TO QUOTES

LR
all data

EMO
all data

CLNV
test data

Our study
test data

Outside
quotes

0.5% 4.83% 9.44% 4.19%

At
quotes

68.4% 69.89% 57.55% 70.56%

Inside
quotes

30.1% 25.21% 33.01% 25.25%

No
quotes

1.0% 0.07% 0.0% 0.0%

Table 4.2: A comparison of the distribution of trade prices relative to quotes from the LR,
EMO, CLNV study and our study. For the CLNV study and our study, test data was used
for the given percentages. Our study data bears a strong resemblance to the data used by
EMO.

For instance, the average price of trades in our sample ranges from $8.27 per share for

DAIO stock up to $158.86 for IAC stock. The price within a ticker may vary widely too,

particularly for more volatile securities. For example, the price of TSLA (Tesla) stock as

of January 6, 2020 was $451.54 and by February 4, 2020 had risen to $901.43. These cases

both illustrate the absolute necessity of standardization of variables to consider them as a

single collection of data.

Standardization

Therefore, we standardize selected variables within each
[
di+tj

]
combination such that

each variable has mean 0 and standard deviation 1. For our single day of 03/12 data that

leaves i = 12 and j ∈ {AAOI, BABY, . . . , JACK}. The list of variables for which we will

standardize includes: bid30, NBO, midpoint, PRICE, NBB, ofr30, SIZE, NBOqty, and NBBqty

(see Table A.1 for a description of these features).

After performing this within-variable standardization, we now have a single set of

data containing 29,842 trades which we will use for EDA. A minuscule fraction (just 23

or 0.08%) of these trades contain missing values. The missing values are solely an artifact

of the construction of the direction2 feature. Recall that this feature is the difference

between the current trade price Pk and the nearest preceding trade at a different price Pd.

Thus, the first trade of each ticker cannot have a direction2 value since there is no trade

34

preceding it. Also, if the first trade price of the day is repeated for consecutive trades

then none of these repeats will have direction2 values either. This can then potentially

impact the outputs of the LR, EMO, and CLNV methods since their classifications are

often determined by the tick test, where direction2 is a numeric descriptor of downticks

and upticks as described in Section 3.2. In total, of the 23 trades that have missing values

for direction2, 10 of those trades having a missing value for buysell EMO and one trade

has a missing value for buysell CLNV. Since they comprise such a negligible proportion of

our data, we simply drop these observations leaving 29,819 trades.

Class Imbalance

An elemental consideration in binary classification problems is the relative balance of

observations in each class. In cases such as fraud detection or disease diagnosis, the class

of interest (fraudulent activity, disease presence) is greatly outnumbered by observations

in the other class (regular activity, no disease), sometimes at ratios of 100:1 or greater.

Methods for rectifying class imbalance to improve model performance are well-studied (

[36], [37], [38], [39]), thus we should determine if such an issue is present in our data before

developing models.

Our training data and test data share an identical ratio of buy to sells, with 58%

of trades being buys and 42% being sells. This is a fairly balanced distribution of the

two classes. However, trading behavior specific to certain tickers may affect their relative

proportions of the two classes, potentially making their trades more difficult to classify.

Figure 4.6 below illustrates this clearly.

We can see that the median proportion of trades which are sells is roughly around 42%

for most tickers. The DAIO and GABC tickers show a distribution shifted substantially

below that of the other tickers, having more buys than sells. The BABY and HA tickers

appear to be the opposite, with somewhat more sells than buys. We may consider rectifying

these class imbalances within tickers when constructing training data to see if it noticeably

improves performance.

Variable Correlations

35

Fig. 4.6: The proportion of trades which are sells for each stock, represented as boxplots.
The median proportion of sells for most of the ten stocks is fairly near the overall 0.42
proportion of sells. A few stocks exhibit trading days with far more sells than this (BABY
or HA) while other stocks exhibit trading days with far fewer sells than this (DAIO or
GABC). Although this graphic does not indicate a severe class imbalance we will explore
this during model development.

Wickham and Grolemund suggest examining covariation between variables as a basic

consideration in EDA [33]. This may lend insight into which variables are most likely to

aid in correct prediction as well as which variables contain similar information. A heatmap

of variable correlations is provided in Figure 4.7.

From this heatmap we can observe three distinct groupings of variables: analogues

for microsTIME, buysell S, and std PRICE. The microsTIME and std PRICE groupings all

exhibit nearly perfect correlations (see Tables A.3 and A.5). The analogues of buysell S

are still noticeably correlated, but not to the same extent. This is actually encouraging;

if any of the LR, EMO, and CLNV methods were perfectly correlated with the buysell S

variable this would imply they can perfectly predict trade signs. Instead, they do a fairly

good job, but still leave room for improvement via modeling. Also, the respective outputs

36

Fig. 4.7: Correlations of standardized variables. Notice the three distinct groupings of
microsTIME, buysell S, and std PRICE analogues. The numerical pairwise correlations for
these groups are found in Table A.3, A.4, and A.5 respectively. Although SIZE variables
are also analogues of each other they exhibit hardly any correlation.

of the LR, EMO, and CLNV methods aren’t perfectly correlated (see Table A.4), which

will allow models to use their values as predictors for observations with different profiles.

KDE Plots Colored by Trade Direction

We know from prior studies that the tick test is a crucial predictor of trade direction.

Since the direction2 feature encodes tick values (Pk − Pd) used in the tick test, it will

likely prove vital for good prediction. After removal of a few outliers (less than 0.4% of the

data), we create overlaid KDE plots of this feature for buys and sells as seen in Figure 4.8.

We observe a pronounced bifurcation between the distribution of buys and sells according

to direction2: 77.5% of buys have value less than 0 and 84.3% of sells have a value

greater than 0. By construction, no trades have a direction2 value equal to 0, therefore

we can visually apply the tick test via the green dotted line, resulting in an overall accuracy

37

Fig. 4.8: Overlaid KDE plots of direction2 (non-zero tick) values for buys and sells.
Kernel density estimates for each distribution were smoothed with bandwidth parameters
of 0.006. A direction2 cutoff of 0.0, which implements the tick test, decently classifies
trades. However, a non-trivial number of trades are misclassified by this simple rule.

of 80.3%. This is encouraging for a couple of reasons. One, we know that this variable

contains valuable information and will surely be a valuable predictor for our models. Two,

we can see that there is still a non-trivial amount of overlap between the two distributions,

meaning that our models can significantly improve upon current methods such as this one.

Another feature worth examining is SIZE (now std SIZE), as EMO found that larger

trades are more difficult to classify [2, p. 536] and CLNV found that the tick rule performs

better on larger trades [3, p. 3815]. After subsetting to trades with std SIZE values less

than 5 (leaving 99.6% of the data) we construct the KDE plot seen below in Figure 4.9.

From this figure we can see that there is essentially no difference between the distribution

of buys and sells relative to trade size. Unfortunately it appears that trade size makes

trades more difficult to classify, but we can’t directly use this feature to fix the problem and

accurately separate buys and sells.

In this same vein, we also investigate the microsDifTQ feature. The name of this

features comes from taking the difference (Dif) in microseconds (micros) between the

38

Fig. 4.9: Overlaid KDE plots of std SIZE values for buys and sells. Kernel density estimates
for each distribution were smoothed with bandwidth parameters of 0.05. The EMO and
CLNV studies cite trade size as impacting how easily a trade is predicted; unfortunately,
we see no discernible difference between std SIZE density estimates of buys and sells.

trade time (T) and the quote time (Q). This is also known as quote distance. Again, we

remove a small amount of outliers (here, just 0.1% of the observations) by restricting our

data to trades with a microDifTQ value less than 100, and then construct the plot in Figure

4.10. As with the std SIZE feature above, we can see no appreciable difference between

the distribution of buys and sells relative to quote distance. If anything, there may be

a slight shifting of the distribution of buys upward on the scale, particularly for larger

quote distances. However, this difference is subtle enough that it gives little additional

information which we, as human model developers, can incorporate into our choices of

feature engineering.

Dimensionality Reduction Visualization via PHATE

Another EDA tactic for finding patterns in data is to perform dimensionality reduction

and visualize the transformed data in a lower-dimensional space. Some forms of this include

the use of biplots to represent the first two principal components in prinicpal components

39

Fig. 4.10: Overlaid KDE plots of microsDifTQ (quote distance) values for buys and sells.
Kernel density estimates for each distribution were smoothed with bandwidth parameters
of 0.004. Similar to std SIZE, we see no discernible difference in the density estimates of
buys and sells.

analysis (PCA) [40], t-SNE [41], and PHATE [42]. Thanks to the improvements which

PHATE has made upon PCA and t-SNE, including preservation of global and local structure

as well as data de-noising, we have used it to generate Figures 4.11 and 4.12. The first two

dimensions of PHATE are plotted to capture the most significant variation and structure

within the data. From Figure 4.11 we see no discernible groupings of any of the tickers. If

this were the case, it would be an indication of trades for a ticker (and their corresponding

input vectors) being fundamentally different from those of other trades, making them harder

to classify and our models less generalizable. In Figure 4.12 we have the same plot but

colored by trade directions. The fact that buys and sells show no apparent difference is

also somewhat of a good thing; if they were easily separable in just a two-dimensional

representation then the use of sophisticated modeling and feature engineering would be

unnecessary, and the problem would be trivially easy in some sense. Since the data show

intricate global and local structure, a model more sophisticated than reductive decision rules

will very likely be needed to characterize these intricacies and achieve reliable discriminatory

40

Fig. 4.11: The first two PHATE dimensions of March 12th data, colored by ticker. The fact
that trades from individual tickers do not group together is encouraging, indicating that
trades represented in a low-dimensional space are generally similar to each other regardless
of ticker. This aids the argument that our models will generalize well to unseen trades.

power between the two classes.

4.3.3 Insights Gained from EDA

We have found compelling evidence that our data is fairly representative of broader

markets, comprised of stocks from a variety of sectors with diverse market caps and trading

volumes. Additionally we’ve shown where our trades lie relative to the quotes; if the findings

of past studies hold here, we now know we should concentrate efforts on correctly classifying

the 28% of trades which lie inside of the quotes. We also observed that some stocks exhibit

an imbalance between the number of buys and sells executed, suggesting that sampling

training data to create class balance representative of the broader study data may help

improve test accuracy. Finally, we recognize that most features considered alone do a

poor job of discriminating between buys and sells. We will need to invest significantly in

41

Fig. 4.12: The first two PHATE dimensions of March 12th data, colored by trade sign. The
homogeneous mixing of buys and sells illustrates that we are not able to predict sign based
on a low-dimensional, continuous representation of the data.

feature engineering to capitalize on the value of our data to create representations which

will work best with different models. Armed with these insights we will now proceed to

create predictive models.

CHAPTER 5

PREDICTION METHODS

5.1 Modeling Methods Used

The end product of model development will be a highly-accurate, out-of-sample classi-

fier of trade signs created with the specific goal of outperforming the results of LR, EMO,

and CLNV. To this end, as well as for thoroughness and comparison’s sake, we will employ

eight different binary classifiers to see which approach works best: logistic regression [43] ,

quadratic discriminant analysis (QDA hereafter) [44, p. 110], the k-Nearest Neighbors clas-

sifier (k-NN hereafter) [45], decision trees [46], random forests (RF hereafter) [47], gradient-

boosted trees [48], support vector machines (SVM hereafter) [49], and a feedforward neural

network [50].

Since the theory, mathematics, and computation underlying these methods are well-

documented, we will simply address relevant considerations from the standpoint of a prac-

titioner. All models were developed using Python’s scikit-learn library [51]. The one

exception to this was the neural network model which was developed in Python using the

PyTorch library [52].

Logistic regression and QDA computed quickly and were fantastically easy to imple-

ment. Neither method required any tuning since we used basic logistic regression without

any regularization. The k-Nearest Neighbors (k-NN) classifier was not far behind in ease-

of-use, only requiring tuning of k via cross-validation on training data.

Decision trees were the easiest to tune of the tree-based methods, only requiring us

to adjust the max depth argument as all other hyperparameters had negligible effects

on accuracy. RF were not much harder, requiring adjustment of min samples split,

max features, and n estimators (see Section 5.4.4 for more in-depth discussion of tuning

for RF). We employed the XGBoost [53] library to create an ensemble classifier of gradient-

43

boosted trees. Consequential tuning parameters included max depth, learning rate, and

n estimators. By setting the n jobs argument for RF and XGBoost to -1 computation

time was dramatically reduced.

While RF and XGBoost were trained in a reasonable amount of time, creating SVM

models took much longer due to their computation being on the order of O(N3) (where

N is the number of training examples) [54]. Tuning included trial of four different kernels:

linear, polynomial, radial basis function, and sigmoid. Hyperparameters C, γ, and degree

of the polynomial kernel were also adjusted where applicable.

Although SVM models took quite some time to tune, the neural network models were

the most labor-intensive by far. Architectural design included exploration of the number

of hidden layers, number of neurons in each hidden layer, and activation functions used.

Additionally, regularization of the loss function, dropout, and batch normalization were

tested. Other trials included the use of different optimizers and tuning of their respective

hyperparameters.

5.2 Model Development Overview

As mentioned in Section 4.2.3, we have split our data into a training and test set. The

first two days and last two days of data (March 1, 2, 27, and 28) are withheld for use as test

data while the middle seventeen days of data (March 5, 6, . . ., 26, 27) are used for training

and validation. These middle seventeen days will be referred to as just “training data” with

the implicit understanding that portions of this data will be used for validation within this

chapter.

Two stages of model development lead to the selection of final models for prediction

onto test data. In the first stage, we create a cursory baseline model and then assess which

of the eight methods listed above show promise and deserve further exploration. March 12

and March 27 data were randomly selected as training and validation sets for this initial

stage, containing 30,753 and 33,911 trades respectively. The second, and final, stage of

model development involves additional feature engineering, feature selection, examination

of the effect of class imbalance, and hyperparameter tuning. Training data for stage two is

44

comprised of the 109,655 trades from March 9, 13, 15, and 20, and the 63,498 trades from

March 8 and 22 constitute the validation data.

A variety of metrics exist for quantifying the performance of binary classifiers, including

recall (sensitivity), precision, specificity, and F1 score. However, the chief concern of this

work is to accurately sign trades, making percent correctly classified (PCC) the metric

which ultimately matters. Therefore, PCC (or just “accuracy”) will be the measure used

to appraise performance and make decisions regarding model development.

5.2.1 Assessment Schemes

To facilitate a valid comparison of models, two schemes of assessment will be used.

These schemes are depicted in Figure 5.1 below. The blue highlighting illustrates what

Fig. 5.1: Depiction of same-ticker validation and all-but validation using 03/12/2018 data
for training and 03/27/2018 data for validation. The all-but validation scheme is of primary
importance since it represents out-of-sample prediction by using training and validation data
which are disjoint both temporally and in terms of tickers.

we will call “same-ticker” validation, while the red highlighting illustrates what we will call

“all-but” validation. Same-ticker validation simply means that we build the model using

training data from a single ticker and predict onto the validation data of that same ticker.

All-but validation occurs when we train on the data from nine tickers and predict onto

the validation data from the omitted tenth ticker. Both schemes result in ten different

validation accuracies, one for each ticker.

45

We intuitively believe that data within a trading day contains similarities, irrespective

of ticker. For example, trades from a day during the thick of the Great Recession, regardless

of ticker, likely contained far more sells than buys with prices declining as markets dropped

precipitously. We also suspect that data within a ticker contains similarities, irrespective

of trading day. A simple example is a very stable security, such as a utility stock, versus a

more volatile security like a tech startup. We would expect a much lower volume of trading

and less price movement in the utility stock than we would in the tech stock. Due to these

dynamics, the all-but validation accuracies are the most important since they represent out-

of-sample prediction in terms of both securities and trading days. To generate an aggregate

validation PCC, we must weight the all-but accuracies according to how many observations

are in the validation set for each ticker. We will define weighted-all-but PCC (wab-PCC),

or all-but accuracy, as:

wab-PCC :=

JACK∑
i=AAOI

(lengthi)(all-but PCCi)

JACK∑
i=AAOI

(lengthi)

where lengthi is the number of observations for ticker i in the validation data set and

all-but PCCi is the all-but validation accuracy for ticker i.

We will determine which methods to further pursue based on wab-PCC. We will also

compare overall validation accuracies of LR, EMO, and CLNV to wab-PCC values to de-

termine if models are improving upon these older decision rules’ results. Analysis of the ten

individual all-but PCC values and the ten respective accuracies of LR, EMO, and CLNV

will indicate stocks whose trades are difficult to classify.

5.3 Stage 1: Initial Model Prototyping

5.3.1 Baseline Model

Prior to model development we should determine some rough baselines to inform our

expectations and findings later on. To do this we will perform the minimal amount of feature

46

manipulation needed to generate predictions. Variables such as PRICE and SIZE differ in

scale across
[
day + ticker

]
combinations so we must standardize them within each

[
day +

ticker
]

combination before training and validation. This leaves us with ten standardized

variables as well as the trade time feature, quote time, quote distance, direction2, and

the predictions of the LR, EMO, and CLNV methods as predictors. Due to the reputation

of RF working well right out of the box [55, p. 167], we construct a baseline RF model with

100 trees and all other parameters set to scikit-learn defaults. Figure 5.2 illustrates the

performance of the baseline RF model against the results of older methods. We can see that

Fig. 5.2: All-but validation accuracy of baseline RF model (only original features and
scaled features) plotted against the accuracies of the LR, EMO, and CLNV methods. The
performance of RF is nearly indiscernible from the results of the older decision rule methods.
RF does somewhat better on DAIO trades, but does the same or worse than LR, EMO,
and CLNV for the other nine tickers.

RF yields negligible, if any, improvement over the older methods. The wab-PCC of RF is

88.2%, while LR achieves 86.0% accuracy, EMO reaches 88.0% accuracy, and CLNV comes

in at 87.7% accuracy. Based on these results we know that generic application of existing

models will not be sufficient to achieve our desired results of substantially outperforming

47

the LR, EMO, and CLNV methods. For this reason, we turn to a variety of supplementary

techniques for enhancing the predictive accuracy of our models.

5.3.2 Initial Feature Engineering

In addition to using sophisticated machine learning methods, our approach differs sub-

stantially from others in how we exploit data. Specifically, extensive use and exploration of

feature engineering is a key contribution of this work and its strong results. For any who

may be unfamiliar with the term feature engineering, it simply means that we use values

of existing features to create new features. A simple example would be the midpoint of the

quotes. We originally have Ak and Bk for each trade and can engineer a new Mk (midpoint)

feature where

[
Mk =

Ak +Bk

2

]
, using the newly-calculated midpoint as another predictor.

The primary reason we engineer new features is to increase the accuracy of our models.

Rather than gathering additional data, we can greatly enhance models’ predictions simply

by representing the data which we already have in a different manner [56]. This is a crucial

part of generating high-quality machine learning models, but can often be specific to a

discipline or problem being addressed. Therefore, we will use a few generally accepted

approaches but will particularly look to prior works and our own deep understanding of the

data-generating process to engineer new features.

Two examples of feature engineering from previous works were particularly influential

in our approach. As described in Section 3.6, Rosenthal used a proximity function to

encode prices and quotes into information metric predictors. Additionally, he created once-

lagged versions of these same predictors [4]. Another example of feature engineering is the

creation of the bid30 and ask30 features from the CLNV method (see Section 3.5). These

two features respectively represent the boundaries of the bottom 30% and top 30% of the

spread and are simply calculated by using Ak and Bk for each trade [3].

While the specifics of these two examples are noteworthy, their primary utility was

inspiring the general idea of contemporaneous features and lagged features. We can delineate

these two types of features by simply thinking in terms of indices. If data are organized in

a table with each row representing a single trade and each column representing a field like

48

PRICE or NBO, then contemporaneous features use only values with the same index in their

calculation. The bid30 and ofr30 features are examples of this. Both of them use only Ak

and Bk with index k in calculation of their values. On the other hand, if the calculation

of a new feature involves any values not having the same index, then we can consider it

lagged.

The inspiration for contemporaneous features is clear: order book conditions at execu-

tion convey substantial information about a trade being a buy or a sell. The quote test is a

clear example of this. Depending on where Pk is relative to Ak and Bk we can somewhat re-

liably classify whether the trade at time k is a buy or sell. Alternatively, lagged features help

us to characterize predictive relations across time. The tick test is a clear example of this.

Knowing the price of the previous differing trade offers substantial information, evidenced

by the tick test predating LR as a trade signing method. To summarize, contemporaneous

features capture information within trades and lagged features capture information across

trades.

Armed with the idea of contemporaneous and lagged features, we began by creating

the following engineered feature types:

• scaleOneVar(x): the new column is

[
xi −medianx

IQRx

]
.

This name is shorthand for the robust-scaled values of the variable x. We use robust

scaling since some of our features contain outliers. In performing traditional stan-

dardization within a variable we subtract the mean from each observation and divide

by the standard deviation. Here, we subtract the median of the variable and divide by

the IQR (the difference between the 75th and 25th percentiles of the variable). Since

the median and IQR are based on percentiles, they are more robust to outliers.

• nominalDiff(x, y, n): the new column is

[
xi − yi−n

]
.

This name is shorthand for the nominal difference between the values of variables x

and y where n is the number of indices by which the y variable is lagged. If x and y

are the same variable then we must have n > 0, creating a lagged feature. If x and y

are different and n = 0 then we have a new contemporaneous feature.

49

• scaledDiff(x, y, n): the new column is

[
xi − yi−n

yi−n

]
.

This name is shorthand for the scaled difference between the values of two variables. A

scaledDiff feature is much the same as a nominalDiff feature, with the only difference

being that the nominalDiff numerator is now scaled by the y variable below.

• colsAgree(x, y): the new column is

[
xi == yi

]
.

This name is shorthand for the agreement (or lack thereof) of the values of x and y.

We represent true values as 1 and false values as 0.

• lagVar(x, n): the new column is

[
xi−n

]
.

This name is shorthand for lagging the values of variable x by n indices to create a

new column.

Features which incorporate a non-zero n argument will have n missing values at the start

of the column for the new feature. We simply drop these observations since they represent

less than 0.01% of our data. We can also use new features to create additional new features.

An example of this is applying lagVar(buysellLR, 1), creating a new column of once-lagged

LR predictions. We can then apply colsAgree(buysell LR, buysell LR lag1) to create a

column indicating if the current trade has the same LR prediction as the previous trade.

Another point to recognize is that it only makes sense to engineer new variables using

existing variables which are analogues of each other. As pictured in Figure 4.7, these

groups include PRICE, SIZE, buysell, and microsTIME analogues. It would make no sense

to apply nominalDiff(PRICE, SIZE, 0) since the price and size of a trade are on completely

different scales and are uncorrelated. Sixty eight features were created and ubiquitously

used for prototyping new models. Nearly all combinations within each of the four analogue

groups were attempted, including lags one and two for many variables. Due to its length, the

complete list of variables has been omitted. However, during discussion of feature selection

we will mention specific variables and provide a final listing in Tables A.6 and A.7.

50

5.3.3 Initial Results

Using data from 03/12/2018 for training and 03/27/2018 for validation, models for each

of the eight methods outlined in Section 5.1 were created for each of the all-but and same-

ticker validation schemes. The logistic regression, QDA, RF, and k-NN models all required

no tuning or were auto-tuned using resubstitution or out-of-bag (OOB) error, with other

values left at defaults. The max depth parameter for the decision tree model was tuned

using all-but validation, the optimal value being seven (see Figure 5.3). The XGBoost,

neural network, and SVM models all required extensive tuning; optimal hyperparameters

were found using grid searches. The architecture of the neural network, including number

of layers, neurons in each layer, number of training epochs (see Figure 5.4), and activation

functions used were adjusted manually.

Fig. 5.3: Tuning max depth parameter
for the decision tree model. The highest
validation accuracy occurs at a max depth

value of seven. We use a max depth value
of seven for all subsequent decision tree
models.

Fig. 5.4: Determining the minimum num-
ber of training epochs for the neural network
model. Although training accuracy rises to
100%, validation accuracy stabilizes around
86.5% after 10 epochs. We use 15 epochs for
all subsequent network models.

The optimal XGBoost model had a learning rate of 0.05, a max depth of 3, and

n estimators = 100 (100 decision tree base learners). Tuning of other parameters for

XGBoost yielded no appreciable increase in validation accuracy. Trained on normalized

inputs, the optimal SVM model used the simple linear kernel and a C value of 0.01. The

optimal network model, pictured in Figure 5.5, is a fully-connected feedforward network

51

Fig. 5.5: Diagram of the neural network model. The number of neurons in the input and
hidden layers have been reduced by a factor of 25 to allow for visualization. The architecture
employed is a fully-connected, feedforward network which uses backpropogation to learn
weights and biases.

having one hidden layer with 300 neurons, a second hidden layer with 150 neurons, and a

single output neuron. A binary cross-entropy loss function is used, the output neuron uses

a sigmoid activation function, and all neurons in the hidden layers use the tanh activation

function. The Adam optimizer slightly outperformed stochastic gradient descent with a final

learning rate of 0.001. Dropout and regularization only degraded validation accuracy,

while batch normalization yielded a jump in accuracy from about 65% up to 82% before

fine-tuning of other parameters. Validation performance in Figure 5.4 illustrates that very

few epochs are needed to achieve the asymptotic accuracy of this network. Based on this

result, all iterations of the neural network model were only trained for 10 epochs.

The all-but validation results for tuned prototype models are seen below in Figure 5.6

and same-ticker validation results are depicted in Figure 5.7. We note that there are

four models which do particularly well in both schemes: XGBoost, RF, decision trees, and

the neural network. Most of them have an average validation accuracy in the neighborhood

of 90%, with same-ticker accuracies unsurprisingly exceeding all-but accuracies. Since RF

52

Fig. 5.6: All-but validation accuracies training on 03/12 data and validating on 03/27 data.
Simpler methods fared poorly while tree-based methods achieved the best results. RF and
gradient-boosted trees performed the best, obtaining nearly identical results.

Fig. 5.7: Same-ticker validation accuracies training on 03/12 data and validating on 03/27
data. The results here are similar to those of all-but cross-validation. Simple methods did
poorly and tree-based methods achieved the highest accuracies. The neural network model
also showed improvement for this validation scheme.

53

requires little tuning and either outperforms or equals XGBoost and decision trees, we will

only examine RF for further development of tree-based approaches. QDA actually fared

decently for being a simple method, even outperforming the neural network for the DAIO

and EA trades in the all-but scheme. Therefore, we will continue developing the RF, QDA,

and neural network models. Comparing same-ticker and all-but results shows that the

neural network improved substantially on DAIO prediction when training on other DAIO

trades, jumping from 72.6% up to 79.6% accuracy. We will see why this is the case when

examining the results of the older methods in Figure 5.9.

Although we won’t be specifically developing the decision tree model any further, a

look at its topmost splits in Figure 5.8 is still informative. This is the decision tree for

Fig. 5.8: The first three levels of splits for the all-but BABY decision tree model. The
predictions of the EMO method prove to be the most valuable split, achieving 89% accuracy.
Subsequent splits tend to be upon features which are scaled differences involving PRICE and
one of its analogues, such as NBO, midpoint, or bid30.

the all-but model where BABY serves as validation data. The respective decision trees for

all ten tickers were examined and this one was the most representative. It shows that the

predictions of the EMO method do quite a good job, achieving (13647 + 10121)/(13647 +

316 + 2396 + 10121) = 89.8% accuracy in the first split. The all-but BABY accuracy of the

decision tree model in Figure 5.6 is 91.4%, meaning that further splits yield an incremental

54

improvement of 1.6 percentage points. Of the remaining splits, engineered features which

contemporaneously relate PRICE to other price analogues dominate. This is an indication

that the position of a trade’s price relative to the rest of the spread is valuable information

for enhancing prediction.

Comparing the selected QDA, RF, and neural network models to older methods in

Figure 5.9 it is clear to see that RF substantially outperform all older methods. This is

Fig. 5.9: Prototyped all-but accuracies of the QDA, RF, and neural network models versus
the LR, EMO, and CLNV decision rule methods. QDA performs quite poorly and the
network model achieves similar results to the LR, EMO, and CLNV methods. The RF
model outperforms all other models shown here, indicating that feature engineering has
helped to substantially improve performance.

a very promising result relative to the outcome of our initial baseline model that had no

engineered features. Our RF model weighted all-but accuracy has improved from 88.2% up

to 91.7%. We can also see that the EMO method did very poorly on the DAIO trades, with

the neural network yielding a nearly equal result. We know from the decision tree model

that the buysell EMO feature is very important; it would appear that the neural network

also learned this, but relies on this feature more heavily than RF since it mirrored the poor

55

performance of the EMO method on DAIO trades. Based on these findings, we will continue

with model development geared specifically towards RF since it shows the most promise for

improving accuracy in trade signing.

5.4 Stage 2: Final Model Development

We now expand our training and validation sets to more closely parallel our final test-

ing setup. Final testing occurs on the first and last two days of data (March 5, 6, 28, and

29) after training on the middle seventeen days (March 5, 6, . . ., 26, 27). To imitate this

we will use March 8 and 22 data as our new validation data and March 9, 13, 15, and 20

as our new training data during this final stage of model development. Efforts made to

improve validation accuracy include additional feature engineering, feature selection, ad-

dressing class imbalance via sampling, and final hyperparameter tuning.

5.4.1 Additional Feature Engineering

Before creating more features it is important to develop a technical understanding of

what engineered features RF can and cannot learn on their own. If an important feature

cannot be learned from original inputs but is valuable for prediction, it is crucial that we

understand what these features might look like so that we can manually create them. In

a 2016 IEEE conference paper, Heaton demonstrated the types of features which neural

networks, SVM, RF, and gradient-boosted trees can and cannot learn from original inputs.

Of particular interest for our model, RF do a poor job of learning new ratio variables of

the form

[
xratio =

x1
x2

]
, rational difference variables of the form

[
xratDiff =

x1 − x2
x3 − x4

]
,

and count variables of the form

[
xcount =

n∑
i=1

1 if xi > t, else 0

]
[5]. This bolsters the

importance of creating the scaledDiff variables described in Section 5.3.2, as they essentially

follow the rational difference form Heaton describes. However, we can draw from these

suggestions, as well as our knowledge of the problem of trade signing, to create a few new

features which may be valuable.

56

A new feature we create, priceRelQuotes, is of the four-variable rational difference

form which Heaton suggests. The work of both EMO [2] and CLNV [3] found that the prox-

imity of trade price to quotes contains valuable predictive information. This was so much the

case that CLNV created the bid30 and ofr30 features to better characterize this relation-

ship. Drawing from this insight, we create the new feature priceRelQuotes =

[
Pk −Bk

Ak −Bk

]
.

See Figure 5.10 below for a numerical illustration of its implementation. Regardless of the

Fig. 5.10: Numerical illustration of the priceRelQuotes feature. This feature quanti-
fies the position of a trade’s price relative to quotes in a single number. Trades with a
priceRelQuotes value of 1.0 occur at the NBO, trades with a priceRelQuotes value of 0.0
occur at the NBB, and all other trades are similarly quantified based on the possition of the
trade’s price relative to the quotes. Values of priceRelQuotes are comparable across all
trades, regardless of that trade’s specific execution price, NBO value, or NBB value.

quote values Ak and Bk, trades occurring at the NBO will have a priceRelQuotes value

of 1.0, trades at the midpoint will have a priceRelQuotes value of 0.5, and trades at the

NBB will have a priceRelQuotes value of 0.0. The bid30 and ofr30 variables serve to

discretize the spread but stop short of directly relating a trade’s price to these values. The

priceRelQuotes feature directly relates a trade’s price with corresponding quotes, numer-

ically capturing where in the spread a trade’s price falls. We will see further on that this is

a very valuable feature in generating predictions.

Another feature added to the model is ticks. The direction2 feature from Holden and

Jacobsen’s code [32] contains the difference between the current trade price Pk and the first

57

preceding different price Pd,
[
direction2 = Pk − Pd

]
. The engineered feature dif1 PRICE

captures the nominal difference between each successive trade, Pk − Pk−1. Considered

together these two features create the tick test as described in Section 3.2. Rather than

thresholding tick test results to be only buys and sells we will define four values for the

ticks feature, hopefully lending models additional predictive information:

uptick ticks = 2 (Pk > Pj)

zero-uptick ticks = 1 (Pk = Pj) and (Pk > Pd)

zero-downtick ticks = -1 (Pk = Pj) and (Pk < Pd)

downtick ticks = -2 (Pk < Pj)

The last, and most important, feature which we will engineer is sumOfBuysellCols,

simply defined as sumOfBuysellCols =
[
buysell LR + buysell EMO + buysell CLNV

]
.

The inspiration for this feature is twofold. First, we know from Heaton’s work that RF

struggle with creation of count variables [5], which this variable undoubtedly is. Second,

we can roughly think of this feature as a very simplistic ensemble learner. The LR, EMO,

and CLNV methods are the weak learners, and by summing them we hope to obtain more

accurate predictions by aggregating their results. We can also think of this variable as

communicating to our models the relative confidence of the predictions of older methods: a

value of zero is confidently classified as a buy, a value of three is confidently classified as a

sell, and values of one and two are tentatively classified as buys and sells respectively.

5.4.2 Feature Selection

A distinct advantage of RF over other machine learning approaches is the easy selection

of variables using feature importance. The default variable importance (VIMP) calculation

and tree splitting criterion implemented in scikit-learn is based on the decrease in Gini

impurity. While it has been shown that Gini-based importance may tend to favor high-

cardinality numerical features when compared to permutation importance [57], the standard

use of impurity-based importance is sufficient for our purposes. We will also see that it yields

58

sensible results when verified against our understanding of the different features.

We now add the priceRelQuotes, ticks, and sumOfBuysellCols features from Section

5.4.1 to our model. Additionally we have supplemented our original 68 features with several

other scaledDiff and nominalDiff variables, bringing our total number of features to 85.

When training with the expanded training and validation sets, the accuracy of LR is 88.2%,

EMO is 89.6%, and CLNV is 89.3%. Our RF model achieves wab-PCC of 93.6%, improving

from 91.7% at the end of our first stage of model development.

Having created so many new features we ought to see which, if any, of them are valuable

predictors. Analogous to our treatment of overall validation accuracy using wab-PCC, we

assess variable importance for the remainder of this work by creating the ten all-but models

and taking the weighted average of the importance of each variable before making the final

ranking. A graphical representation of variable importance for our 85-feature model is given

in Figure 5.11. The newly-added sumOfBuysellCols and priceRelQuotes features are

the first and third most important variables respectively. Unsurprisingly, the predictions

of older methods are important as well, with buysell EMO, buysell CLNV, and buysell LR

ranked second, fourth, and eighth. Finally, scaledDiff features which incorporate PRICE as

one input and a price analogue such as midpoint, NBO, or ofr30 dominate this list of top

20 variables. In particular, features which incorporate a price analogue nearer the top of

the spread (NBO and ofr30, for example) show up more often. This may be an indication

that trades at the best ask are more difficult to classify than trades at the best offer.

As such, we remove the 45 least important variables, leaving a model with just the

top 40. Many of the variables removed are of the boolean colsAgree variety (e.g. col-

sAgree(buysell EMO, buysell CLNV)), nominal differences within a variable (e.g. nomi-

nalDiff(PRICE, PRICE, 1)), and scaled differences within a variable (e.g. scaledDiff(NBBqty,

NBBqty, 1)). Also, many variables having to do with size and timestamp were unimpor-

tant, with the notable exceptions of microsDifTQ and std SIZE (seen above in the top 20

features in Figure 5.11).

The results of this 40-feature model are very similar to the model with all 85 features,

59

Fig. 5.11: Variable importance of top 20 features for the prototyped RF model containing
85 features. Engineered features sumOfBuysellCols, priceRelQuotes, and scaled differ-
ence features involving PRICE and its analogues dominate the list. Features containing the
predictions of old methods are also highly important, with EMO predictions coming in as
the second most important feature.

edging up from 93.6% up to 93.7% wab-PCC. Since computation is aided by having a smaller

set of predictors while accuracy is not compromised, we will use this set of features for the

time being. Before declaring feature selection and development complete, we take a look at

which trades are being misclassified to see if there are any additional features which we can

engineer to improve prediction.

Two highly important features with intuitive meaning are sumOfBuysellCols and

priceRelQuotes. Figures 5.13 and 5.14 illustrate the differences in distribution of these

two features for all training trades (in blue) and misclassified test trades (in red). The

proportion of sells in the training data is about 45.2% while the proportion of sells in the

misclassified test data is about 41.0%. Although somewhat different, this slight disparity is

little cause for concern. Figure 5.13 shows that nearly all incorrect predictions result from

trades with values of 0 and 2 for sumOfBuysellCols. The trades with a sumOfBuysellCols

value of 0 are “confident buys” according to the three older methods, but often turn out to

60

Fig. 5.12: Distribution of variable importance for the prototyped RF model containing
85 features. Notice that feature importance drops off somewhat after the top 20 most
important variables and drops again after the 40 most important variables.

Fig. 5.13: Proportional distribution
of sumOfBuysellCols for misclassified
and training trades. Notice that trades
confidently classified as buys (value of 0)
by older methods are the most misclassified.

Fig. 5.14: Density esimates of
priceRelQuotes for misclassified and
training trades. Notice that most misclas-
sified trades have a priceRelQuotes value
near 1.0.

be sells according to our figure. Similarly, trades with a sumOfBuysellCols value of 2 are

“tentative sells” according to LR, EMO, and CLNV, but may often turn out to be buys.

61

These ideas are further substantiated by Figure 5.14. Trades near the NBO (having a

priceRelQuotes value around 1.0) comprise the majority of misclassified trades. According

to the quote test, LR, EMO, and CLNV methods, we classify trades at the NBO as buys.

However, this approach often fails when predicting onto validation data as evidenced by

the disproportionate concentration of misclassified trades having a priceRelQuotes value

near 1.0. This is a new finding that is not discussed in any of the works of LR, EMO, and

CLNV. Both EMO and CLNV discuss trades near the midpoint being difficult to classify,

but neither observed the issue of sells at the NBO being difficult to classify. This may be a

newly-discovered general phenomena of our model or it may simply be bias from having a

small selection of securities and trading days in our data.

Since trades inside of the quotes are more difficult to classify, we extend the logic of

the priceRelQuotes feature to create the priceRelNBB and priceRelNBO features. They

are calculated as priceRelNBB =

[
Pk −Bk

Mk −Bk

]
and priceRelNBO =

[
Pk −Ak

Ak −Mk

]
. These two

variables more granularly quantify a price’s relation to the NBB (Bk) and NBO (Ak) indi-

vidually, as opposed to priceRelQuotes which does this simultaneously. We also add some

scaled differences across indices within priceRelQuotes, priceRelNBB, and priceRelNBO.

These new features will hopefully aid our model in signing difficult-to-classify trades which

occur at the NBO.

5.4.3 Addressing Class Imbalance via Sampling

An imbalance in the proportion of classes is often a concern in binary classification

problems, especially when correct prediction of one class is of chief importance. One way

of dealing with this is by modifying the cost function being optimized to weight misclassifi-

cations of the two classes differently. This will more strongly penalize incorrect predictions

for the class we’re more concerned with characterizing accurately. Another method, which

we will explore here, is the use of sampling techniques to adjust the balance of the classes

within training data.

Two commonly used sampling techniques are random oversampling and random un-

dersampling. To even the proportion of the two classes in the training data, oversampling

62

augments the original data with repeated draws from the minority class observations un-

til parity is realized. This necessitates that some minority class observations be included

multiple times in the new training data while others might only appear once. On the other

hand, undersampling keeps all minority class observations and randomly selects majority

class observations without replacement until equal proportions are achieved, omitting some

original majority class observations [37]. While more sophisticated methods for sampling

exist, we will first explore these two to determine if there is any promise in pursuing this

technique as a means of improving test accuracy.

We found during EDA that some tickers contain a proportion of sells which differs

greatly from the overall ratio as well as differing from the ratio of other tickers (see Figure

4.6). To see if treating these tickers differently improves performance we will conduct

training data aggregation in two formats. For the first format we aggregate across the

data for the nine training tickers and then remedy class imbalance via sampling. For the

second format we individually remedy class imbalance within each of the nine tickers and

then aggregate them into a single all-but training set. In both cases the validation data is

left untouched. As in other experiments, we will continue using all-but validation to gauge

results.

In addition to using two methods of sampling and two methods of training data aggre-

gation, we will sample to create two different ratios of buys to sells. There are 42% sells

and 58% buys in the original training data (42/58 ≈ 0.72), so we will sample to create

a sells-to-buys ratio of 0.72 to see if obtaining data representative of the broader sample

helps. We also sample to create a balanced ratio of 1.0 to see if this improves performance.

Two sampling methods, two ratios of sells to buys, and two methods of training data ag-

gregation results in eight different approaches. The results of these approaches are detailed

in Table 5.1. Unfortunately, none of these different sampling schemes yield any consequen-

tial improvement on the 93.7% wab-PCC which we have already achieved without use of

any sampling. Therefore, we will dispense with all further use of sampling techniques as a

means of improving out-of-sample accuracy.

63

RESULTS OF SAMPLING APPROACHES

Sampling
Method

Ratio of sells
to buys

Aggregation
Scheme

wab-PCC

Oversampling 0.72 within ticker 93.68

Oversampling 1.00 within ticker 93.75

Oversampling 0.72 across ticker 93.67

Oversampling 1.00 across ticker 93.67

Undersampling 0.72 within ticker 93.70

Undersampling 1.00 within ticker 93.62

Undersampling 0.72 across ticker 93.74

Undersampling 1.00 across ticker 93.66

Table 5.1: All-but validation results of eight different sampling approaches. None of the
sampling schemes for rectifying the slight class imbalance in study data resulted in an
appreciable improvement in accuracy. Therefore, no sampling method was used for the
final model.

5.4.4 Hyperparameter Tuning

Having explored feature engineering, feature selection, and sampling methods as means

for increasing wab-PCC, we will tune the hyperparameters of our RF model to see if any

final improvements in accuracy can be made. To this point we have simply used 100 trees

(n estimators = 100) and all other parameters set to defaults when generating RF models.

Relevant defaults include max depth = None (no restrictions on the depth to which trees

can grow), min samples split = 2 (the number of internal samples required to further

split a node), and max features =
√

number of predictors =
√

53 ≈ 7 (the number of

randomly-chosen features considered for splitting at each node).

Cutler, Cutler, and Stevens explain that there are three parameters which can be tuned

to influence RF’s accuracy: the number of randomly chosen features considered for splitting

at each node (max features), the number of trees grown (n estimators), and the size of

each tree [55]. We will specify tree size using the minimum number of observations required

to split a node (min samples split).

We first tune max features and min samples split simultaneously by using a grid

search and selecting optimal values based on wab-PCC. Values of max features = 14

and min samples split = 19 resulted in the highest wab-PCC of 93.83% accuracy, a

64

slight improvement on 93.7%. Relative to the default value of seven, the higher value

of max features increases computation needed since we have to explore twice as many

variables for splitting at each node of each of the 100 trees. On the other hand, the increase

of min samples split from two up to 19 helps to reduce computation since we stop well

before reaching fully-grown trees.

Finally, we will tune the number of trees grown for our model. Breiman’s original paper

on RF showed that as the number of trees increases the generalization error of the model

almost surely converges to a limit [47]. As recommended by Cutler et al. [55], we increase

the number of trees in our model and plot OOB accuracy versus validation accuracy as seen

in Figure 5.15. We observe no overfitting (OOB accuracy continuing to improve while

Fig. 5.15: OOB and all-but validation accuracy as a function of the number of trees. Since
validation accuracy levels off after 100 trees, we will use n estimators = 100 in our final
RF model.

validation accuracy flatlines) and can see that we reach an asymptotic accuracy of 93.8%

somewhere around the 50-tree mark. Since the risk of overfitting seems to be negligible

we will stick with 100 trees in our final model to be sure that we’re obtaining every bit of

predictive improvement possible.

65

5.4.5 Specifications of Final Model

The model which we have developed for final use on test data is a RF classifier with

scikit-learn argument values of n estimators = 100, min samples split = 19, and

max features = 14. Our training and test data contain 53 features; 46 of these are engi-

neered from original features and seven of them are remaining original features. We have

dropped all original features, such as PRICE or SIZE, whose scales are not shared across[
day + ticker

]
combinations. No sampling is performed on training data to try and ame-

liorate class imbalance. A complete list of features used, and their respective formulae for

calculation, can be found in Tables A.6 and A.7.

CHAPTER 6

FINAL RESULTS

6.1 Design of Performance Assessment

In much the same manner as we assessed models during development in Chapter 5,

we will calculate weighted all-but PCC (wab-PCC) to quantify out-of-sample performance.

Of all metrics which we might use to evaluate model performance, this one most closely

simulates the prediction of trade signs for data from different days and securities than those

used in our study. Models were trained on March 5, 2018 through March 27, 2018 data from

nine tickers and the collective March 1, 2, 28, and 29 data from the omitted tenth ticker is

predicted onto. The fact that training and test data are both temporally and ticker-wise

disjoint emphasizes out-of-sample prediction and model generalizability.

Since there are ten tickers, this generates ten different test accuracies. Rather than

simply average these ten accuracies we weight each accuracy by the number of trades in

the test data for that ticker to ensure they’re represented proportionally. One of these ten

train-test splits is illustrated in Figure 6.1 where we train on all-but AAOI trades from

March 5-27 and then predict onto AAOI trades from March 1, 2, 28, and 29. In total, there

are 498,528 trades in the training data and 146,395 trades in the test data.

6.2 Final Model Results

After conducting model training and testing as described above, we obtain the results

seen in Figure 6.2 for the random RF, neural network, and QDA models. Although QDA

achieved passable results in model prototyping with 78.7% wab-PCC, it performs poorly

during final testing coming in at just 69.1%. The neural network model moves in the

other direction, improving from 86.6% wab-PCC during prototyping to 91.2% during final

testing. Some of this improvement may be due to the fact that the poor performance of

67

Fig. 6.1: Depiction of all-but testing using March 5-27 data for training and March 1, 2, 28,
and 29 data for testing. This scheme emphasizes out-of-sample prediction to measure final
model performance, furthering the argument of the model generalizing well onto unseen
data.

Fig. 6.2: All-but test accuracies of the final RF, neural network, and QDA models. QDA
performs poorly, achieving roughly 70% accuracy. RF and the neural network do quite well;
the RF model performs better overall, as well as for each individual out-of-sample ticker.

the EMO method on DAIO trades in our small prototyping sample bled over into the poor

performance of the prototyped neural network. This bias has been somewhat mitigated by

training on many more samples. The final network model still struggles on DAIO trades at

just 83.4% accuracy but substantially improves on the 72.6% accuracy of the prototyped

network. The RF model also realizes an increase over its prototyped counterpart. The RF

68

model in stage two of development had wab-PCC of 93.7% while the results depicted here

represent 94.7% wab-PCC on final test data.

The single most salient result of this work is pictured below in Figure 6.3. The final RF

model clearly and substantially outperforms the predictions of the LR, EMO, and CLNV

methods. RF’s wab-PCC of 94.7% handily beats accuracies of 89.3%, 90.2%, and 90.1%

Fig. 6.3: All-but test accuracies of the final RF model, LR, EMO, and CLNV methods.
The final RF model substantially outperforms the older methods overall (dotted lines), as
well as for each individual ticker (solid lines). The RF model improves upon the predictions
of older methods for the DAIO and GABC tickers by more than 10 percentage points.

from LR, EMO, and CLNV respectively, outpacing all of them by at least 4.5 percentage

points and delivering state-of-the-art results. Not only is the overall performance of RF

much better than old methods, but the prediction for individual tickers is also better for

all ten securities. In particular, RF’s out-of-sample prediction onto DAIO trades at 92.6%

is 10.1 percentage points better than the 82.5% accuracy of the old methods. Predictions

of the LR method for GABC trades are only 84.0% accurate while RF achieves 96.1%

out-of-sample accuracy for a sizable improvement of 12.1 percentage points.

69

These accuracies are substantially higher than those reported in the works of LR, EMO,

CLNV, and Rosenthal. An examination of why this is the case is not undertaken here, but

a couple of thoughts on why this may be happening are given. One obvious advance is the

removal of human clerical error and delay thanks to the use of computerized order books

and trading systems. Lee and Ready point to this as a concern in their 1991 publication [1],

but it is no longer an issue when using 2018 data. Another potential reason for these higher

accuracies is the enhanced quality and granularity of data. Timestamps of trades and quotes

have become more precise over time, with our data having microsecond timestamps. This

allows for more accurate matching of trades with corresponding quotes. In turn, decision

rule methods which rely heavily on the best bid and best ask to determine trades’ signs

produce more accurate predictions as seen in our study.

6.3 Insights into the Final RF Model

Although RF offer less opportunity for interpretation than some methods, we can still

deduce valuable insights from our final model. The feature importance plot in Figure 6.4 is

fairly similar to that of our prototyped model. One noticeable difference is how much more

important the sumOfBuysellCols and buysell EMO features are here in the final model

than they were in the prototyped model (Figure 5.11). We also see that priceRelNBO and

priceRelNBB were valuable additions to the set of features used. As we also observed in

the prototyped model, features which relate PRICE to NBO comprise much of the 20 most

important features, suggesting trades which occur at the NBO may be harder to classify.

Another means we can employ to understand our RF model is the use of partial de-

pendence plots [48]. These plots characterize the marginal effect which a given variable has

on the predicted response. The partial dependence plot for the priceRelQuotes feature

is shown in Figure 6.5. The quote test classifies trades with a price greater than the

midpoint as a buy and trades with a price less than the midpoint as a sell. The plot for

priceRelQuotes is suggesting similar behavior: trades with a priceRelQuotes value of 0.5

or less (which are trades whose prices are less than the midpoint) have a predicted proba-

bility of about 0.58, increasing up to about 0.62 at a value of 0.0 (trades near the NBB). In

70

Fig. 6.4: Variable importance of the 20 most importance features in the final RF model.
Aside from buysell EMO and buysell CLNV, the ten most important features are all engi-
neered. The sumOfBuysellCols feature is by far the most important, with priceRelNBO,
priceRelNBB, and priceRelQuotes rounding out the top five.

Fig. 6.5: Partial dependence plot of the priceRelQuotes features from the final RF model.
The marginal effect of the priceRelQuotes feature on the predicted response is closely
aligned with the intuition of the quote test. Trades with a priceRelQuotes value of 0.0
are predicted to be sells and trades with a priceRelQuotes value of 1.0 are predicted to be
buys. The shelf in the middle of the graphic is at 0.58 (rather than 0.5) since this is the
proportion of buys in the data. A predicted probability above (below) 0.58 corresponds to
a sell (buy) prediction.

other words, these trades are more likely to be classified as sells. This cleanly squares with

the logic of the quote test, which would also classify these trades as sells. Still considering

71

the effect of priceRelQuotes on prediction, trades above the midpoint are more likely to

be buys, with trades above the NBO (priceRelQuotes value of at least 1.0) most likely to

be classified as buys.

We should note that assuming a cutoff of 0.5 for predicted probability when classifying

trades is not used for this plot. The clear shelf near 0.58 for predicted probability aligns

nearly perfectly with the proportion of buys in the training data. The plot makes much

more sense when using 0.58 as the predicted probability threshold, suggesting that trades

at or below the NBB are influenced by priceRelQuotes to be sells, trades at or above the

NBO are influenced by priceRelQuotes to be buys, and trade inside of the quotes are more

difficult to classify with a clear difficulty in classifying trades between the midpoint and

the NBO as indicated by the shelf residing between values of 0.5 and 1.0.

Examining the distribution of misclassified test trades in Figures 6.6 and 6.7 sheds

additional light on the difficulty of classifying trades between the midpoint and NBO. Figure

Fig. 6.6: Proportional distributions
of sumOfBuysellCols for training trades
and misclassified test trades. Most
misclassified trades are tentatively
predicted to be sells by this feature
(have a sumOfBuysellCols value of 2).

Fig. 6.7: Density esimates of priceRelQuotes
for training trades and misclassified test
trades. Most misclassified trades occur at the
NBO (a priceRelQuotes value near 1.0). We
would expect these trades to be buys, but this
graphic suggests that some of them are sells.

6.7 shows that most misclassified test trades have a price near the NBO. This is substantiated

by Figure 6.6. The majority of misclassified trades have a sumOfBuysellCols value of two,

72

meaning that they are tentatively classified as a sell by LR, EMO, and CLNV, and end up

being predicted incorrectly as sells by the RF model. In the context of splits made within

trees, it may be that sumOfBuysellCols is classifying difficult trades at the NBO while the

also-important buysell EMO is classifying the more well-behaved trades. Even with the

discriminatory aid of priceRelQuotes and sumOfBuysellCols, some trades near the NBO

still prove difficult to classify.

A potential cause of this might be the effect of the “uptick rule.” The most recent

iteration of this SEC regulation stipulates that if a security’s price dropped by at least 10%

during the previous day, short selling can only occur on an uptick or at a price above that of

the most recent execution [58]. Sells typically occur at the NBB (a priceRelQuotes value of

0.0), but the uptick rule forces some sells to occur at higher prices than usual. This causes

some trades which occur at the NBO (typically buys) to be sells and likely results in their

misclassification due to the importance of a trade’s position in the spread for determining

direction. However, the uptick rule was only triggered once during our sample period; on

March 28, 2018, the uptick rule was triggered at 12:44 PM for the DAIO ticker. Only 0.6%

of misclassified test trades are from the DAIO ticker, while DAIO trades make up 0.8%

of all test trades. This suggests that DAIO trades are not disproportionately likely to be

misclassified. Based on this evidence, we suspect that something other than the uptick rule

is biasing misclassification toward trades occurring near the NBO.

CHAPTER 7

FUTURE WORK AND CONCLUSION

The application of machine learning methods as a novel approach to the classification of

trade direction has yielded highly promising results in this study. To generate predictions for

the LR, EMO, and CLNV methods of trade signing, NBBO data was used to augment trade

data with best offer and best bid values for each executed trade. However, a large portion

of the quotes in NBBO files were never used to aid prediction since many of them were not

matched with a trade. Movements in the NBB and NBO prior to a trade’s execution would

likely contain very valuable information for determining direction. This information could

potentially be leveraged through a two-tiered neural network. The first tier would take

in a variable-length vector containing unused, chronological pairs of best bid and best ask

values preceding a trade. This vector would be passed through the first network, outputting

a fixed-length context vector. This context vector and the original input vector used in our

models could then be fed into the second network to create a final prediction.

While a single neural network did improve upon the results of older methods, a random

forests model performed best and achieved state-of-the-art results in correctly predicting

trade signs for March 2018 NASDAQ data. Engineering of novel, tailor-made features

from existing data substantially improved performance of our models. Our final model

outperformed the LR, EMO, and CLNV methods of signing trades when predicting onto

out-of-sample test data, surpassing their predictions by 4.5 percentage points overall and

improving accuracy by as much as 12.1 percentage points for individual securities. Imple-

mentation of this model by researchers will remove the need to process order-level data,

promote more reliable results in studies relying on accurate trade signs, and can save aca-

demic departments thousands of dollars in data subscription fees.

74

REFERENCES

[1] C. M. Lee and M. J. Ready, “Inferring trade direction from intraday data,” The Journal
of Finance, vol. 46, no. 2, pp. 733–746, 1991.

[2] K. Ellis, R. Michaely, and M. O’Hara, “The accuracy of trade classification rules:
Evidence from NASDAQ,” Journal of Financial and Quantitative Analysis, vol. 35,
no. 4, pp. 529–551, 2000.

[3] B. Chakrabarty, B. Li, V. Nguyen, and R. A. Van Ness, “Trade classification algorithms
for electronic communications network trades,” Journal of Banking & Finance, vol. 31,
no. 12, pp. 3806–3821, 2007.

[4] D. W. Rosenthal, “Modeling trade direction,” Journal of Financial Econometrics,
vol. 10, no. 2, pp. 390–415, 2012.

[5] J. Heaton, “An empirical analysis of feature engineering for predictive modeling,” in
SoutheastCon 2016. IEEE, 2016, pp. 1–6.

[6] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical
Learning. Springer, 2013, vol. 112.

[7] J. Hasbrouck, “Trades, quotes, inventories, and information,” Journal of Financial
Economics, vol. 22, no. 2, pp. 229–252, 1988.

[8] L. R. Glosten and L. E. Harris, “Estimating the components of the bid/ask spread,”
Journal of Financial Economics, vol. 21, no. 1, pp. 123–142, 1988.

[9] R. W. Holthausen, R. W. Leftwich, and D. Mayers, “The effect of large block transac-
tions on security prices: A cross-sectional analysis,” Journal of Financial Economics,
vol. 19, no. 2, pp. 237–267, 1987.

[10] M. E. Blume, A. C. MacKinlay, and B. Terker, “Order imbalances and stock price
movements on October 19 and 20, 1987,” The Journal of Finance, vol. 44, no. 4, pp.
827–848, 1989.

[11] L. Harris, “A day-end transaction price anomaly,” Journal of Financial and Quantita-
tive Analysis, vol. 24, no. 1, pp. 29–45, 1989.

[12] C. M. C. Lee, “Information dissemination and the small trader: an intraday analysis
of the small trader response to announcements of corporate earnings and changes in
dividend policy.” Ph.D. dissertation, Cornell University, Ithaca, NY, 1991.

[13] C. M. Lee, “Earnings news and small traders: An intraday analysis,” Journal of Ac-
counting and Economics, vol. 15, no. 2-3, pp. 265–302, 1992.

[14] G. Bernile, J. Hu, and Y. Tang, “Can information be locked up? Informed trading
ahead of macro-news announcements,” Journal of Financial Economics, vol. 121, no. 3,
pp. 496–520, 2016.

75

[15] C. W. Holden and S. Jacobsen, “Liquidity measurement problems in fast, competitive
markets: Expensive and cheap solutions,” The Journal of Finance, vol. 69, no. 4, pp.
1747–1785, 2014.

[16] N. Hautsch, Econometrics of Financial High-Frequency Data. Springer Science &
Business Media, 2011.

[17] A. Madhavan, M. Richardson, and M. Roomans, “Why do security prices change? A
transaction-level analysis of NYSE stocks,” The Review of Financial Studies, vol. 10,
no. 4, pp. 1035–1064, 1997.

[18] J. Hasbrouck, Empirical Market Microstructure: The Institutions, Economics, and
Econometrics of Securities Trading. Oxford University Press, 2007.

[19] WRDS. About wharton research data services (WRDS). [Online]. Available:
https://wrds-web.wharton.upenn.edu/wrds/about/index.cfm

[20] M. K. Pratt. (2005, Aug. 15) Sidebar: Some ideas just aren’t worth
it. ComputerWorld. [Online]. Available: https://www.computerworld.com/article/
2558143/sidebar--some-ideas-just-aren-t-worth-it.html

[21] NASDAQ. Price list - U.S. equities. [Online]. Available: http://www.nasdaqtrader.
com/Trader.aspx?id=DPUSdata

[22] Lobster. Access options. [Online]. Available: https://lobsterdata.com/info/
AccessOptions.php

[23] Wall Street Prep. Bloomberg vs. Capital IQ vs. FactSet vs. Thomson
Reuters Eikon. [Online]. Available: https://www.wallstreetprep.com/knowledge/
bloomberg-vs-capital-iq-vs-factset-vs-thomson-reuters-eikon/

[24] W. Kenton. (2019, Mar. 29) Broker-dealer. Investopedia. [Online]. Available:
https://www.investopedia.com/terms/b/broker-dealer.asp

[25] J. Hasbrouck, “Securities trading: Principles and procedures,” Manuscript, version,
vol. 12, 2017.

[26] S. Shobhit. (2019, Jun. 25) The world of high-frequency algorithmic trading.
Investopedia. [Online]. Available: https://www.investopedia.com/articles/investing/
091615/world-high-frequency-algorithmic-trading.asp

[27] E. Terrell, “History of the American and NASDAQ stock exchanges,” in Library of
Congress–Business Reference Services, 2010.

[28] W. F. of Exchanges, Annual Report and Statistics. The Federation, 2014.

[29] NASDAQ. (2018) NASDAQ TotalView-ITCH 5.0. [Online]. Avail-
able: https://www.nasdaqtrader.com/content/technicalsupport/specifications/
dataproducts/NQTVITCHspecification.pdf

[30] E. R. Odders-White, “On the occurrence and consequences of inaccurate trade classi-
fication,” Journal of Financial Markets, vol. 3, no. 3, pp. 259–286, 2000.

https://wrds-web.wharton.upenn.edu/wrds/about/index.cfm
https://www.computerworld.com/article/2558143/sidebar--some-ideas-just-aren-t-worth-it.html
https://www.computerworld.com/article/2558143/sidebar--some-ideas-just-aren-t-worth-it.html
http://www.nasdaqtrader.com/Trader.aspx?id=DPUSdata
http://www.nasdaqtrader.com/Trader.aspx?id=DPUSdata
https://lobsterdata.com/info/AccessOptions.php
https://lobsterdata.com/info/AccessOptions.php
https://www.wallstreetprep.com/knowledge/bloomberg-vs-capital-iq-vs-factset-vs-thomson-reuters-eikon/
https://www.wallstreetprep.com/knowledge/bloomberg-vs-capital-iq-vs-factset-vs-thomson-reuters-eikon/
https://www.investopedia.com/terms/b/broker-dealer.asp
https://www.investopedia.com/articles/investing/091615/world-high-frequency-algorithmic-trading.asp
https://www.investopedia.com/articles/investing/091615/world-high-frequency-algorithmic-trading.asp
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHspecification.pdf
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHspecification.pdf

76

[31] WRDS. Overview of TAQ data. [Online]. Available: https://wrds-www.wharton.
upenn.edu/pages/support/data-overview/wrds-overview-taq

[32] Holden, Craig W and Jacobsen, Stacey, “HOLDEN AND JACOB-
SEN DAILY TAQ CODE 2018-03-16,” http://www.excelmodeling.com/
Holden-and-Jacobsen-Daily-TAQ-and-Monthly-TAQ-Codes-2018-03-16.zip, 2018.

[33] G. Grolemund and H. Wickham, “R for data science,” Feb 2018. [Online]. Available:
https://vidia.ccr.buffalo.edu/resources/698

[34] S. Alizadeh, M. W. Brandt, and F. X. Diebold, “Range-based estimation of stochastic
volatility models,” The Journal of Finance, vol. 57, no. 3, pp. 1047–1091, 2002.

[35] Financial Engines. (2018, Jan) Market capitalization: Large-cap, mid-cap, and
small-cap stocks. Financial Engines. [Online]. Available: https://financialengines.
com/education-center/small-large-mid-caps-market-capitalization/

[36] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
minority over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16,
pp. 321–357, 2002.

[37] A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling method for learning
from imbalanced data sets,” Computational Intelligence, vol. 20, no. 1, pp. 18–36, 2004.

[38] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning,” in International Conference on Intelligent
Computing. Springer, 2005, pp. 878–887.

[39] B. W. Yap, K. A. Rani, H. A. A. Rahman, S. Fong, Z. Khairudin, and N. N. Abdullah,
“An application of oversampling, undersampling, bagging and boosting in handling
imbalanced datasets,” in Proceedings of the First International Conference on Advanced
Data and Information Engineering (DaEng-2013). Springer, 2014, pp. 13–22.

[40] C. J. ter Braak, “Principal components biplots and alpha and beta diversity,” Ecology,
vol. 64, no. 3, pp. 454–462, 1983.

[41] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine
Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[42] K. R. Moon, D. van Dijk, Z. Wang, S. Gigante, D. B. Burkhardt, W. S. Chen, K. Yim,
A. van den Elzen, M. J. Hirn, R. R. Coifman et al., “Visualizing structure and tran-
sitions in high-dimensional biological data,” Nature Biotechnology, vol. 37, no. 12, pp.
1482–1492, 2019.

[43] J. Berkson, “Application of the logistic function to bio-assay,” Journal of the American
Statistical Association, vol. 39, no. 227, pp. 357–365, 1944.

[44] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning.
Springer Series in Statistics New York, 2001, vol. 1, no. 10.

https://wrds-www.wharton.upenn.edu/pages/support/data-overview/wrds-overview-taq
https://wrds-www.wharton.upenn.edu/pages/support/data-overview/wrds-overview-taq
http://www.excelmodeling.com/Holden-and-Jacobsen-Daily-TAQ-and-Monthly-TAQ-Codes-2018-03-16.zip
http://www.excelmodeling.com/Holden-and-Jacobsen-Daily-TAQ-and-Monthly-TAQ-Codes-2018-03-16.zip
https://vidia.ccr.buffalo.edu/resources/698
https://financialengines.com/education-center/small-large-mid-caps-market-capitalization/
https://financialengines.com/education-center/small-large-mid-caps-market-capitalization/

77

[45] E. Fix and J. Hodges, “Discriminatory analysis, nonparametric discrimination: consis-
tency properties,” Technical Report 4, USAF School of Aviation Medicine, 1951.

[46] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regres-
sion Trees. Wadsworth & Brooks/Cole Advanced Books & Software, 1984.

[47] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[48] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” An-
nals of Statistics, pp. 1189–1232, 2001.

[49] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3,
pp. 273–297, 1995.

[50] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer feed-forward
neural networks,” Chemometrics and Intelligent Laboratory Systems, vol. 39, no. 1, pp.
43–62, 1997.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python
,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[52] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” NIPS 2017 Autodiff
Workshop, 2017.

[53] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings
of the 22nd acm sigkdd International Conference on Knowledge Discovery and Data
Mining, 2016, pp. 785–794.

[54] A. Abdiansah and R. Wardoyo, “Time complexity analysis of support vector machines
(svm) in libsvm,” International Journal Computer and Application, vol. 128, no. 3, pp.
28–34, 2015.

[55] A. Cutler, D. R. Cutler, and J. R. Stevens, “Random forests,” in Ensemble Machine
Learning. Springer, 2012, pp. 157–175.

[56] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 8, pp. 1798–1828, 2013.

[57] C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn, “Bias in random forest variable
importance measures: Illustrations, sources and a solution,” BMC Bioinformatics,
vol. 8, no. 1, p. 25, 2007.

[58] U.S. Securities and Exchange Commission, “Amendments to exchange act rule 10a-
1 and rules 201 and 200 (g) of regulation SHO,” https://www.sec.gov/divisions/
marketreg/tmcompliance/rules10a-200g-201-secg.htm, 2008.

https://www.sec.gov/divisions/marketreg/tmcompliance/rules10a-200g-201-secg.htm
https://www.sec.gov/divisions/marketreg/tmcompliance/rules10a-200g-201-secg.htm

78

APPENDICES

79

APPENDIX A

Additional Tables

CLEANED STUDY DATA FEATURES

Feature Data type Description

DATE String Day of the trade’s execution, MM/DD/YYYY.

SYM ROOT String Four character ticker symbol for the stock.

TIME M Integer Microseconds since midnight when trade executes.

QTime Integer Microseconds since midnight for the prevailing quote.

EX Char Exchange. All values are Q, indicating NASDAQ.

SIZE Integer Number of shares exchanged in the trade.

PRICE Float Trade’s per-share price in dollars.

TR SEQNUM Integer Unique, TAQ-specified value. Monotonically increasing.

NBO Float Prevailing best offer (ask) in dollars.

NBB Float Prevailing best bid in dollars.

NBOqty Integer Number of shares of the NBO limit order.

NBBqty Integer Number of shares of the NBB limit order.

midpoint Float Average of the NBO and NBB in dollars.

direction2 Float Pk − Pd in dollars.

ofr30 Float 0.7Ak + 0.3Bk in dollars.

bid30 Float 0.3Ak + 0.7Bk in dollars.

buysell S Integer True responses (from ITCH): 1 = sell, 0 = buy.

buysell LR Integer Predicted direction via LR method.

buysell EMO Integer Predicted direction via EMO method.

buysell CLNV Integer Predicted direction via CLNV method.

Table A.1: A complete listing of features included in final cleaned study data prior to any
feature engineering or standardization.

80

Distribution of Trade Prices Relative to Quotes

Position of Price Relative to Quotes Training Data Test Data

Pk > Ak Above the ask 1.88% 2.13%

Pk = Ak At the ask 32.84% 35.45%

(Pk < Ak) & (Pk > Mk) Between ask and midpoint 12.18% 10.46%

Pk = Mk At the midpoint 6.30% 4.27%

(Pk < Mk) & (Pk > Bk) Between midpoint and bid 12.15% 10.52%

Pk = Bk At the bid 32.73% 35.11%

Pk < Bk Below the bid 1.92% 2.06%

Total 100.0% 100.0%

Table A.2: Proportion of trades relatives to quotes for training and test data. We observe
that the training and test data share a very similar distribution, and most trades occur at
the quotes. The percentages in this table correspond to the visual representation of the
data in Figure 4.5.

CORRELATIONS OF microsTIME ANALOGUES

TR SEQNUM microsTIME microsQTime

TR SEQNUM 1.0 0.995376 0.995374

microsTIME 0.995376 1.0 0.999999

microsQTime 0.995374 0.999999 1.0

Table A.3: Correlation matrix for microsTIME analogues. All pairwise correlations for this
group of variables are at least 0.995. See Figure 4.7 for a visual representation.

81

CORRELATIONS OF buysell S ANALOGUES

direction2 buysell S buysell LR buysell EMO buysell CLNV

direction2 1.0 0.391199 0.460282 0.517889 0.495802

buysell S 0.391199 1.0 0.817980 0.827657 0.831066

buysell LR 0.460282 0.817980 1.0 0.912820 0.950601

buysell EMO 0.517889 0.827657 0.912820 1.0 0.962181

buysell CLNV 0.495802 0.831066 0.950601 0.962181 1.0

Table A.4: Correlation matrix for buysell S analogues. Pairwise correlations for the four
variables with prefix buysell are quite high. The fact that these correlations are high
indicate valuable predictive information, while also indicating that there is room for im-
provement in predictive accuracy. See Figure 4.7 for a visual representation.

CORRELATIONS OF STANDARDIZED PRICE ANALOGUES

std bid30 std NBO std midpoint std PRICE std NBB std ofr30

std bid30 1.0 0.998648 0.999883 0.996886 0.999727 0.999541

std NBO 0.998648 1.0 0.999325 0.996211 0.997173 0.999763

std midpoint 0.999883 0.999325 1.0 0.996960 0.999253 0.999888

std PRICE 0.996886 0.996211 0.996960 1.0 0.996339 0.996813

std NBB 0.999727 0.997173 0.999253 0.996339 1.0 0.998564

std ofr30 0.999541 0.999763 0.999888 0.996813 0.998564 1.0

Table A.5: Correlation matrix for standardized PRICE analogues. All pairwise correlations
for this group of variables are at least 0.996. See Figure 4.7 for a visual representation.

82

FIRST 27 OF FINAL 53 FEATURES INCLUDED IN FORESTS MODEL

Rank VIMP Feature Name Calculation

1 0.250855 sumOfBuysellColsi
(
buysell LRi + buysell EMOi + buysell CLNVi

)
2 0.183704 buysell EMOi buysell EMOi (original)

3 0.080638 priceRelNBOi

(
NBOi − PRICEi

NBOi − midpointi

)
4 0.067092 priceRelNBB

(
PRICEi − NBBi

midpointi − NBBi

)
5 0.062819 buysell CLNVi buysell CLNVi (original)

6 0.054997 priceRelQuotesi

(
PRICEi − NBBi

NBOi − NBBi

)
7 0.025455 microsDifTQi microsDifTQi (original)

8 0.017037 scld PRICE midpoint 0

(
PRICEi − midpointi

midpointi

)
9 0.016866 scld PRICE NBO 1

(
PRICEi − NBOi−1

NBOi−1

)
10 0.016163 scld PRICE NBO 1

(
PRICEi − NBOi

NBOi

)
11 0.015682 std SIZE

(
std SIZEi −medianstd SIZE

IQRstd SIZE

)
12 0.013538 scld SIZE NBBqty 0

(
SIZEi − NBBqtyi

NBBqtyi

)
13 0.012690 buysell LRi buysell LRi (original)

14 0.012321 dif1 microsTIMEi microsTIMEi − microsTIMEi−1

15 0.011083 scld PRICE NBO 2

(
PRICEi − NBOi−2

NBOi−2

)
16 0.010448 scld SIZE NBOqty 0

(
SIZEi − NBOqtyi

NBOqtyi

)
17 0.010235 dif2 microsTIME microsTIMEi − microsTIMEi−2

18 0.010107 scld PRICE ofr30 0

(
PRICEi − ofr30i

ofr30i

)
19 0.009521 scld PRICE NBO 3

(
PRICEi − NBOi−3

NBOi−3

)
20 0.006292 dif1 microsQTime microsQTimei − microsQTimei−1

21 0.006198 std TR SEQNUM

(
std TR SEQNUMi −medianstd TR SEQNUM

IQRstd TR SEQNUM

)
22 0.005646 scld PRICE NBO 4

(
PRICEi − NBOi−4

NBOi−4

)
23 0.005496 microsQTimei microsQTimei (original)

24 0.005442 microsTIMEi microsTIMEi (original)

25 0.005205 direction2i direction2i (original)

26 0.004570 scld PRICE bid30 1

(
PRICEi − bid30i−1

bid30i−1

)
27 0.004422 scld PRICE midpoint 1

(
PRICEi − midpointi−1

midpointi−1

)
Table A.6: First 27 features in the final random forests model containing 53 features.

83

LAST 26 OF FINAL 53 FEATURES INCLUDED IN FORESTS MODEL

Rank VIMP Feature Name Calculation

28 0.004403 scld PRICE ofr30 2

(
PRICEi − ofr30i−2

ofr30i−2

)
29 0.004344 scld PRICE ofr30 3

(
PRICEi − ofr30i−3

ofr30i−3

)
30 0.004205 scld PRICE ofr30 1

(
PRICEi − ofr30i−1

ofr30i−1

)
31 0.004006 scld PRICE ofr30 4

(
PRICEi − ofr30i−4

ofr30i−4

)
32 0.003876 scld PRICE NBB 1

(
PRICEi − NBBi−1

NBBi−1

)
33 0.003683 scld PRICE NBB 0

(
PRICEi − NBBi

NBBi

)
34 0.003659 dif1 PRICE PRICEi − PRICEi−1

35 0.003261 scld PRICE midpoint 4

(
PRICEi − midpointi−4

midpointi−4

)
36 0.003246 scld PRICE bid30 0

(
PRICEi − bid30i

bid30i

)
37 0.003073 scld PRICE midpoint 2

(
PRICEi − midpointi−2

midpointi−2

)
38 0.003057 dif4 priceRelQuotes priceRelQuotesi − priceRelQuotesi−4

39 0.002818 dif3 priceRelQuotes priceRelQuotesi − priceRelQuotesi−3

40 0.002752 scld PRICE bid30 4

(
PRICEi − bid30i−4

bid30i−4

)
41 0.002696 scld PRICE bid30 2

(
PRICEi − bid30i−2

bid30i−2

)
42 0.002671 scld PRICE NBB 2

(
PRICEi − NBBi−2

NBBi−2

)
43 0.002630 scld PRICE NBB 4

(
PRICEi − NBBi−4

NBBi−4

)
44 0.002619 scld PRICE midpoint 3

(
PRICEi − midpointi−3

midpointi−3

)
45 0.002370 scld PRICE bid30 3

(
PRICEi − bid30i−3

bid30i−3

)
46 0.002352 scld PRICE NBB 3

(
PRICEi − NBBi−3

NBBi−3

)
47 0.002202 dif1 priceRelQuotes priceRelQuotesi − priceRelQuotesi−1

48 0.002201 dif1 priceRelNBO priceRelNBOi − priceRelNBOi−1

49 0.002060 dif1 priceRelNBB priceRelNBBi − priceRelNBBi−1

50 0.001794 dif2 priceRelQuotes priceRelQuotesi − priceRelQuotesi−2

51 0.001715 dif2 priceRelNBB priceRelNBBi − priceRelNBBi−2

52 0.001689 dif2 priceRelNBO priceRelNBOi − priceRelNBOi−1

53 0.001249 ticks See Section 5.4.1

Table A.7: Last 26 features in the final random forests model containing 53 features.

	Applications of Machine Learning in High-Frequency Trade Direction Classification
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Prominent Prior Studies
	Why Machine Learning and Feature Engineering
	Relevance of This Work

	FINANCE BACKGROUND
	Traders and Dealers
	Orders and the Limit Order Book
	Prominence of High-Frequency Trading
	NASDAQ Details

	TRADE SIGNING LITERATURE
	Determining Trade Direction
	The Tick Test and the Quote Test
	The LR Method
	The EMO Method
	The CLNV Method
	Rosenthal's Method

	DATA: DESCRIPTION, CREATION, AND EXPLORATORY ANALYSIS
	Original Data Sources
	TAQ Data
	ITCH Data

	Data Engineering and Pre-Processing
	ITCH Data Cleaning
	Study Data Creation
	Train-Test Split

	Exploratory Data Analysis
	Financial Descriptions of Data
	Examination of Data for Predictive Modeling
	Insights Gained from EDA

	PREDICTION METHODS
	Modeling Methods Used
	Model Development Overview
	Assessment Schemes

	Stage 1: Initial Model Prototyping
	Baseline Model
	Initial Feature Engineering
	Initial Results

	Stage 2: Final Model Development
	Additional Feature Engineering
	Feature Selection
	Addressing Class Imbalance via Sampling
	Hyperparameter Tuning
	Specifications of Final Model

	FINAL RESULTS
	Design of Performance Assessment
	Final Model Results
	Insights into the Final RF Model

	FUTURE WORK AND CONCLUSION
	REFERENCES
	APPENDICES
	A Additional Tables

