
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Articles Publications 

2-28-2019 

Long-Term Evidence for Fire as an Ecohydrologic Threshold-Long-Term Evidence for Fire as an Ecohydrologic Threshold-

Reversal Mechanism on Woodland-Encroached Sagebrush Reversal Mechanism on Woodland-Encroached Sagebrush 

Shrublands Shrublands 

Christopher Jason Williams 
USDA, Agricultural Research Service 

Frederick B. Pierson 
USDA, Agricultural Research Service 

Sayjro K. Nouwakpo 
University of Nevada, Reno 

Patrick R. Kormos 
National Weather Service 

Osama Z. Al-Hamdan 
Texas A&M University 

Mark A. Weltz 
USDA, Agricultural Research Service 
Follow this and additional works at: https://digitalcommons.usu.edu/sagestep_articles 

 Part of the Plant Sciences Commons 

Recommended Citation Recommended Citation 
Williams, C.J., Pierson, F.B., Nouwakpo, S.K., Kormos, P.R., Al-Hamdan, O.Z., and Weltz, M.A. 2019. Long-
term evidence for fire as an ecohydrologic threshold-reversal mechanism on woodland-encroached 
sagebrush shrublands. Ecohydrology 12:e2086. doi: 10.1002/eco.2086. 

This Article is brought to you for free and open access by 
the Publications at DigitalCommons@USU. It has been 
accepted for inclusion in Articles by an authorized 
administrator of DigitalCommons@USU. For more 
information, please contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/sagestep_articles
https://digitalcommons.usu.edu/sagestep_publications
https://digitalcommons.usu.edu/sagestep_articles?utm_source=digitalcommons.usu.edu%2Fsagestep_articles%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/102?utm_source=digitalcommons.usu.edu%2Fsagestep_articles%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


R E S E A R CH AR T I C L E
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Abstract

Encroachment of sagebrush (Artemisia spp.) shrublands by pinyon (Pinus spp.) and

juniper (Juniperus spp.) conifers (woodland encroachment) induces a shift from

biotic‐controlled resource retention to abiotic‐driven loss of soil resources. This shift

is driven by a coarsening of the vegetation structure with increasing dominance of

site resources by trees. Competition between the encroaching trees and understory

vegetation for limited soil and water resources facilitates extensive bare intercanopy

area between trees and concomitant increases in run‐off and erosion that, over time,

propagate persistence of the shrubland‐to‐woodland conversion. We evaluated

whether tree removal by burning can decrease late‐succession woodland

ecohydrologic resilience by increasing vegetation and ground cover over a 9‐year

period after fire and whether the soil erosion feedback on late‐succession woodlands

is reversible by burning. To address these questions, we employed a suite of vegeta-

tion and soil measurements and rainfall simulation and concentrated overland flow

experiments across multiple plot scales on unburned and burned areas at two sage-

brush sites in the later stages of woodland succession. Prior to burning, tree cover

was approximately 28% at the sites, and more than 70% of the area at the sites

was intercanopy with depauperate understory vegetation and extensive bare ground

(52–60% bare soil and rock). Burning initially increased bare ground across fine

(<1 m2) to patch (tens of metres) scales, resulting in enhanced sediment availability

at the fine scale, sustained high run‐off and erosion within degraded intercanopies,

amplified run‐off and erosion from tree canopy areas, and amplified sediment delivery

across fine to patch scales. However, fire‐induced increases in grass cover over nine

growing seasons improved infiltration, limited run‐off and sediment delivery from the

fine scale, and reduced intercanopy run‐off and erosion at the patch scale. These

changes reflect a switch in vegetation structure, triggered by burning and subsequent

vegetation re‐establishment, and a shift to biotic control on run‐off and erosion across

spatial scales. The responses and persistence over the 9‐year period postfire at the two

sites demonstrate that fire can decrease woodland ecohydrologic resilience by altering
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plant community physiognomy and thereby can reverse the soil erosion feedback on

sagebrush shrublands in the later stages of woodland encroachment.

KEYWORDS

ecohydrologic resilience, hydrology, infiltration, juniper, pattern‐process, pinyon, prescribed fire,

rangeland, run‐off, sagebrush steppe, soil erosion feedback, structure–function, thresholds,

woodland encroachment

1 | INTRODUCTION

The conversion of sagebrush (Artemisia spp.) shrublands to pinyon (Pinus

spp.) and juniper (Juniperus spp.) woodlands has significantly altered a

vast expanse of the western United States (Davies et al., 2011; Miller

et al., 2011; Miller, Bates, Svejcar, Pierson, & Eddleman, 2005; Miller &

Rose, 1995; Miller, Tausch, McArthur, Johnson, & Sanderson, 2008;

Romme et al., 2009). Pinyon and juniper conifers extended their range

10‐fold across the western United States since the mid‐ to late‐1800s

(Miller & Tausch, 2001), and much of this domain was historically sage-

brush (Artemisia spp.) shrublands within the Great Basin Region (Davies

et al., 2011; Miller et al., 2011). Range expansion and infilling of pinyon

and juniper woodlands in the Great Basin are attributed to a combination

of factors including climate variability, increased atmospheric CO2, and

reduced fire activity associated with intensive land use and fuel reduc-

tions following human settlement (Miller et al., 2005; Miller et al., 2008;

Miller & Rose, 1995, 1999; Miller & Wigand, 1994; Romme et al.,

2009). Woodland encroachment on sagebrush shrublands poses a host

of negative ramifications to ecosystem services, including degradation

of understory vegetation and wildlife habitat, limited forage for wild

and domestic animals, and high rates of run‐off and soil loss (Bates,

Davies, & Sharp, 2011; Bates, Miller, & Svejcar, 2005; Coates et al.,

2017;Davies et al., 2011;Miller et al., 2005, 2011;Miller, Svejcar, &Rose,

2000; Petersen & Stringham, 2008; Petersen, Stringham, & Roundy,

2009; Pierson et al., 2010; Williams, Pierson, Al‐Hamdan, et al., 2014;

Williams, Pierson, Robichaud, et al., 2016; Williams, Pierson, Spaeth,

et al., 2016). Prescribed fire is commonly used to halt woodland encroach-

ment on sagebrush rangelands and thereby prevent or reverse shrubland‐

to‐woodland conversions (Bates & Davies, 2016; Bates, Sharp, & Davies,

2014;McIver et al., 2014;Miller et al., 2014; Pierson,Williams, Kormos, &

Al‐Hamdan, 2014; Pierson et al., 2015; Roundy, Miller, et al., 2014; Wil-

liams, Pierson, Al‐Hamdan, et al., 2014; Williams, Pierson, Robichaud,

et al., 2016; Williams, Pierson, Nouwakpo, et al., 2019). Wildfire activity

is also increasing on woodland‐encroached sagebrush shrublands

throughout the Great Basin due to woody fuel loading and changing cli-

mate (Board, Chambers, Miller, & Weisberg, 2018; Keane et al., 2008;

Miller & Tausch, 2001; Romme et al., 2009; Snyder et al., 2019).

Sagebrush sites in the later stages of woodland encroachment tee-

ter along a potentially irreversible ecohydrological tipping point

(Petersen et al., 2009; Williams, Pierson, Al‐Hamdan, et al., 2014;

Williams, Pierson, Spaeth, et al., 2016). The progression of pinyon and

juniper dominance of sagebrush shrublands has been characterized into

three phases (Phases I–III; see Miller et al., 2005; Miller et al., 2008). In

Phase I, pinyon and juniper cover is usually ≤10%, and sagebrush and

understory grasses and forbs (herbaceous cover) exert the dominant

control on site ecological processes. Under these conditions, sagebrush

islands and well‐vegetated interspaces between shrubs and trees inter-

cept rainfall and isolated overland flow and promote infiltration and soil

retention. Conservation of these resources enhances vegetation pro-

ductivity, soil stability, and accumulation of litter, organic matter, and

soil nutrients. Tree cover increases with time in the absence of distur-

bance as trees outcompete shrubs and herbaceous plants for available

water and soil resources. Trees significantly affect site‐level ecological

processes once tree cover approaches 10–30% (Phase II). In Phase II,

the shrub layer and understory herbaceous cover substantially decline

due to competition with trees; and bare ground, run‐off, and erosion

increase within interspaces. Continued competition for water and soil

resources culminates in a tree‐dominated woodland landscape (Phase

III). Under these conditions, tree cover commonly exceeds 30%, more

than 75% of the shrub layer is lost, native herbaceous cover is limited,

and intercanopy bare ground is extensive (often >50–60%). Phase III

is perpetuated by tree dominance of site resources and high rates of

run‐off and long‐term soil loss from well‐connected bare intercanopy

areas (the soil erosion feedback; Miller et al., 2005; Miller et al., 2008;

Petersen et al., 2009; Williams, Pierson, Al‐Hamdan, et al., 2014;

Williams, Pierson, Spaeth, et al., 2016). The ecological transition from

Phases II to III and the associated soil erosion feedback on these

landscapes are considered difficult to reverse without substantial

management intervention, inclusive of seeding and tree removal

(Bates et al., 2014; Roundy, Miller, et al., 2014; Williams, Pierson,

Al‐Hamdan, et al., 2014; Williams, Pierson, Spaeth, et al., 2016).

Cover of sagebrush, native grasses, and forbs and respective seed

sources are often insufficient in Phase III for re‐establishing these

vegetation covers simply through tree removal (Bates et al., 2014;

Davies, Bates, & Boyd, 2019). Thus, sites in Phase III are particularly

susceptible to long‐term degradation following wildfire that removes

limited existing cover and exacerbates and perpetuates high run‐off

and erosion rates (Davies et al., 2019; Miller, Chambers, Pyke,

Pierson, & Williams, 2013; Pierson et al., 2011; Pierson & Williams,

2016; Williams, Pierson, Robichaud, & Boll, 2014).

Fire is a natural disturbance component of well‐vegetated intact

sagebrush communities (Wright & Bailey, 1982). Fire return periods

(see Miller et al., 2011) are about 30–50 years for high‐elevation pro-

ductive sagebrush sites with ample annual precipitation. Fires are gen-

erally less frequent, perhaps every 100 or more years, for warmer and

drier sagebrush sites at lower elevations. Fire frequencies have
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increased in recent years for sagebrush sites throughout much of the

western United States due to invasion by the fire‐prone annual cheat-

grass (Bromus tectorum L.; Balch, Bradley, D'Antonio, & Gómez‐Dans,

2013; Brooks et al., 2004; Knapp, 1996; Miller et al., 2011). Regardless,

these ecosystems evolved with periodic burning and re‐establishment

of sagebrush and native bunchgrasses and forbs. Plot‐ to hillslope‐scale

run‐off and erosion rates are low for sagebrush rangelands due to lim-

ited distribution of bare patches and generally decrease with increasing

spatial scale on well‐vegetated sites (Pierson et al., 2008; Pierson,

Moffet,Williams, Hardegree, & Clark, 2009; Pierson, Van Vactor, Black-

burn, & Wood, 1994). Removal of vegetation and ground cover by fire

on these rangelands temporarily increases run‐off and erosion rates

(Pierson & Williams, 2016). Amplified plot‐ to hillslope‐scale run‐off

and erosion rates postfire result from increased exposure of surface

soils to rainfall, rapid run‐off generation, formation of concentrated flow

over contiguous bare areas, elevated sediment detachment and trans-

port capacity, and connectivity of run‐off and erosion processes across

spatial scales (Pierson et al., 2009, 2008, 2011; Pierson, Carlson, &

Spaeth, 2002;Williams, Pierson, Kormos, et al., 2016;Williams, Pierson,

Robichaud, &Boll, 2014). This structural and functional process connec-

tivity (pattern‐process) declines over time as bare patches fill in with

vegetation and ground cover, infiltration improves, and sediment pro-

duction becomes more limited (Pierson et al., 2011; Pierson &Williams,

2016; Williams, Pierson, Al‐Hamdan, et al., 2014; Williams, Pierson,

Robichaud, & Boll, 2014). Sagebrush does not resprout following burn-

ing, and therefore, re‐establishment of sagebrush cover postfire

depends on seed availability, often taking 20 to >50 years (Harniss &

Murray, 1973; Miller et al., 2013; Ziegenhagen & Miller, 2009). Herba-

ceous canopy cover commonly returns to prefire levels on sagebrush

sites within several years postfire (Miller et al., 2013). Recovery of both

the amount and distribution of ground cover can take longer and is

highly variable (Miller et al., 2013). Dissipation of fire‐induced increases

in run‐off rates often occurs within the first few years postfire (Pierson

et al., 2009, 2008, 2011; Williams, Pierson, Robichaud, & Boll, 2014).

Fire‐induced increases in erodibility usually persist longer than those

for run‐off, but erosion rates for commonly occurring stormsmay return

to prefire levels within 3 years due to limited run‐off connectivity across

spatial scales (Pierson & Williams, 2016; Williams, Pierson, Kormos,

FIGURE 1 Photographs of hillslope‐scale vegetation at the Marking Corral (a–c) and Onaqui (d–f) study sites showing tree islands and the
intercanopy in unburned areas (a and d) and within burned treatments immediately after fire (b and e) and 8‐ to 9‐year postfire (c and f)
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et al., 2016). Overall risk of fire‐induced elevated run‐off and erosion

during rare high‐intensity or high‐magnitude storms remains until vege-

tation and ground cover amounts and distribution return to near prefire

levels (Pierson et al., 2011; Pierson &Williams, 2016;Williams, Pierson,

Robichaud, & Boll, 2014). This oscillating cycle of fire, elevated run‐off

and erosion risks, and postfire recovery is therefore naturally occurring

every 30–100+ years on intact sagebrush rangelands in theGreat Basin.

Williams, Pierson, Al‐Hamdan, et al., (2014) proposed that wildfire

may serve as an ecohydrologic threshold‐reversal mechanism on

degraded sagebrush rangelands in the later stages of woodland

encroachment and thus reverse the soil erosion feedback. The authors

suggested that fire on these landscapes acts to reduce the

ecohydrologic resilience propagating woodland persistence and resets

the ecohydrologic successional trajectory. In this conceptual model,

fire‐induced mortality of trees frees up soil water for herbaceous vege-

tation (e.g., Bates,Miller, & Svejcar, 2000; Bates, Svejcar, &Miller, 2002;

Roundy, Young, et al., 2014). Infilling of bare intercanopy patches with

herbaceous vegetation over time postfire improves infiltration, limits

run‐off and sediment detachment, and disrupts hydrologic and erosion

process connectivity along the hillslope, consistent with postfire recov-

ery of sagebrush communities (Pierson et al., 2011; Pierson &Williams,

2016;Williams, Pierson, Robichaud, & Boll, 2014).Williams, Pierson, Al‐

Hamdan, et al., (2014) demonstrated that fire‐induced mortality of

western juniper (J. occidentails Hook.) increased herbaceous productiv-

ity in the bare intercanopy on a sagebrush site in the later stages (late

Phases II–III) of woodland encroachment and thereby decreased bare

ground connectivity, improved infiltration, and reduced concentrated

flow erosion. That study spanned a period of two years postfire, and

the authors acknowledged that the short‐term nature of the study lim-

ited inferences on fire as a long‐term ecohydrologic threshold‐reversal

mechanism on late‐succession woodlands. Tree removal is commonly

employed to retain or re‐establish sagebrush vegetation and the associ-

ated ecohydrologic function (Pierson et al., 2013; Pierson et al., 2015;

Pierson et al., 2014; Pierson, Bates, Svejcar, &Hardegree, 2007; Roundy

et al., 2017; Williams, Pierson, Kormos, et al., 2019; Williams, Pierson,

Al‐Hamdan, et al., 2014;Williams, Pierson, Nouwakpo, et al., 2019;Wil-

liams, Pierson, Spaeth, et al., 2016), but results can vary substantially

depending on the phase (vegetation conditions) of woodland encroach-

ment at the time of treatment and initial impacts on vegetation during

treatment application (Bates et al., 2014; Miller et al., 2005; Miller

et al., 2013). Prescribed burning can result in mortality of the limited

sagebrush and understory native bunchgrasses and prolong sparse

understory conditions (Bates et al., 2011, 2014; Bates & Davies, 2016;

Bates, Miller, & Davies, 2006;Miller et al., 2013), temporarily increasing

run‐off and erosion rates (Pierson et al., 2013; Pierson et al., 2015; Wil-

liams, Pierson, Al‐Hamdan, et al., 2014; Williams, Pierson, Robichaud,

et al., 2016; Williams, Pierson, Spaeth, et al., 2016). Mechanical tree‐

removal practices are also often used to reduce pinyon and juniper tree

cover on woodland‐encroached sagebrush sites (Bates et al., 2000;

Bybee et al., 2016; Cline et al., 2010; Pierson et al., 2007; Pierson

et al., 2013; Pierson et al., 2015; Miller et al., 2014; Roundy, Miller,

et al., 2014; Roundy, Young, et al., 2014; Roundy et al., 2017; Williams,

TABLE 1 Topography, climate, soil, tree cover, and understory vegetation at the Marking Corral and Onaqui sites before prescribed burning

Marking Corral, Nevada, USA Onaqui, Utah, USA

Woodland community Single‐leaf pinyona/Utah juniperb Utah juniperb

Elevation (m)—Aspect 2,250—W to SW facing 1,720—N facing

Mean ann. precip. (mm) 307c 312c

Mean ann. air temp. (°C) 6.5d 8.9e

Slope (%) 10–15 10–15

Parent rock Andesite and rhyolitef Sandstone and limestoneg

Soil association Segura‐Upatad‐Cropperf Borvantg

Depth to bedrock (m) 0.4–0.5f 1.0‐1.5g

Soil surface texture Sandy loam, 66% sand, 30% silt, 4% clay Sandy loam, 56% sand, 37% silt, 7% clay

Tree canopy cover (%)h,i 21a, 6b 28b

Trees per hectareh,i 465a, 114b 532b

Mean tree height (m)h,i 2.3a, 1.9b 2.3b

Common understory plants Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young; Artemisia nova A. Nelson; Artemisia tridentata

Nutt. ssp. vaseyana (Rydb.) Beetle; Purshia spp.; Poa secunda J. Presl; Pseudoroegneria spicata (Pursh) A.

Löve; and various forbs

Note. Data from Pierson et al. (2010) except where indicated by footnote.
aPinus monophylla Torr. & Frém. bJuniperus osteosperma [Torr.] Little. cEstimated from 4‐km grid for years 1971–2015 from Prism Climate Group (2017).

Pierson et al. (2010) estimates (351 mm Marking Corral and 345 mm Onaqui) were from Prism Climate Group (2009) for years 1971–2000. Pierson et al.

(2015) estimates (382 mm Marking Corral and 468 mm Onaqui) were for years 1980–2011 based on Daymet (Thornton et al., 2012). dEstimated from 4‐
km grid for years 1971–2015 from Prism Climate Group (2017). Pierson et al. (2010) estimate (7.2°C) was for years 1928–1958 from Western Regional Cli-

mate Center (WRCC), Station 264199‐2, Kimberly, Nevada (WRCC, 2009). eEstimated from 4‐km grid for years 1971–2015 from Prism Climate Group (2017).

Pierson et al. (2010) estimate (7.5°C) was for years 1972–2005 fromWRCC, Station 424362‐3, Johnson Pass, Utah (WRCC, 2009). fNatural Resources Con-

servation Service (NRCS) (2007). gNRCS (2006). hData from Pierson et al. (2010) but restricted to the area subsequently burned. iTree data for trees≥1m high.
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Pierson, Kormos, et al., 2019), but these practices can leave numerous

residual juvenile trees that re‐establish tree dominance over time (Bates

et al., 2005; Bates, Svejcar, Miller, & Davies, 2017; Miller et al., 2005;

Miller et al., 2013; Tausch & Tueller, 1997). Vegetation and ground

cover recruitment into sparse bare intercanopy areas on sagebrush sites

in the later stages of woodland succession is considered difficult with

any treatment (Bates et al., 2014; Bates et al., 2017), as is the reversal

of degraded ecohydrologic function and high erosion rates (Williams,

Pierson, Kormos, et al., 2019).

In this study, we revisit the suggestion by Williams, Pierson,

Al‐Hamdan, et al. (2014) that fire can act as an ecohydrologic

threshold‐reversal mechanism and thereby reduce the ecohydrologic

resilience propagating long‐term pinyon and juniper woodland persis-

tence on sagebrush shrublands. As in the shorter termWilliams, Pierson,

Al‐Hamdan, et al. (2014) study, we focus on the key switch necessary

for this change, a fire‐induced structural shift in the plant community

and an ensuing functional shift in the dominant run‐off and erosion pro-

cesses with postfire vegetation and ground cover recovery. The switch

induces a reversal of abiotic‐controlled soil erosion for the late‐

succession woodland state to biotic‐controlled soil retention, indicative

of progression to the sagebrush‐dominated structural‐functional state.

We apply a suite of vegetation and soil measurements and rainfall

simulation and concentrated overland flow experiments across multiple

plot scales on unburned and burned areas at two sagebrush rangeland

sites in the later stages of woodland succession to address two primary

questions: (a) Can fire decrease late‐succession woodland ecohy-

drologic resilience by increasing vegetation and ground cover over a

9‐year period after fire? and (b) Is the soil erosion feedback on

late‐succession woodlands reversible by burning? This study follows

on previous investigations at the study sites inclusive of woodland

encroachment impacts on run‐off and erosion (Pierson et al., 2010),

initial impacts of burning on infiltration, run‐off, and erosion (Pierson

et al., 2014; Pierson et al., 2015; Williams, Pierson, Robichaud, et al.,

2016), and the long‐term impacts of burning on infiltration and erosion

at the fine spatial scale (<1m;Williams, Pierson, Nouwakpo, et al., 2019)

and on run‐off and erosion at the patch scale (tens of metres;

Nouwakpo et al., 2019). The current study pulls together findings

across these studies spanning fine to patch spatial scales and the

FIGURE 2 Photographs of bare interspace (a), vegetated interspace (b), shrub coppice (c), and tree coppice (d) small plots (0.5 m2) in unburned
areas at Marking Corral; paired large plots (13 m2) with the Colorado State University type rainfall simulator within the burn (Year‐1) at Marking
Corral (e); the Walnut Gulch Rainfall Simulator with a four‐nozzle oscillating arm and wind shields (f); and a borderless concentrated overland flow
plot (9 m2) within the unburned intercanopy at Onaqui (g)
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immediate to long‐term impacts of burning to present a collective exam-

ination of whether fire can serve as an ecohydrologic threshold‐reversal

mechanism on sagebrush sites in the later stages of woodland

encroachment.

2 | METHODS

2.1 | Study area

Experiments were conducted in two woodlands (Figure 1) in the Great

Basin as part of a larger study, the Sagebrush Treatment Evaluation

Project (SageSTEP, McIver & Brunson, 2014; McIver et al., 2014).

Our substudy was implemented in 2006 prior to tree removal at a

single‐leaf pinyon—Utah juniper woodland (P. monophyllaTorr. & Frém.

‐ J. osteosperma [Torr.] Little.) (Marking Corral site) and a Utah juniper

woodland (Onaqui) selected from the SageSTEP study network. The

Marking Corral site (Figure 1a–c; 39°27′17″N latitude, 115°06′51″

W longitude) is located in the Egan Range in east central Nevada,

approximately 27‐km northwest of city of Ely. The Onaqui site

(Figure 1d–f; 40°12′42″N latitude, 112°28′24″W longitude) is located

in the Onaqui Mountains in Utah south of the Great Salt Lake, approx-

imately 76‐km southwest of Salt Lake City. The study sites are man-

aged by the U.S. Department of the Interior, Bureau of Land

Management for grazing use, but grazing has been excluded from both

sites since autumn 2005 in cooperation with SageSTEP. Topography,

TABLE 2 Fine‐scale canopy cover, ground cover, and surface roughness variables measured on unburned and burned small rainfall simulation
plots (0.5 m2) at the Marking Corral and Onaqui sites 1 (Year‐1), 2 (Year‐2), and 9 (Year‐9) years following burning

Year‐1 Year‐2

Unburned Burned Unburned

Interspace

Shrub

coppice

Tree

coppice Interspace

Shrub

coppice

Tree

coppice Interspace

Shrub

coppice

Tree

coppice

Marking Corral

Total canopy cover (%)a 33.3 bc 92.8 d 6.5 a 30.0 b 53.1 c 3.5 a 17.1 a 76.2 c 9.8 a

Shrub canopy cover (%) 0.3 a 58.9 b 2.6 a 0.1 a 1.2 a 0.0 a 0.0 a 14.3 b 0.0 a

Grass canopy cover (%) 27.9 c 24.8 c 3.2 ab 12.1 b 8.6 ab 0.5 a 6.9 ab 3.3 ab 0.0 a

Forb canopy cover (%) 2.7 a 3.2 a 0.2 a 16.0 b 34.3 c 2.9 a 0.5 a 4.8 ab 0.2 a

Total ground cover (%)b 27.3 a 83.6 b 99.5 c 13.0 a 35.3 a 75.4 b 10.8 a 81.9 d 97.4 d

Litter cover (%) 24.6 a 79.3 b 88.1 b 11.2 a 33.6 a 74.7 b 6.8 a 77.2 bc 96.7 c

Rock cover (%) 28.6 c 4.5 ab 0.4 a 38.4 c 10.0 b 2.7 ab 36.4 cd 6.3 abc 0.8 a

Bare ground (%)c 72.7 c 16.4 b 0.5 a 87.0 c 64.7 c 24.6 b 89.2 d 18.1 a 2.6 a

Ash (%) ‐ ‐ ‐ 0.0 6.0 12.3 ‐ ‐ ‐

Litter depth (mm) <1 a 2 a 40 c <1 a 2 a 23 b <1 a <1 a 38 c

Surface roughness (mm) 9 a 14 b 12 ab 8 a 8 a 12 ab 8 a 14 b 10 ab

No. of plots 7 5 8 8 4 8 4 2 4

Onaqui

Total canopy cover (%)a 19.4 bc 68.6 d 21.7 c 6.6 ab 27.8 c 1.7 a 11.1 a 58.4 c 16.0 a

Shrub canopy cover (%) 0.0 a 50.5 c 0.0 a 0.0 a 10.1 b 0.0 a 0.0 a 49.5 b 0.0 a

Grass canopy cover (%) 5.7 a 9.8 ab 17.4 b 2.7 a 6.9 a 1.0 a 2.9 a 1.9 a 7.4 a

Forb canopy cover (%) 7.3 b 2.9 ab 0.5 a 0.4 a 0.8 a 0.4 a 7.0 b 2.5 ab 1.0 a

Total ground cover (%)b 9.5 a 61.4 b 91.6 c 5.5 a 25.3 a 80.6 bc 13.5 a 69.3 c 91.7 d

Litter cover (%) 6.0 ab 57.8 c 80.6 c 4.0 a 21.9 b 80.4 c 5.6 a 66.3 c 81.1 c

Rock cover (%) 38.1 bc 20.5 b 1.4 a 55.5 c 30.1 b 2.9 a 60.8 c 18.8 ab 3.2 a

Bare ground (%)c 90.5 dc 38.6 b 8.4 a 94.5 c 74.7 c 19.4 ab 86.5 d 30.7 b 8.3 a

Ash (%) ‐ ‐ ‐ 0.8 0.8 7.4 ‐ ‐ ‐

Litter depth (mm) <1 a 2 a 18 b <1 a 1 a 19 b <1 a 3 a 13 b

Surface roughness (mm) 11 a 13 a 12 a 9 a 11 a 12 a 11 b 12 b 9 ab

No. of plots 3 3 4 10 5 5 3 3 4

Note. Means within a row by study year (Year‐1, Year‐2, or Year‐9) followed by a different lower case letter are significantly different (P < 0.05).
aExcludes tree canopy removed for rainfall simulation. bIncludes cryptogam, litter, live and dead basal plant, and woody dead covers. cIncludes ash, bare soil,

and rock covers.
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climate, soils, and vegetation attributes for the sites are shown in

Table 1. Annual precipitation for both sites over our full 10‐year study

periodwas near or exceeded the respective long‐term average (Table 1)

most years, with only 2–3 years of more than 15% below normal (Wil-

liams, Pierson, Kormos, et al., 2019;Williams, Pierson, Nouwakpo, et al.,

2019). Tree cover at both sites averaged near 28% prior to burning

(Table 1). The vegetation and ground cover structure before prescribed

fire at both sites was typical of degraded sagebrush steppe in the later

stages of woodland encroachment with isolated tree cover and litter‐

covered tree islands and a degraded intercanopy understory with

extensive bare ground (Figure 1a,d; Pierson et al., 2010). Prior to burn-

ing, litter‐covered mounds around trees extended, on average, 2.5 and

2.2 m from tree bases at Marking Corral and Onaqui, respectively, and

litter mass underneath trees averaged 17.4 kg m−2 at Marking Corral

and 14.3 kg m−2 at Onaqui (Pierson et al., 2010). Soil bulk density over

0‐ to 5‐cm depth prefire at Marking Corral averaged 1.03, 1.02, and

1.26 g cm−3, respectively, in areas under trees, under shrubs, and in

interspaces between trees and shrubs (Pierson et al., 2010). The same

measures were 0.90, 1.05, and 1.08 g cm−3, respectively, at Onaqui

(Pierson et al., 2010). A prescribed fire was applied by the Bureau of

Land Management at both sites in late summer 2006. Burn severity

was not assessed after the fires, but persistence of live and scorched

needle cover on trees, burned shrub skeletons, and blackened and

residual litter and woody debris at both sites were indicative of low to

moderate burn severities (Figure 1b,e; Parsons, Robichaud, Lewis,

Napper, & Clark, 2010). Tree canopy scorch averaged 50–75% at

Marking Corral and 75–99% at Onaqui (Pierson et al., 2010).

2.2 | Experimental design

Experimental plots were established to characterize fire effects on

vegetation, ground surface conditions, and run‐off and erosion pro-

cesses over fine to hillslope scales and to quantify vegetation and soil

TABLE 2 Continued

Year‐2 Year‐9

Burned Unburned Burned

Interspace
Shrub
coppice

Tree
coppice Interspace

Shrub
coppice

Tree
coppice Interspace

Shrub
coppice

Tree
coppice

Marking Corral

Total canopy cover (%)a 23.9 a 43.6 b 11.1 a 37.5 ab 94.8 d 13.2 a 65.4 cd 56.0 bc 53.3 bc

Shrub canopy cover (%) 0.0 a 0.0 a 0.0 a 0.3 a 66.9 b 1.4 a 3.5 a 1.2 a 0.0 a

Grass canopy cover (%) 9.4 b 2.1 a 0.1 a 35.6 b 23.3 ab 5.4 a 61.6 c 50.0 bc 53.0 bc

Forb canopy cover (%) 0.1 a 18.1 b 7.0 ab 0.5 a 2.9 b 0.1 a 0.0 a 0.0 a 0.0 a

Total ground cover (%)b 12.6 a 34.3 b 67.9 c 13.0 a 69.8 b 82.2 b 21.8 a 39.4 a 77.0 b

Litter cover (%) 7.5 a 29.1 a 67.1 b 4.8 a 55.8 cd 79.5 d 14.9 ab 32.7 bc 70.2 d

Rock cover (%) 51.2 d 21.8 bc 10.4 ab 7.8 ab 6.1 ab 2.2 a 13.7 b 5.6 ab 5.6 ab

Bare ground (%)c 87.4 d 65.7 c 32.1 b 87.1 b 30.2 a 17.8 a 78.2 b 60.6 b 23.0 a

Ash (%) 0.0 0.0 1.4 ‐ ‐ ‐ ‐ ‐ ‐

Litter depth (mm) <1 a <1 a 17 b 1 a 6 a 34 c 3 a 12 ab 27 bc

Surface roughness (mm) 8 a 8 a 10 ab 11 a 15 a 12 a 12 a 11 a 12 a

No. of plots 8 4 8 6 4 8 6 4 8

Onaqui

Total canopy cover (%)a 14.3 a 32.2 b 3.4 a 23.8 a 76.5 c 38.7 ab 63.1 c 89.1 c 58.0 bc

Shrub canopy cover (%) 0.1 a 1.0 a 0.0 a 0.0 a 47.0 b 0.5 a 1.4 a 5.4 a 1.1 a

Grass canopy cover (%) 6.1 a 9.3 a 0.6 a 9.7 a 12.4 a 21.3 ab 37.3 bc 48.6 c 34.9 bc

Forb canopy cover (%) 7.3 b 7.6 b 1.9 a 7.3 a 6.3 a 4.7 a 11.8 a 7.1 a 11.1 a

Total ground cover (%)b 13.0 a 33.1 b 72.0 c 13.8 a 46.5 c 72.4 d 24.9 ab 34.7 bc 42.3 c

Litter cover (%) 9.7 a 28.8 b 72.0 c 7.8 a 33.9 b 69.6 c 19.7 b 20.1 b 33.8 b

Rock cover (%) 53.2 c 28.3 b 5.3 a 40.2 b 19.8 ab 6.7 a 36.9 b 17.8 ab 5.3 a

Bare ground (%)c 87.0 d 66.9 c 28.0 b 86.2 b 53.5 b 27.6 a 75.1 b 65.3 b 57.7 b

Ash (%) 0.1 0.0 6.9 ‐ ‐ ‐ ‐ ‐ ‐

Litter depth (mm) <1 a <1 a 12 b 1 a 6 a 29 b 4 a 4 a 9 a

Surface roughness (mm) 8 a 9 ab 12 b 10 a 14 b 10 a 12 ab 14 b 14 b

No. of plots 10 5 5 6 6 8 10 5 5
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effects on cross‐scale run‐off and erosion. Site characterization plots

(30 m × 33 m) were used to quantify fire effects on hillslope‐scale veg-

etation and ground cover. Three site characterization plots were ran-

domly located within the burn treatment areas at both sites prior to

burning (Pierson et al., 2010) and were sampled for tree cover, under-

story vegetation, and ground cover prefire in 2006 (Year‐0, unburned)

and for understory vegetation and ground cover postfire in 2007

(Year‐1, burned) and 2015 (Year‐9, burned). Small plots (0.7 m

× 0.7 m) were used to quantify fire impacts on fine‐scale vegetation,

ground cover, soils, infiltration, run‐off, and erosion by rainsplash

and sheetflow processes. Small plots were located and installed in

control and burn treatment areas at both sites in 2006 prior to burning

as described in Pierson et al. (2010) and were left in place for subse-

quent sampling in 2007 (Year‐1), 2008 (Year‐2), and 2015 (Year‐9).

Small plots were installed in interspaces between shrub and tree can-

opies and in areas underneath shrub (shrub coppice) and tree (tree

coppices) canopies to partition microsite cover/soil differences and

respective run‐off and erosion contributions to the patch scale

(Figure 2a–d; Pierson et al., 2010; Williams, Pierson, Al‐Hamdan, et al.,

2014). The number of small plots sampled for each microsite (inter-

space, shrub coppice, and tree coppice) and treatment (unburned

and burned) combination in each year at each site is shown in

Tables 2–4. Large plots (2 m wide × 6–6.5 m long) were employed

to quantify fire impacts on vegetation, soils, run‐off, and erosion from

combined rainsplash, sheetflow, and concentrated flow processes

occurring at the patch scale (Pierson et al., 2007; Pierson et al.,

2010; Williams, Pierson, Al‐Hamdan, et al., 2014). Large plots were

installed and sampled within untreated areas (burn area prior to treat-

ment) in 2006 (Year‐0, unburned), within the burned areas in 2007

(Year‐1, burned), and within control (Year‐9, unburned) and burned

areas in 2015 (Year‐9, burned). Large plots were installed within

shrub‐interspace zones (intercanopy area outside of tree canopy influ-

ence) between trees and within tree zones (areas underneath and

immediately adjacent to tree canopies), with the long axis perpendicu-

lar to the hillslope contour (Figure 2e; see Nouwakpo et al., 2019;

Pierson et al., 2010). The number of large plots sampled for each

microsite (shrub‐interspace zone and tree zone) and treatment

(unburned and burned) combination in each year at each site is shown

in Tables 5–8. Concentrated flow experiments (Figure 2g) were used

to evaluate fire effects on vegetation, ground cover, and run‐off and

erosion from concentrated overland flow or rills (Al‐Hamdan, Pierson,

Nearing, Stone, et al., 2012; Al‐Hamdan, Pierson, Nearing, Williams,

et al., 2012; Al‐Hamdan et al., 2013; Pierson et al., 2007; Pierson

et al., 2010; Williams, Pierson, Al‐Hamdan, et al., 2014). Concentrated

flow experiments (2 m wide × 4.5 m long) were conducted on each

large rainfall‐simulation plot immediately following rainfall simulations

within untreated areas (burn area prior to treatment) in 2006 (Year‐0,

unburned) and in burned areas in 2007 (Year‐1, burned). Concentrated

flow experiments were conducted as independent experiments (with-

out rainfall simulations) in unburned control (unburned) and burned

TABLE 3 Fine‐scale run‐off, sediment, and soil water repellency response variables measured for dry‐ and wet‐run rainfall simulations (0.5 m2) in
unburned and burned areas at the Marking Corral study site 1 (Year‐1), 2 (Year‐2), and 9 (Year‐9) years following burning

Marking Corral

Year‐1 Year‐2

Unburned Burned Unburned

Interspace
Shrub
coppice

Tree
coppice Interspace

Shrub
coppice

Tree
coppice Interspace

Shrub
coppice

Tree
coppice

Dry run simulation (64 mm hr−1, 45 min)

Cumulative run‐off (mm) 6 b 0 a 0 a 3 ab 0 a 7 b 6 ab 0 a 0 a

Cumulative sediment (g m−2)a 7 a ‐ ‐ 6 a ‐ 17 a 10 a ‐ ‐

Sediment/run‐off (g m−2 · mm−1)a 0.89 a ‐ ‐ 0.95 a ‐ 1.32 a 0.88 a ‐ ‐

Mean soil water repellency (WDPT; s)b ‐ ‐ 48 a ‐ ‐ 65 a ‐ ‐ 34 a

Maximum strength of soil water repellency (s)c ‐ ‐ 80 ‐ ‐ 91 ‐ ‐ 98

Depth of max soil water repellency (cm)d ‐ ‐ 1 ‐ ‐ 3 ‐ ‐ 0

Percent of plots with run‐off 57 0 0 38 0 63 50 0 0

Wet run simulation (102 mm hr−1, 45 min)

Cumulative run‐off (mm) 31 bc 3 a 0 a 35 c 8 a 21 b 41 c 0 a 0 a

Cumulative sediment (g m−2)a 23 a 6 a ‐ 41 a 48 a 46 a 42 a ‐ ‐

Sediment/run‐off (g m−2 · mm−1)a 0.66 a 1.01 a ‐ 1.10 a 2.07 a 1.96 a 0.90 a ‐ ‐

Percent of plots with run‐off 100 40 0 100 50 88 100 0 0

No. of plots 7 5 8 8 4 8 4 2 4

Note. Means within a row by study year (Year‐1, Year‐2, or Year‐9) followed by a different lower case letter are significantly different (P < 0.05).
aMeans based solely on plots that generated run‐off. bMean soil water repellency for 0‐ to 5‐cm soil depth assessed as water drop penetration time (WDPT,

300 s maximum). Soils were classified slightly water repellent if WDPT ranged 5 to 60 s and strongly water repellent if WDPT exceeded 60 s (Bisdom, Dek-

ker, & Schoute, 1993). cAverage persistence of soil water repellency measured at the most water repellent soil layer over 0‐ to 5‐cm soil depth assessed as

WDPT. dSoil depth with the highest average soil water repellency assessed as WDPT.
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(burned) areas in 2008 (Year‐2) and 2015 (Year‐9). Concentrated flow

experiments in Year‐0 and Year‐1 had plot borders given the experi-

ments were conducted on rainfall simulation plots (Figure 2e) after

rainfall experiments concluded (Pierson et al., 2015, 2010). The con-

centrated flow plots conducted in Year‐2 and Year‐9, independent of

rainfall simulation plots, did not include plot borders (Figure 2g;

Pierson et al., 2015; Williams, Pierson, Nouwakpo, et al., 2019). Plot

installation methods for concentrated flow plots conducted in Year‐

0, Year‐1, and Year‐2 are provided in Pierson et al. (2015, 2010) and

installations methods for those in Year‐9 are provided in Williams,

Pierson, Nouwakpo, et al., (2019). The number of concentrated flow

plots (Table 9) sampled for each microsite (shrub‐interspace zone

and tree zone) and treatment (unburned and burned) combination in

each year at each site is consistent with the number of large rainfall

simulation or concentrated flow plots as shown in Tables 5 and 6.

Trees were trimmed or removed from all rainfall simulation and con-

centrated flow plots immediately preceding experiments to minimize

canopy interference with rainfall and plot sampling. Shrubs were

retained on plots but were trimmed along plot boundaries to prevent

stemflow from exiting or entering the plot during rainfall simulations.

2.3 | Site characterization: Hillslope scale

Hillslope‐scale tree cover and understory canopy and ground cover

were estimated from measurements on the 30 × 33‐m site character-

ization plots. All live pinyon and juniper trees >0.5‐m height on each

site characterization plot were tallied in Year‐0 prior to burning. Each

tree was measured for height and live crown radius. The live crown

radius for each tree was calculated as one‐half the average of mea-

sured minimum and maximum crown diameters for the respective

tree. Individual tree crown area (tree cover) was assumed equivalent

to the area of a circle and was calculated as such for each tree using

the respective derived crown radius. Total tree cover for each plot

was obtained as the sum of individual tree cover values on the respec-

tive plot. Understory canopy and ground cover were quantified on each

site characterization plot using line‐point intercept methods along five

30‐m transects located 5–8 m apart and oriented perpendicular to the

hillslope contour (Herrick, Van Zee, Havstad, Burkett, & Whitford,

2005). Canopy (foliar) and ground cover on each plot were recorded

for 60 points, each spaced 50 cm apart, along each of the five transects

for a total of 300 sample points per plot. Percent cover for each sam-

pled cover type was derived for each plot as the frequency of respec-

tive cover type hits divided by the total number of points sampled.

2.4 | Small plot: Fine scale

Canopy (foliar) cover, ground cover, and ground surface roughness

were measured on small plots using point frame methods (Mueller‐

Dombois & Ellenberg, 1974). Canopy and ground cover for each plot

were sampled at 15 points, spaced 5 cm apart, along each of seven

transects oriented parallel to the hillslope contour and spaced 10 cm

apart, for a total of 105 sample points per plot. Percent cover for each

sampled cover type on a plot was derived from the frequency of

respective cover type hits divided by the total number of points sam-

pled within the plot. A relative ground surface height for each sample

point on each plot was measured by ruler as the distance between the

ground surface and a point frame level line. Ground surface roughness

for each plot was calculated as the arithmetic average of the standard

deviations of the measured ground surface heights for each of the

TABLE 3 Continued

Marking Corral

Year‐2 Year‐9

Burned Unburned Burned

Interspace

Shrub

coppice

Tree

coppice Interspace

Shrub

coppice

Tree

coppice Interspace

Shrub

coppice

Tree

coppice

Dry run simulation (64 mm hr−1, 45 min)

Cumulative run‐off (mm) 4 ab 0 a 9 b 18 b ‐ 8 a 7 a 8 a 15 b

Cumulative sediment (g m−2)a 9 a ‐ 20 a 18 bc ‐ 9 ab 8 a 23 c 18 bc

Sediment/run‐off (g m−2 · mm−1)a 0.85 a ‐ 1.37 a 1.02 ab ‐ 0.83 a 0.76 a 2.30 b 1.06 ab

Mean soil water repellency (WDPT; s)b ‐ ‐ 72 a ‐ ‐ 80 a ‐ ‐ 62 a

Maximum strength of soil water repellency (s)c ‐ ‐ 176 ‐ ‐ 145 ‐ ‐ 92

Depth of max soil water repellency (cm)d ‐ ‐ 0 ‐ ‐ 0 ‐ ‐ 5

Percent of plots with run‐off 38 0 75 100 25 88 83 75 88

Wet run simulation (102 mm hr−1, 45 min)

Cumulative run‐off (mm) 35 c 5 a 22 b 44 d 3 a 12 ab 20 bc 23 bc 31 cd

Cumulative sediment (g m−2)a 35 a 27 a 75 a 59 c 3 a 10 a 26 ab 54 bc 27 ab

Sediment/run‐off (g m−2 · mm−1)a 0.92 a 2.49 a 2.14 a 1.35 ab 0.41 a 0.67 a 1.05 ab 1.93 b 0.72 a

Percent of plots with run‐off 100 50 88 100 75 88 100 100 100

No. of plots 8 4 8 6 4 8 6 4 8
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seven transects sampled on the respective plot. Litter depth on each

plot was quantified to the nearest 1 mm at four evenly spaced points

(~15‐cm spacing) along the outside edge of each of the two plot bor-

ders located perpendicular to the hillslope contour. An average litter

depth was estimated for each plot as the mean of the eight measured

litter depths.

Surface soils for each plot were sampled for soil moisture and soil

water repellency. Soil moisture for each plot was derived from a sample

obtained over 0‐ to 5‐cm depth immediately adjacent to each small plot

before rainfall simulations. All samples were analysed gravimetrically in

the laboratory for soil water content. Water repellency of surface soils

was quantified immediately adjacent (within ~50 cm) to each small plot

prior to rainfall simulations using the water drop penetration time

(WDPT) procedure (DeBano, 1981). After carefully removing litter,

eight water drops (~3‐cm spacing) were applied to the mineral soil sur-

face, and the time required for infiltration of each drop was recorded

up to a 300‐s maximum time. Following this procedure, 1 cm of soil

was excavated immediately underneath the previously sampled area,

and the WDPT method was continued for an additional eight drops.

This process was repeated until the 5‐cm soil depth was reached and

sampled. A mean WDPT at 0‐, 1‐, 2‐, 3‐, 4‐, and 5‐cm soil depths was

recorded for each plot as the average of the eight WDPT (s) samples

at the respective depth. A plot mean soil water repellency across all

sample depths was derived as the arithmetic average of the means from

eachof the 1‐cmdepths sampled. Soilswere classified aswettablewhen

WDPT <5 s, slightly water repellent whenWDPT ranged 5 to 60 s, and

strongly water repellent when WDPT >60 s (Bisdom et al., 1993).

Rainfall simulations were conducted on each small plot at target

intensities of 64 (dry run) and 102 mm hr−1 (wet run) for 45 min each

using a Meyer and Harmon‐type portable oscillating‐arm rainfall simu-

lator (Meyer & Harmon, 1979). The simulator was fitted with a single

80–100 Vee‐jet nozzle positioned 3 m above the ground surface. Sim-

ulator configuration/design, rainfall attributes, and calibration proce-

dures are described in detail in Pierson et al. (2008, 2009, 2010).

Dry run simulations were conducted on dry antecedent‐soil moisture

conditions (<12% gravimetric). The wet run simulation on each plot

was applied approximately 30 min following the dry run, on wet soil

conditions. Mean rainfall intensity and cumulative rainfall applied by

run type were similar (P > 0.05) across unburned and burned condi-

tions at both sites. For both study sites, the dry run intensity applied

for 5‐, 10‐, and 15‐min durations is equivalent to local storm return

intervals of 7, 15, and 25 years, and the wet run intensity over the

same durations is equivalent to local storm return intervals of 25, 60,

and 120 years (Bonnin et al., 2006).

Timed plot run‐off samples were collected at 1‐ to 3‐min time inter-

vals throughout each 45‐min rainfall simulation and were analysed in

TABLE 4 Fine‐scale run‐off, sediment, and soil water repellency response variables measured for dry‐ and wet‐run rainfall simulations (0.5 m2) in
unburned and burned areas at the Onaqui study site 1 (Year‐1), 2 (Year‐2), and 9 (Year‐9) years following burning

Onaqui

Year‐1 Year‐2

Unburned Burned Unburned

Interspace
Shrub
coppice

Tree
coppice Interspace

Shrub
coppice

Tree
coppice Interspace

Shrub
coppice

Tree
coppice

Dry run simulation (64 mm hr−1, 45 min)

Cumulative run‐off (mm) 10 bc 0 a 7 bc 12 c 2 a 5 ab 12 cd 0 a 2 ab

Cumulative sediment (g m−2)a 69 a ‐ 33 a 64 a 18 a 57 a 70 b ‐ 8 a

Sediment/run‐off (g m−2 · mm−1)a 4.80 a ‐ 4.02 a 5.15 a 6.79 a 6.84 a 3.72 ab ‐ 1.72 a

Mean soil water repellency

(WDPT; s)b
‐ ‐ 88 ‐ ‐ 125 ‐ ‐ 47

Maximum strength of soil water

repellency (s)c
‐ ‐ 160 ‐ ‐ 185 ‐ ‐ 151

Depth of max soil water

repellency (cm)d
‐ ‐ 1 ‐ ‐ 1 ‐ ‐ 0

Percent of plots with run‐off 67 0 75 100 60 60 67 0 50

Wet run simulation (102 mm hr−1, 45 min)

Cumulative run‐off (mm) 41 bc 6 a 16 a 49 c 22 ab 13 a 45 d 2 a 9 ab

Cumulative sediment (g m−2)a 233 bc 33 a 98 ab 351 c 220 bc 294 c 274 b ‐ 19 a

Sediment/run‐off (g m−2 · mm−1)a 5.53 bc 4.99 ab 4.65 ab 7.11 bc 7.90 c 10.40 c 6.11 b ‐ 1.52 a

Percent of plots with run‐off 100 100 75 100 80 80 100 33 75

No. of plots 3 3 4 10 5 5 3 3 4

Note. Means within a row by study year (Year‐1, Year‐2, or Year‐9) followed by a different lower case letter are significantly different (P < 0.05).
aMeans based solely on plots that generated run‐off. bMean soil water repellency for 0‐ to 5‐cm soil depth assessed as water drop penetration time (WDPT,

300 s maximum). Soils were classified slightly water repellent if WDPT ranged 5 to 60 s and strongly water repellent if WDPT exceeded 60 s (Bisdom et al.,

1993). cAverage persistence of soil water repellency measured at the most water repellent soil layer over 0‐ to 5‐cm soil depth assessed as WDPT. dSoil

depth with the highest average soil water repellency assessed as WDPT.
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the laboratory for run‐off volume and sediment concentration. The vol-

ume of run‐off and sediment concentration for each sample were

obtained by weighing the sample before and after oven drying at

105°C. Multiple hydrologic and erosion response variables were

derived for each rainfall simulation using the timed run‐off samples.

An average run‐off rate (mm hr−1) for each sample interval was calcu-

lated as the sample cumulative run‐off divided by interval time. Cumu-

lative run‐off (mm) for each simulationwas derived from the integration

of run‐off rates over the total time of run‐off. An average infiltration

rate (mm hr−1) for each sample interval was computed as the difference

between applied rainfall and measured run‐off divided by duration of

the sample interval. Sediment discharge (g s−1) for each sample interval

was derived as the sample cumulative sediment divided by the interval

time. Cumulative sediment yield (g m−2) for each simulation was com-

puted as the integrated sum of sediment collected during run‐off and

was extrapolated to a unit area by dividing by the 0.5‐m2 plot area. A

sediment‐to‐run‐off ratio (g m−2·mm−1), a surrogate for erodibility,

was derived for each simulation by dividing cumulative sediment yield

by cumulative run‐off.

2.5 | Large plot: Patch scale

Canopy and ground cover by cover type and distances between plant

bases (basal gaps) and canopies (canopy gaps) were quantified on large

plots and on concentrated flow plots using line‐point intercept and gap‐

intercept methods (Herrick et al., 2005). Canopy and ground cover on

Year‐0 and Year‐1 combined rainfall simulation/concentrated flow

plots were recorded for 59 points with 10‐cm spacing, along each of

five transects 6 m in length, spaced 40 cm apart, and oriented perpen-

dicular to the hillslope contour, for a total of 295 points per plot. In

Year‐2 and Year‐9, canopy and ground cover at the patch scale were

assessed on concentrated flow plots. Canopy and ground cover on

these plots were recorded for 24 points with 20‐cm spacing, along each

of nine line‐point transects 4.6 m in length, spaced 20 cm apart, and ori-

ented perpendicular to the hillslope contour, for a total of 216 points

per plot. Percent cover for each sampled cover type on each plot was

derived from the frequency of respective cover type hits divided by

the total number of points sampled for the plot. Plant basal and canopy

gaps exceeding 20 cm were recorded along each line‐point transect.

Average basal and canopy gap sizes were determined for each plot as

the average of all respective gaps measured in excess of 20 cm. A rela-

tive ground‐surface height at each line‐point sample locationwas calcu-

lated as the distance between the ground surface and a survey transit

level‐line above the respective sample point. Ground surface roughness

for each plot was derived as the arithmetic average of the standard

deviations of the ground surface heights across the plot line‐point

transects.

Rainfall on large plots in each year was applied at the same durations

and for the same dry‐run andwet‐run sequences as described above for

the small plot rainfall simulations. As with those plots, the dry run was

conducted on each plot during dry antecedent‐soil moisture conditions

(<12% gravimetric), and the wet run was applied to each plot within

30 min after the dry run. Rainfall simulations were conducted on large

plot pairs (two plots, each 2 m wide × 6.5 m long) in Year‐0 and Year‐1

using a Colorado State University (CSU) type rainfall simulator (Holland,

TABLE 4 Continued

Onaqui

Year‐2 Year‐9

Burned Unburned Burned

Interspace
Shrub
coppice

Tree
coppice Interspace

Shrub
coppice

Tree
coppice Interspace

Shrub
coppice

Tree
coppice

Dry run simulation (64 mm hr−1, 45 min)

Cumulative run‐off (mm) 16 d 3 ab 6 bc 18 c 1 a 8 ab 8 ab 1 a 15 bc

Cumulative sediment (g m−2)a 60 b 48 ab 30 a 126 c 9 a 53 ab 52 ab 9 a 71 bc

Sediment/run‐off (g m−2 · mm−1)a 3.51 ab 6.38 b 2.43 a 6.76 bc 5.55 abc 7.39 c 5.51 ab 4.10 a 4.64 a

Mean soil water repellency

(WDPT; s)b
‐ ‐ 127 ‐ ‐ 98 a ‐ ‐ 88 a

Maximum strength of soil water

repellency (s)c
‐ ‐ 194 ‐ ‐ 148 ‐ ‐ 124

Depth of max soil water

repellency (cm)d
‐ ‐ 0 ‐ ‐ 0 ‐ ‐ 1

Percent of plots with run‐off 100 60 60 100 60 100 100 60 100

Wet run simulation (102 mm hr−1, 45 min)

Cumulative run‐off (mm) 48 d 30 cd 23 bc 46 b 6 a 23 a 22 a 8 a 22 a

Cumulative sediment (g m−2)a 280 b 230 b 242 b 381 b 48 a 174 a 152 a 61 a 108 a

Sediment/run‐off (g m−2 · mm−1)a 5.85 b 6.85 b 6.28 b 8.05 d 5.44 ab 7.30 cd 6.29 bc 6.06 abc 4.90 a

Percent of plots with run‐off 100 100 80 100 80 100 100 80 100

No. of plots 10 5 5 4 5 5 10 5 5
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1969; Pierson et al., 2007; Pierson et al., 2009; Pierson et al., 2010;

Pierson et al., 2013; Pierson et al., 2015; Williams, Pierson, Al‐Hamdan,

et al., 2014) and the same dry‐ andwet‐run target intensities as on small

rainfall simulations. The CSU simulator consists of seven stationary

sprinklers elevated 3.05 m above the ground surface and evenly spaced

along each of the outermost borders of the respective rainfall‐plot pair

(Figure 2e). The CSU simulator design, rainfall attributes, and calibration

procedures are described in detail in Pierson et al. (2013, 2015, 2010).

TABLE 7 Patch‐scale run‐off and sediment response variables measured on unburned and burned large rainfall simulation plots (13 m2 in Year‐
0/Year‐1; 12 m2 in Year‐9) at the Marking Corral site prior to burning (Year‐0) and 1 (Year‐1) and 9 (Year‐9) years following burning

Marking Corral

Year‐0/Year‐1 Year‐9

Unburned Burned Unburned Burned

Shrub‐interspace
zone

Tree
zone

Shrub‐interspace
zone

Tree
zone

Shrub‐interspace
zone

Tree
zone

Shrub‐interspace
zone

Tree
zone

Dry run simulation (64 mm hr−1 [Year‐0/Year‐1] or 70 mm hr−1 [Year‐9], 45 min)

Cumulative run‐off (mm) 12 b 1 a 3 a 1 a 8 a 4 a 0 a 0 a

Cumulative sediment (g m−2)a 45 c 17 b 25 b 6 a 34 a 5 a ‐ ‐

Sediment/run‐off (g m−2·mm−1)a 3.80 a 15.72 bc 7.54 ab 21.94 c 4.29 a 1.18 a ‐ ‐

Percent of plots with run‐off 100 33 80 67 100 100 75 50

No. of plots 5 6 5 6 4 6 4 6

Wet run simulation (102 mm hr−1 [Year‐0/Year‐1] or 111 mm hr−1 [Year‐9], 45 min)

Cumulative run‐off (mm) 36 b 3 a 34 b 11 a 37 b 12 a 6 a 6 a

Cumulative sediment (g m−2)a 154 b 43 a 346 c 78 ab 325 b 20 a 4 a 4 a

Sediment/run‐off (g m−2·mm−1)a 4.21 a 5.40 a 9.56 a 7.15 a 8.76 b 1.73 ab 0.75 a 0.74 a

Percent of plots with run‐off 100 67 100 100 100 100 100 100

No. of plots 6 6 6 6 4 6 4 6

Note. Means within a row by study year combination (Year‐0/Year‐1) or year (Year‐9) followed by a different lower case letter are significantly different

(P < 0.05).
aMeans based solely on plots that generated run‐off.

TABLE 8 Patch‐scale run‐off and sediment response variables measured on unburned and burned large rainfall simulation plots (13 m2 in Year‐
0/Year‐1; 12 m2 in Year‐9) at the Onaqui site prior to burning (Year‐0) and 1 (Year‐1) and 9 (Year‐9) years following burning

Onaqui

Year‐0/Year‐1 Year‐9

Unburned Burned Unburned Burned

Shrub‐interspace
zone

Tree

zone

Shrub‐interspace
zone

Tree

zone

Shrub‐interspace
zone

Tree

zone

Shrub‐interspace
zone

Tree

zone

Dry run simulation (64 mm hr−1 [Year‐0/Year‐1] or 70 mm hr−1 [Year‐9], 45 min)

Cumulative run‐off (mm) 8 ab 2 a 3 a 11 b 14 a 6 a 4 a 13 a

Cumulative sediment (g m−2)a 60 a 18 a 41 a 448 b 54 a 18 a 19 a 37 a

Sediment/run‐off (g m−2·mm−1)a 14.06 a 9.34 a 10.52 a 35.70 b 3.74 a 3.20 a 5.04 a 2.81 a

Percent of plots with run‐off 100 83 60 100 100 100 75 100

No. of plots 6 6 5 5 4 4 4 4

Wet run simulation (102 mm hr−1 [Year‐0/Year‐1] or 111 mm hr−1 [Year‐9], 45 min)

Cumulative run‐off (mm) 47 b 11 a 31 b 43 b 39 b 9 a 15 a 15 a

Cumulative sediment (g m−2)a 401 b 78 a 491 b 1893 c 192 b 38 a 58 a 37 a

Sediment/run‐off (g m−2·mm−1)a 9.01 b 6.09 a 16.01 c 44.67 d 4.99 a 4.12 a 3.82 a 2.46 a

Percent of plots with run‐off 100 100 100 100 100 100 100 100

No. of plots 6 6 5 5 4 4 4 4

Note. Means within a row by study year combination (Year‐0/Year‐1) or year (Year‐9) followed by a different lower case letter are significantly different

(P < 0.05).
aMeans based solely on plots that generated run‐off.
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Large plot rainfall simulations in Year‐9 were conducted on individual

plots (2 m wide × 6 m long) using a Walnut Gulch Rainfall Simulator

(WGRS; Paige, Stone, Smith, & Kennedy, 2004) and target intensities

of 70 mm hr−1 for the dry run and 111 mm hr−1 for the wet run. The

WGRS consists of an oscillating central boom fitted with four 80–100

Vee‐jet nozzles positioned 2.44 m above the ground surface (Figure 2

f). TheWGRS simulator design, rainfall attributes, and calibration proce-

dures are described in (Nouwakpo et al., 2017, 2019; Paige et al., 2004).

For each simulator, mean rainfall intensity and cumulative rainfall

applied by run type (dry and wet) were similar (P > 0.05) across

unburned and burned conditions at each site (Nouwakpo et al., 2019;

Pierson et al., 2015, 2010).

Timed samples of plot run‐off and sediment for Year‐0 and Year‐1

CSU‐type rainfall simulation experiments were collected by direct bot-

tle samples of the discharge at the plot outlet at 1‐ to 3‐min intervals

throughout each 45‐min rainfall simulation (see Pierson et al., 2015,

2010). For the WGRS simulations, run‐off was conveyed into a super-

critical flume at the downslope end of the plot where aTeledyne 4230

flow meter (Isco, Inc., Lincoln, NE) measured discharge at a rate of four

samples per minute. Manual timed run‐off samples were also collected

periodically during WGRS simulations to validate automatically sensed

run‐off rate values (see Nouwakpo et al., 2019). Run‐off volume and

sediment concentration for each run‐off sample collected were

obtained in the laboratory by weighing the sample before and after

drying at 105°C. Hydrologic response variables were derived for each

large‐plot rainfall simulation consistent with those described above for

small‐plot rainfall simulations.

Overland flow was applied to all concentrated flow plots using

datalogger‐controlled flow regulators and methodologies described by

Pierson et al. (2010, 2015). All plots were prewet before simulations with

a gentlymisting sprinkler to createwet soil conditions (~20% gravimetric)

similar to those under which run‐off occurs, but without detaching and

eroding sediment. Concentrated overland flow was released at rates of

15, 30, and 45 L min−1 to each plot. The flow release sequence for each

simulation was 12 min at 15 L min−1, immediately followed by 12 min at

30 L min−1, and immediately followed by 12min at 45 L min−1. Flow was

released on each plot from a single location ~4‐mupslope of the plot out-

let. Flow passing through regulators was directly routed into a metal box

filled with styrofoam pellets and was released through a 10‐cm‐wide

mesh‐screened opening at the base of the box (Figure 2g). Overland flow

velocity was measured for each flow release rate on each plot by releas-

ing a concentrated salt solution (CaCl2, ~50ml) into the flow and applying

electrical conductivity probes to track the mean transit time of the salt

over a 2‐m flowpath length (Figure 2g; Pierson et al., 2009, 2008,

2015, 2010). Flow velocity (m s−1) was computed by dividing the

flowpath length (2 m) by the mean of multiple sampled salt travel times

(n = 2 to 3 per rate per plot) in seconds.

Run‐off samples for concentrated flow plots were collected at the

plot outlet at 1‐ to 2‐min intervals for each 12‐min flow rate simulation

and were processed in the laboratory for run‐off and sediment

concentration as described for rainfall simulation plots. Run‐off and

erosion response variables for each flow release rate were derived for

an 8‐min time period beginning at run‐off initiation. A mean run‐off rate

(L min−1) was computed for each sample interval as the cumulative run‐

off divided by the interval time. Cumulative run‐off (L) by release rate

for each plot was derived as the integration of run‐off rates over the

respective 8‐min time of run‐off. An averaged sediment concentration

(g L−1) was calculated for each sample interval as the cumulative sediment

divided by the interval cumulative run‐off. The mean sediment concen-

tration for each flow release on each plot was computed as the average

of all sediment concentrations for the respective rate. Cumulative

sediment (g) by release rate for each plot was derived as the integrated

sum of sediment collected during the 8‐min run‐off period.

2.6 | Data analysis

Statistical analyses were conducted using SAS software, version 9.4 (SAS

Institute Inc, 2013). Statistical analyses for all spatial scales were

restricted to within‐site comparisons except where explicitly stated in

results. Hillslope‐scale vegetation and ground cover data collected on

30 × 33‐m site characterization plots were analysed using a repeated

measures mixed model with three treatment levels: Year‐0 unburned,

Year‐1 burned, and Year‐9 burned. Sample year was the repeated mea-

sure, with three levels: 2006, 2007, and 2015. The covariance structure

was evaluated using fit statistics suggested by Littell, Milliken, Stroup,

Wolfinger, and Schabenberger (2006), and the best fit model was applied.

Analyses of measures from small plots were restricted to within‐year

comparisons at a site. Vegetation, ground cover, soil, and hydrologic

and erosion response variables from small plots were analysed using a

mixedmodel with two treatment levels (unburned and burned) and three

microsite levels: interspace, shrub coppice, and tree coppice. For Year‐0

and Year‐1, large plot vegetation, ground cover, and hydrologic and ero-

sion response variables and concentrated flow velocity data were

analysed using a mixed model with two treatment levels (Year‐0

unburned and Year‐1 burned) and two microsite levels (shrub‐interspace

zone and tree zone). Hydrologic and erosion response variables for large

plots in Year‐9 were analysed using a mixed model with two treatment

levels (unburned and burned) and two microsite levels (shrub‐interspace

zone and tree zone). Vegetation, ground cover, and flow velocity data

for concentrated flow plots in Year‐2 and Year‐9 were analysed using a

mixed model with two treatment levels (unburned and burned) and two

microsite levels (shrub‐interspace zone and tree zone). Concentrated

flow run‐off and erosion data for each sitewere analysedwith a repeated

measures mixedmodel using the treatment andmicrosite levels specified

above for respective large‐plot or concentrated flow‐plot cover data.

Flow release rate was the repeated measure for concentrated‐flow run‐

off and erosion analyses, with three levels: 15, 30, and 45 L min−1. Carry-

over effects of concentrated flow releases were modelled with an

autoregressive order one covariance structure (Littell et al., 2006). Plot

location was considered a random effect, and site, treatment, and

microsite were considered fixed effects in all analyses. Normality was

tested prior to analysis of variance using the Shapiro–Wilk test, and data

transformationwas appliedwhere necessary to address deviance.Where

required, arcsine‐square root transformations were used to normalize

proportion data (e.g., canopy and ground cover), and logarithmic
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transformations were used to normalize run‐off and erosion data. Back

transformed means are reported. All reported significant effects were

tested at the P < 0.05 level.

3 | RESULTS

3.1 | Hillslope‐scale vegetation and ground cover

The limited understory canopy cover, degraded shrub layer, and low

ground cover at both sites prior to burning reflect understory compe-

tition with pinyon and juniper for water and soil resources and indicate

the sites were well into the later stages of woodland encroachment at

initiation of this study (Figures 1a,d and 3). Hillslope‐scale vegetation

structure prior to burning at both sites was composed of tree islands

(27–28% canopy cover) with a sparsely vegetated intercanopy and

extensive well‐connected bare interspaces (52–60% bare ground;

Figure 1a,d). Understory canopy cover averaged 20–27% across the

two sites and was mainly shrub cover (18%) at Marking Corral and

grass (6%) and forb (3%) cover at Onaqui (Figure 3a,b). Shrub canopy

cover was less than 1% at Onaqui. Dead shrubs made up approxi-

mately 12% of the shrub layer at Marking Corral and nearly half of

the more limited shrub layer at Onaqui. Ground cover at both sites

consisted primarily of litter (34–47%; Figure 3c,d), with most of the lit-

ter occurring underneath trees. Basal plant cover averaged less than

1% at both sites prefire. Bare ground was composed of approximately

27–31% bare soil and 25–29% rock cover (fragments >5 mm) prior to

burning at the sites (Figure 3c,d).

The effect of burning on hillslope‐scale understory canopy cover

was minor in Year‐1 due in part to the degraded prefire conditions,

but burning substantially enhanced grass canopy cover and distribution

of basal plant cover as measured nine growing seasons postfire. InYear‐

1 atMarking Corral, shrub cover was less and forb cover was greater for

burned conditions relative to Year‐0 unburned plots at that site

(Figure 3a). All understory canopy cover measures at Onaqui were sim-

ilar for unburned Year‐0 and burned Year‐1 plots (Figure 3b). Burning

reduced ground cover and increased bare ground at Marking Corral

and the fire‐induced reductions in ground cover persisted for that site

in Year‐1 (Figure 3c). Burning had no effect on ground cover by Year‐

1 at Onaqui (Figure 3d). Fire‐induced increases in grass cover at Mark-

ing Corral over nine growing seasons improved total canopy cover, but

shrub cover inYear‐9 was about 50% of that measured prior to burning

(Figure 3a). In contrast, shrub, grass, and forb canopy cover all increased

substantially (4‐ to 12‐fold) over nine growing seasons postfire at

Onaqui (Figure 3b). Bare ground remained high (near 50%) at both sites

in Year‐9 (Figure 3c,d), but burning stimulated increases in basal plant

cover of more than 20‐fold at Marking Corral and 15‐fold at Onaqui

over study period. Prescribed fire was effective at reducing pinyon

and juniper cover at both sites. Residual density of these species for

the 5‐ to 50‐cm height size class in Year‐9 at both sites was approxi-

mately 90% less than that measured in Year‐0 prefire. Live canopy

cover of pinyon and juniper trees ≥1 m was less than 4% at Marking

Corral and less than 1% at Onaqui inYear‐9, with densities for this size

FIGURE 3 Hillslope‐scale canopy (a and b) and ground (c and d) cover measured on site characterization plots (990 m2) at the Marking Corral (a
and c) and Onaqui (b and d) study sites immediately prefire (Year‐0 unburned) and 1 (Year‐1 burned) and 9 (Year‐9 burned) years postfire. Means
within a cover type across years/treatments (Year‐0 Unburned, Year‐1 Burned, and Year‐9 Burned) for a given site (Marking Corral or Onaqui)
with different lower case letters are significantly different (P < 0.05)
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class reduced more than 70% from prefire levels. The primary impact of

burning on hillslope‐scale vegetation and ground cover at the sites was

eradication of tree dominance and conversion of the understory to a

grass‐dominated structure with enhanced basal plant cover (Figure 1).

3.2 | Fine‐scale vegetation and ground cover

First year responses of fine‐scale vegetation and ground cover to

burning were highly variable across the two sites (Table 2). The fires

exerted minimal impact on the pre‐existing sparse canopy and ground

cover in interspaces at the sites over the first growing season postfire.

Burning reduced grass cover by twofold on interspaces at Marking

Corral but had no impact on grass cover as measured in Year‐1 on

interspaces at Onaqui (Table 2). Interspace forb cover at the two sites

exhibited contrasting responses to burning, increasing at Marking Cor-

ral, and declining at Onaqui inYear‐1 (Table 2). Total ground cover was

low for unburned (10–27%) and burned (5–13%) interspaces at both

sites in Year‐1, and interspace bare ground in Year‐1 averaged about

80% and 93% at Marking Corral and Onaqui, respectively, across

burned and unburned conditions. The primary effects of burning on

shrub coppices as measured in Year‐1 included near complete removal

of shrub canopy cover and a twofold to threefold reduction of litter

cover, resulting in greater bare ground for burned (65–75%) versus

unburned (16–39%) shrub coppices at the sites. With exception of

grass cover at Onaqui, prescribed fire minimally altered canopy cover

underneath trees as measured in Year‐1 (Table 2). Likewise, ground

cover percentages were largely unchanged by burning on tree coppices.

Burning reduced litter depth nearly 2‐fold at Marking Corral. The reduc-

tion in litter depth for tree plots at Making Corral without reduction in

spatial litter coverage is likely due to minor amounts of needle fall from

burned trees over the first year postfire. Fire effects on fine‐scale canopy

and ground cover in Year‐2 were restricted to shrub and tree coppice

microsites (Table 2). Shrub canopy cover and litter ground cover were

lower on burned than unburned shrub coppice plots at both sites in

Year‐2. Likewise, bare ground was greater on burned than unburned

shrub and tree coppice plots at both sites in Year‐2. Over Year‐1 and

Year‐2, the most persistent effects of burning were reduced shrub cover

FIGURE 4 Fine‐scale infiltration (a) and sediment discharge (b) for wet‐run (102 mm hr−1, 45 min) rainfall simulations on unburned (Unb) and
burned (Burn) interspace (Int), shrub coppice (Shr), and tree coppice (Tree) small plots (0.5 m2) at the Marking Corral site 1 (Year‐1), 2 (Year‐2),
and 9 (Year‐9) years after prescribed fire. For a given year, microsite (Int, Shr, or Tree) responses in a given treatment (Unb or Burn) are only shown
for microsites that generated run‐off
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on shrub coppices and increased bare ground on shrub and tree plots at

both sites (Table 2). Fire effects on surface roughness in the first 2 years

postfire were limited to shrub coppices at Marking Corral (Year‐1 and

Year‐2) and interspaces at Onaqui (Year‐2). Burning reduced surface

roughness by 3–6 mm in both cases (Table 2).

Grass cover increased dramatically at the fine‐spatial scale over the

9‐year period postfire (Table 2). Grass cover increased twofold to

fourfold in interspaces over 9 years following burning at both sites.

By Year‐9, total canopy cover exceeded 60% in burned interspaces

at both sites, and most of that cover was live and dead grasses.

Although grass cover increased in interspaces after burning, bare

ground remained more than 75% for burned interspaces in Year‐9.

Shrub canopy cover remained lower for burned than unburned condi-

tions on shrub coppices in Year‐9, and bare ground remained greater

for burned than unburned shrub plots at Marking Corral after nine

growing seasons (Table 2). Fire impacts on fine‐scale canopy and

ground cover on tree plots in Year‐9 were highly variable across the

two sites (Table 2). The main effects were increased grass canopy

cover on burned tree plots at Marking Corral and reduced litter cover

and increased bare ground on tree plots at Onaqui. Overall, prescribed

burning at both sites reduced the coarseness of fine‐scale vegetation

structure via increased grass productivity and recruitment, homogeniz-

ing the landscape through grass dominance across interspace, shrub

coppice, and tree coppice microsites (Table 2; Figure 1). In Year‐9,

grass canopy cover made up more than 90% and nearly 60% of total

canopy cover on burned plots at Marking Corral and Onaqui, respec-

tively. For unburned conditions in Year‐9, grass canopy cover made

up much (41–95%) of the total canopy cover on interspace and tree

plots, but composed <25% of total canopy cover on shrub coppices.

Grass canopy cover ranged 35% to 62% across all burned plots and

5% to 36% across all unburned plots at the two sites in Year‐9.

3.3 | Fine‐scale infiltration, run‐off, and erosion

Interspaces were the primary source of run‐off and sediment delivery

from the fine‐spatial scale prior to burning, and therefore initial fire

effects on fine‐scale infiltration, run‐off, and erosion were mainly

FIGURE 5 Fine‐scale infiltration (a) and sediment discharge (b) for wet‐run (102 mm hr−1, 45 min) rainfall simulations on unburned (Unb) and
burned (Burn) interspace (Int), shrub coppice (Shr), and tree coppice (Tree) small plots (0.5 m2) at the Onaqui site 1 (Year‐1), 2 (Year‐2), and 9
(Year‐9) years after prescribed fire. For a given year, microsite (Int, Shr, or Tree) responses in a given treatment (Unb or Burn) are only shown for
microsites that generated run‐off
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limited to shrub and tree coppices (Tables 3, 4). Run‐off and erosion

were generally low for dry run rainfall simulations in each year with

exception of erosion from unburned and burned interspaces and from

burned coppice plots at Onaqui (Tables 3, 4). In general sediment yield

and the sediment‐to‐run‐off ratio were greater for rainfall simulations

at Onaqui relative Marking Corral, indicating greater erodibility at that

site (Tables 3, 4). For unburned conditions in Year‐1 and Year‐2, the

highest amounts of wet‐run run‐off and erosion were generated from

interspaces. These plots also exhibited the lowest wet‐run steady

state infiltration and highest wet‐run sediment discharge rates for

unburned plots each year (Figures 4, 5). The highest infiltration rates

occurred on unburned shrub coppices, followed by tree coppices

(Figures 4a and 5a). Soils were hydrophobic on unburned tree cop-

pices (Tables 3, 4), but thick litter layers underneath trees captured

and stored rainfall and allowed time for infiltration through the repel-

lent layer. The effect of the litter layer in facilitating gradual increased

infiltration through water repellent soils is seen in the infiltration

curves for tree coppices, showing a gradual increase in infiltration rate

throughout rainfall simulation (with increased wetting; Figures 4a and

5a). Sediment discharge was generally low from unburned shrub and

tree coppices (Figures 4b and 5b), owing, respectively, to surface pro-

tection by high levels of canopy cover and litter ground cover. Fire

impacts on wet‐run run‐off and erosion in Year‐1 and Year‐2 varied

across the sites and by year but generally were greater for shrub and

tree coppices given inherently high run‐off and erosion from inter-

spaces. At Marking Corral, burning facilitated run‐off generation and

sediment delivery from shrub coppices and increased run‐off and ero-

sion on tree coppices during wet‐run simulations (Table 3; Figure 4).

At Onaqui, fire impacts on wet‐run run‐off generation the first few

years postfire were limited to shrub coppices inYear‐2 (Table 4). How-

ever, burning increased wet‐run sediment discharge and cumulative

erosion from shrub and tree coppices at that site in both Year‐1 and

Year‐2 (Figure 5b; Table 4). Wet‐run erosion levels from unburned

and burned interspaces in Year‐1 and Year‐2 at Onaqui were similar

to erosion levels for burned shrub and tree coppices at that site

(Table 4) and were greater than the same measures at Marking Corral

(Table 3). Microsite hydrologic and erosion responses to burning the

first few years postfire reflect initially high run‐off and erosion from

interspaces, fire effects on cover for coppice plots, persistence of soil

water repellency on tree coppices, and enhanced sediment availability

on shrub and tree plots after burning.

The primary effect of burning on fine‐scale hydrologic and erosion

processes after nine growing seasons postfire was enhanced infiltra-

tion in interspaces (Figures 4a and 5a). Wet‐run infiltration rates for

burned interspace plots in Year‐9 were, on average, 75% greater than

the same measures in unburned interspaces at both sites. The

enhanced infiltration in interspaces after burning reduced interspace

wet‐run run‐off more than twofold and thereby limited sediment

delivery from the primary source of run‐off and sediment yield prefire

(Figures 4 and 5). In Year‐9, cumulative sediment yield from wet‐run

simulations on burned interspaces was, on average, near 60% less than

from unburned interspaces at the sites (Tables 3, 4). Fire impacts on

wet‐run run‐off and erosion from shrub and tree coppices persisted

at Marking Corral solely in Year‐9 (Table 3), and as in Year‐1 and

Year‐2, erosion rates for all microsites were generally greater at

Onaqui than Marking Corral for unburned and burned conditions in

Year‐9 (Figures 4b and 5b).

3.4 | Patch‐scale vegetation and ground cover

The initial impact of burning on patch‐scale understory vegetation and

ground cover was persistence of bare shrub‐interspace zones and

reduced ground cover in tree zones. Bare ground was 68% and 84%

in shrub‐interspace zones at Marking Corral and Onaqui, respectively,

in Year‐0 prior to burning (Tables 5, 6). Total understory canopy cover

declined with burning in shrub‐interspace zones at Marking Corral due

to fire reduction of shrub canopy cover from 21% in Year‐0 to <1% in

Year‐1 (Table 5). Forb canopy cover increased more than 30‐fold from

Year‐0 to Year‐1 on shrub interspaces at Marking Corral due to burn-

ing but was not enough to counter the effect of shrub cover loss on

total canopy cover at that site. Burning reduced both total ground

cover and litter cover and increased bare ground from 68% in Year‐0

to 86% in Year‐1 at Marking Corral (Table 5). At Onaqui, understory

total canopy cover (13–17%) and ground cover (16–19%) in shrub‐

interspace zones were generally low prior to (Year‐0) and the first year

(Year‐1) after burning (Table 6). Fire reduced total canopy cover in tree

zones at the sites by about threefold to sixfold over the first year and

increased tree‐zone bare ground by fourfold to sixfold from Year‐0 to

Year‐1. Increased bare ground in tree zones resulted from fire con-

sumption of the litter underneath and adjacent to trees, creating

27% bare ground in burned tree zones at Marking Corral and 68% in

burned tree zones at Onaqui in Year‐1. The extensive bare ground in

burned shrub‐interspace and tree zones at Onaqui in Year‐1 also

resulted in greater average basal gap distances for burned conditions

at that site (Table 6). In Year‐2, shrub canopy cover remained low on

burned shrub‐interspace zone plots at both sites (Tables 5, 6). Grass

canopy cover in Year‐2 was lower for burned than unburned shrub

interspaces at Marking Corral (Table 5) but was enhanced by burning

on shrub interspaces at Onaqui (Table 6). Bare ground remained high

(>80%) on burned shrub‐interspace zones in Year‐2 at Marking Corral

(Table 5) and was similar for burned and unburned shrub‐interspace

plots at Onaqui (Table 6). Fire effects on patch‐scale cover in tree

zones inYear‐2 were highly variable across the two sites, with reduced

grass and shrub cover at Marking Corral (Table 5) and reduced total

ground cover and litter cover at Onaqui (Table 6).

By Year‐9, grass canopy cover substantially increased across

burned plots at both sites relative to unburned conditions (Tables 5, 6;

Figure 1). Grass canopy cover was twofold to more than sixfold

greater on burned than unburned shrub‐interspace and tree zone plots

in Year‐9 (Tables 5, 6). Grass canopy cover ranged 62% to 73% across

all burned plots at Marking Corral and 29% to 61% across all burned

plots at Onaqui in Year‐9. These cover increases contributed to

greater litter cover and reduced bare ground on shrub interspaces at

Marking Corral (Table 5) and reduced basal and canopy gap distances

in shrub‐interspace zones at Onaqui (Table 6). Fire‐induced increases
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in grass cover in tree zones in Year‐9 reduced tree‐zone canopy and

basal gap distances at Marking Corral (Table 5) but did not counteract

persistent fire effects on ground cover recruitment in burned tree

zones at Onaqui. As with the fine scale, burning effectively enhanced

grass cover across microsites and either reduced bare ground or

improved the distribution of cover within shrub‐interspace zones

(Figure 1). Bare ground remained >50% on burned shrub‐interspace

plots at both sites in Year‐9 (Tables 5, 6), indicating ground cover

recruitment requires patience in these systems.

3.5 | Patch‐scale run‐off and erosion from combined
processes

Prescribed fire was effective in reducing patch‐scale run‐off and ero-

sion from degraded intercanopy areas over a 9‐year period postfire.

Prior to burning, run‐off and erosion rates were high for the mostly

bare shrub‐interspace zones and were minimal for the well‐protected

tree zones at the sites (Figures 6, 7). Burning had limited negative

impact on run‐off and erosion from the patch scale at Marking Corral

over the first year postfire (Table 7; Figure 6). Likewise, burning had

minimal initial impact on run‐off and erosion from shrub‐interspace

zones at Onaqui (Table 8). However, fire removal of cover in tree zones

at Onaqui facilitated fourfold to fivefold increases in run‐off and more

than 20‐fold increases in erosion inYear‐1 (Table 8; Figure 7). By Year‐

9, enhanced cover in shrub‐interspace zones limited run‐off during

dry‐ and wet‐run rainfall simulations at both sites and thereby reduced

sediment yield from shrub‐interspace zone plots (Figures 6, 7). In Year‐

9, wet‐run run‐off from burned shrub‐interspace zone plots was, on

average, threefold to sixfold less than on unburned shrub‐interspace

zone plots (Tables 7, 8). Cumulative sediment yield from burned

shrub‐interspace zone plots in Year‐9 was reduced substantially in

comparison with unburned shrub‐interspace plots (Tables 7, 8). Run‐

off and sediment yield were low for unburned and burned tree zones

at the sites in Year‐9 and were consisted with measures from Year‐9

burned shrub‐interspace plots (Tables 7, 8; Figure 6, 7).

3.6 | Patch‐scale run‐off and erosion from
concentrated flow processes

Shrub‐interspace zones at both sites delivered high amounts of concen-

trated overland flow and sediment under unburned conditions, and

burning was effective at reducing both for the Marking Corral site by

Year‐9. In most cases, run‐off and sediment generated by released

concentrated flow was greater for degraded shrub‐interspace zones

relative to tree zones for unburned conditions, although these relation-

ships exhibited some temporal variability by site (Table 9). Burning had

minimal impact on run‐off and sediment delivery from shrub‐interspace

zones the first few years postfire with exception of increased sediment

yield for burned conditions at Marking Corral. In contrast, burning

increased tree zone sediment delivery by 8‐ to 14‐fold at Marking Cor-

ral and by 4‐ tomore than 30‐fold at the more erodible Onaqui site over

the first year postfire (Table 9). Run‐off for the burned condition on tree

zones inYear‐1 was sustained in high‐velocity concentrated flow paths

with high sediment detachment and transport energy (Table 9). Fire

FIGURE 6 Patch‐scale run‐off rate (a) and sediment discharge (b) for wet‐run (102 mm hr−1 [Year‐0/Year1] to 111 mm hr−1 [Year‐9], 45 min
duration) rainfall simulations on unburned and burned shrub‐interspace zone (Shr–Int) and tree zone (Tree) plots at the Marking Corral site.
Plots were in unburned areas only in the year prior to burning (Year‐0; 13 m2), in burned areas only the first year postfire (Year‐1; 13 m2), and in
unburned and burned areas 9 years postfire (Year‐9; 12 m2)

WILLIAMS ET AL. 21 of 28



impacts on run‐off and sediment delivery from tree zones persisted in

Year‐2, with both cumulative run‐off and sediment on burned tree

zones generally exceeding that of unburned tree zones. By Year‐9,

changes in cover on burned shrub‐interspace at Marking Corral buff-

ered concentrated flow releases and reduced both run‐off and sedi-

ment delivery. Increased cover on tree zones at that site also resulted

in similar run‐off and sediment delivery across burned and unburned

tree zones in Year‐9 (Table 9). Run‐off and sediment from shrub inter-

spaces at Onaqui was similar for burned and unburned conditions in

Year‐9, but both measures were greater for burned than unburned tree

zones at that site for most flow release rates (Table 9). The contrasting

site responses by microsite inYear‐9 are attributed to more bare condi-

tions for the respective microsites at Onaqui relative toMarking Corral.

4 | DISCUSSION

4.1 | Can fire decrease late‐succession woodland
ecohydrologic resilience by increasing vegetation and
ground cover over a 9‐year period after fire?

Our study of two woodlands over a 9‐year period postfire demon-

strates fire can decrease late‐succession woodland structure and func-

tion by increasing vegetation cover and altering plant community

physiognomy. The prescribed fires in this study were effective at

reducing pinyon and juniper cover to less than 4% and in substantially

reducing tree seedlings (90% reduction in density; Figure 1). Enhanced

grass cover over nine growing seasons at both sites indicates the tree

reductions increased soil water availability for understory cover and

thereby induced a switch in the dominant vegetation type and vegeta-

tion structure (Figures 1 and 3a,b; Tables 5, 6). Roundy, Miller, et al.

(2014) and Roundy, Young, et al. (2014) assessed the effects of pinyon

and juniper removal on soil water and vegetation at multiple

woodland‐encroached sagebrush sites in the Great Basin over a 4‐

year period posttreatment as part of the SageSTEP study. Sites in that

study included experimental plots at our study sites, in adjacent areas

to our experimental domain. Roundy, Young, et al. (2014) found that

tree removal by both prescribed fire and mechanical methods

increased the number of days that soil water was available to plants

in the spring and that the increased time of soil water availability

was greatest on sites with high tree dominance. Increases in spring

season soil water availability declined with time posttreatment as

plant cover increased, but treatment effects on soil water availability

persisted in the fourth year postfire. Roundy, Miller, et al. (2014)

found total perennial grass and forb cover was similar for burned

and unburned treatments 2 years after burning but was greater for

the burned than unburned treatments in the third year postfire. In a

follow‐up study of the same plots in Roundy, Miller, et al. (2014) and

Roundy, Young, et al. (2014), Williams et al. (2017) found tall perennial

grass cover was similar for burned and unburned treatments 3‐year

postfire but was greater in the burned than unburned treatments by

the sixth year after fire. The increases in days of spring soil water

availability across the Marking Corral and Onaqui sites in Roundy,

Young, et al. (2014) averaged about 6–36 days the second year post-

treatment and about 6–30 days the fourth year posttreatment for

Phases II–III woodland plots (Roundy, Young, et al., 2014). In our study

plots at Marking Corral and Onaqui, grass cover at the hillslope and

patch scales was similar on unburned and burned plots the first year

FIGURE 7 Patch‐scale run‐off rate (a) and sediment discharge (b) for wet‐run (102 mm hr−1 [Year‐0/Year‐1] to 111 mm hr−1 [Year‐9], 45 min
duration) rainfall simulations on unburned and burned shrub‐interspace zone (Shr–Int) and tree zone (Tree) plots at the Onaqui site. Plots were
in unburned areas only in the year prior to burning (Year‐0; 13 m2), in burned areas only the first year postfire (Year‐1; 13 m2), and in unburned and
burned areas 9 years postfire (Year‐9; 12 m2)
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postfire, was generally low on unburned and burned plots in Year‐2,

and increased substantially in the burned treatment by Year‐9

(Figure 3a,b; Tables 5, 6). In Year‐9, much of the total grass canopy

cover across the sites (40–63%) was tall perennial grasses (21–33%

cover) located within the intercanopy (Figure 1c,f), with the remainder

primarily as cheatgrass islands on burned tree coppices (16–30%

cover). Burning consumed the shrub cover in our study, as expected,

and much of the shrub cover in Year‐9 was of root‐sprouting species,

mainly yellow rabbitbrush (Chrysothamnus viscidiflorus [Hook.] Nutt.).

Sagebrush does not resprout after fire, and we anticipate it may take

as many as 20–50 years to re‐establish dominance on the sites (Miller

et al., 2013). Sagebrush cover was about 6% at Marking Corral and

remained <1% at Onaqui in Year‐9. Although ground cover remained

low across our study sites 9‐year postfire (Figure 3c,d), fire‐induced

tree mortality and the subsequent increases in total cover (from 20%

to 27% prefire to 65–77% 9‐year postfire) and grass cover (from

~5% prefire to 40–63% 9‐year postfire) clearly altered the vegetation

and ground cover structure at the sites (Figure 1). Burning reduced

bare ground in shrub‐interspace zones at Marking Corral and reduced

the distance between plant bases in shrub interspaces at Onaqui as

measured in Year‐9 (Tables 5, 6). We anticipate ground cover will

increase and bare ground will decline across both sites over time as

grass cover persists and shrub cover increases in the absence of com-

petition with pinyon and juniper. Overall, the initial shift to grass cover

as the dominant vegetation type, short‐term decline in shrub cover

postfire, and delayed recruitment in ground cover are typical of

degraded sagebrush steppe following pinyon and juniper removal

(Bates et al., 2005; Bates et al., 2014; Bates et al., 2017; Bates &

Davies, 2016; Chambers et al., 2014; Miller et al., 2013; Roundy,

Miller, et al., 2014; Williams et al., 2017). However, our long‐term data

clearly indicate burning can suppress the effects of woodland

encroachment on understory cover even in the later stages of wood-

land encroachment and can thereby increase the amount and distribu-

tion of tall perennial grass cover over the first decade postfire.

The hydrologic and erosion responses to vegetation changes over 9‐

year postfire in this study demonstrate burning of late‐succession

woodlands can reduce woodland ecohydrologic resilience over time.

Pinyon and juniper woodlands with degraded intercanopies commonly

exist as “leaky” or “nonconserving” systems in which subtle further

reductions in ground cover enhance run‐off and soil loss across spatial

scales and propagate long‐term site degradation (Davenport, Breshears,

Wilcox, & Allen, 1998; Wilcox et al., 1996; Wilcox, Breshears, & Allen,

2003; Wilcox, Pitlick, Allen, & Davenport, 1996; Williams, Pierson, Al‐

Hamdan, et al., 2014; Williams, Pierson, Spaeth, et al., 2016). For these

landscapes, run‐off and erosion are commonly well correlated at the

patch scale, and the magnitude of run‐off and sediment yield at that

scale are strongly regulated by the amount and connectivity of bare

ground and the water input rate (Pierson et al., 2013, 2010; Williams,

Pierson, Al‐Hamdan, et al., 2014). At the hillslope scale, connectivity

of run‐off and sediment sources and hydrologic and erosion processes,

as affected by the amount and distribution of cover, dictate the magni-

tude of soil loss (Wilcox et al., 2003;Williams, Pierson, Robichaud, et al.,

2016). These relationships have been well demonstrated in the

literature for degraded woodland‐encroached sagebrush sites in the

Great Basin (Petersen et al., 2009; Petersen & Stringham, 2008; Pierson

et al., 2007; Pierson et al., 2013, 2010; Williams, Pierson, Al‐Hamdan,

et al., 2014; Williams, Pierson, Robichaud, et al., 2016; Williams,

Pierson, Spaeth, et al., 2016). The reversal of such abiotic‐controlled soil

loss requires a trigger, such as a disturbance, that induces a switch in the

dominant vegetation type and structure and long‐term persistence of

that change (Pierson et al., 2007; Roundy et al., 2017;Williams, Pierson,

Al‐Hamdan, et al., 2014). Both sites in this studywere in the later stages

of woodland encroachment and exhibited high rates of run‐off and ero-

sion across the fine to patch scales (Tables 3, 4 and 7, 8). Prior to burn-

ing, the extensive bare ground in the intercanopies at both sites

promoted run‐off generation from bare interspaces during high‐

intensity rainfall simulations that accumulated downslope into concen-

trated flow paths with high flow velocity and sediment detachment and

transport capacity (Pierson et al., 2010; Williams, Pierson, Robichaud,

et al., 2016). Pierson et al. (2010) found that run‐off was generally sim-

ilar across small‐plot to large‐plot scales at both sites but that erosion

rates increased with increasing plot scale due to run‐off as concen-

trated flow at the larger spatial scale. Pierson et al. (2010) also reported

run‐off and erosion were well correlated for the sites, typical for

degraded systems. Burning initially increased bare ground across scales

(Figure 3; Tables 2, 5, and 6) resulting in enhanced sediment availability

in shrub and tree coppice plots (Figures 4b and 5b), sustained high run‐

off and sediment discharge rates from shrub‐interspace zones

(Figures 6 and 7), and amplified run‐off and sediment delivery from tree

zones (Tables 8, 9). Collectively, these fire impacts propagated an

increase in sediment delivery with increasing plot scale for all but

burned tree zones at Marking Corral the first year postfire (Tables 3, 4

and 7, 8; Williams, Pierson, Robichaud, et al., 2016). By Year‐9, fire‐

induced increases in grass cover within interspaces improved infiltra-

tion (Figures 4a and 5a), limited run‐off and sediment delivery from

the fine‐spatial scale (Tables 3, 4), and reduced run‐off and erosion from

shrub‐interspace zones at the patch scale (Tables 7, 8). These changes

reflect a switch in vegetation structure, triggered by burning and subse-

quent vegetation re‐establishment, and the onset of biotic control on

run‐off and erosion across spatial scales at both sites (Wilcox et al.,

2003; Williams, Pierson, Al‐Hamdan, et al., 2014). The reduced run‐

off and erosion in shrub‐interspace zones suggests hydrologic function

improved throughout most of the domain at each site, as the

intercanopy made upmore 70% of total area at both sites prior to treat-

ment (Table 1). Collectively, the responses over the nine years postfire

at the two sites clearly support the inference by Williams, Pierson,

Al‐Hamdan, et al. (2014) that fire can act as an ecohydrologic threshold

reversal mechanism on sagebrush shrublands in the later stages of

woodland encroachment.

4.2 | Is the soil erosion feedback on late‐succession
woodlands reversible by burning?

Substantial declines in run‐off and erosion across the fine to patch

scales at the two woodlands in this study in association with a shift to
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biotic control on run‐off and erosion rates demonstrate that the soil

erosion feedback is reversible on late‐succession woodlands through

burning. The shift to biotic control on cross‐scale run‐off and erosion

in this study is indicative of a change from a “nonconserving” to a

“resource conserving” system (Wilcox et al., 2003). In “resource con-

serving” woodlands, vegetated patches and ground cover capture rain-

fall and isolated run‐off and limit soil loss, and the retention of these

resources further enhances vegetation and soil productivity (Ludwig,

Wilcox, Breshears, Tongway, & Imeson, 2005; Reid, Wilcox, Breshears,

&MacDonald, 1999;Wilcox et al., 2003). “Resource conserving” condi-

tions are typical for sagebrush steppe in good ecological condition

(Pierson et al., 1994). For these ecosystems, infiltration rates are typi-

cally high, and sediment delivery rates are low for shrub coppices and

vegetated interspaces (Pierson et al., 1994; Pierson et al., 2009, 2008;

Williams, Pierson, Kormos, et al., 2016). Run‐off and erosion generated

in bare interspaces is readily captured downslope in vegetated and

litter‐covered microsites (Pierson & Williams, 2016). Burning in our

study re‐established grass as the dominant cover and the fire‐induced

recruitment and expansion of grass cover filled in bare patches through

the bare intercanopies at both sites (Figure 1c,f). Sagebrush recruitment

continues at both sites and, overall, burning set forth a trajectory

towards re‐establishment of the sagebrush steppe “resource conserv-

ing” vegetation structure typical for these ecosystems. We anticipate

the current “resource conserving” ecohydrologic function at both sites

will be further enhanced as the sagebrush steppe vegetation structure

continues to develop, as is common for recovery of sagebrush steppe

following burning (Williams, Pierson, Spaeth, et al., 2016). The recovery

rate is of course prolonged for degraded pretreatment conditions such

as those at Marking Corral and Onaqui, particularly for ground cover

recruitment and soil development (Bates et al., 2014; Bates et al.,

2017; Miller et al., 2013; Williams, Pierson, Kormos, et al., 2019), but

a “resource conserving” structure already exists at both sites, clearly

depicting a reverse of the soil erosion feedback (Williams, Pierson, Al‐

Hamdan, et al., 2014). The persistence of high run‐off and erosion from

concentrated flow releases in burned plots at Onaqui nine years post-

fire reflects the effect of the delayed ground cover recruitment at that

site (Table 9). Those experiments are intended to stress the system

and represent more extreme events. The minimal run‐off and erosion

rates from the patch‐scale high‐intensity rainfall simulation experi-

ments in burned plots at Onaqui (Figure 7) suggest formation of con-

centrated flow during all but the most extreme events is not likely at

Onaqui given cover conditions inYear‐9. Therefore, the persistent high

erosion rates for concentrated flow experiments on burned conditions

nine years postfire at that site do not negate our assertion of the shift

to resource‐conserving conditions for that site overall.

Our assertion that burning can reverse the soil erosion feedback on

late‐succession woodlands by reducing ecohydrologic resilience of the

woodland conditions (promoting ecohydrologic resilience of new state)

comes with some caveats. First, our study does not define a timeline for

reversal of a soil erosion feedback or the shift to “resource‐conserving”

conditions in these systems. Re‐establishment of sagebrush steppe veg-

etation and associated surface soil conditions on degradedwoodlands is

highly variable, is driven by conditions at the time of treatment, the type

of treatment, and posttreatment weather, and may require seeding

(Bates et al., 2005; Bates et al., 2014; Bates et al., 2017; Bates &Davies,

2016; Chambers et al., 2014; Davies et al., 2019; Miller et al., 2005;

Miller et al., 2013; Miller et al., 2014; Roundy, Miller, et al., 2014). How-

ever, our study does demonstrate tree removal on late‐succession

woodlands can effectively re‐establish a “resource‐conserving” vegeta-

tion structure and reverse the soil erosion feedback. Similar resultswere

reported by Pierson et al. (2007) following tree removal by cutting in a

western juniper (J. occidentalis Hook.) woodland in the northwestern

portion of the Great Basin. Pierson et al. (2007) reported increased

intercanopy perennial herbaceous cover and litter cover 10 years after

cutting juniper on a sagebrush shrubland in the later stages of woodland

encroachment. Patch‐scale rainfall simulations in bare (84% bare

ground) intercanopy areas in an adjacent uncut woodland generated

run‐off and erosion levels 14‐ to more than 85‐fold greater, respec-

tively, than in the cut woodland. Run‐off and erosion from patch‐scale

rainfall simulations in the cut woodland were negligible. In companion

experiments to our study,Williams, Pierson, Kormos, et al. (2019) found

that mechanical removal (cutting andmastication) of pinyon and juniper

at Marking Corral and Onaqui effectively re‐established a successional

trajectory towards sagebrush steppe vegetation over a 9‐year period

posttreatment, but vegetation responses to treatment had minimal

impact on patch‐scale infiltration and sediment delivery with respect

to prescribed fire treatments in this study. In another Great Basin study,

Roundy et al. (2017) found that pinyon and juniper removal by chaining

pairedwith a seeding treatment increased intercanopy vegetation cover

from 5% to 24% 1 year after treatment and to more than 40% 3 years

after treatment. Litter cover was near 15% in untreated areas and

exceeded 50% in treated areas within 3 years after chaining and

seeding. Intercanopy run‐off and sediment delivery during natural rain-

fall at the patch scale were 5‐fold and 10‐fold less the fifth year after

treatment relative to 5‐year averages for untreated conditions. The

studies noted here demonstrate tree removal can be effective at

recruiting understory cover and reversing the soil erosion feedback

but that responses can be prolonged for substantially degraded cover

conditions depending on the method of treatment (Pierson et al.,

2007; Roundy et al., 2017;Williams, Pierson, Kormos, et al., 2019). Fur-

thermore, numerous studies have demonstrated that residual and newly

recruited pinyon and juniper can re‐establish tree dominance over time

following treatment and that understory cover declines as tree cover

expands (Barney & Frischknecht, 1974; Bates et al., 2005; Bates et al.,

2017; Miller et al., 2005; Tausch & Tueller, 1997). Therefore, follow‐

up treatment may be required to maintain a “resource‐conserving” veg-

etation structure and ecohydrologic function after tree removal on

woodland‐encroached sagebrush sites, particularly after mechanical

treatments. Lastly, substantial increases in the fire‐prone annual cheat-

grass at Marking Corral and Onaqui have increased the risk of wildfire

and the potential for more frequent burning at the sites (Balch et al.,

2013; Brooks et al., 2004; Link, Keeler, Hill, & Hagen, 2006). Soil loss

could increase at either site over time with more frequent burning in

association with long‐term conversion of the vegetation type to cheat-

grass (Pierson et al., 2011; Wilcox et al., 2012; Williams, Pierson,

Robichaud, & Boll, 2014). Conversion of either site to a cheatgrass
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monoculture over time, however, is unlikely given ample coverage of

perennial bunchgrasses (Bates et al., 2014; Chambers, Roundy, Blank,

Meyer, & Whittaker, 2007; Miller et al., 2013; Miller et al., 2014). Con-

version of the vegetation type to a cheatgrass monoculture would most

likely require a broad‐scale high severity fire with enough heat to kill the

existing native perennial bunchgrasses (Bates et al., 2006; Bates et al.,

2011, 2014; Bates&Davies, 2016).MarkingCorral andOnaqui are geo-

graphically positioned along a climatic gradient whereby risk of conver-

sion to a cheatgrass‐dominated cover type and fire‐related long‐term

soil loss are unlikely, but woodland‐encroached sites at lower and

warmer elevations may be more susceptible to cheatgrass invasion

and posttreatment dominance following tree removal by prescribed fire

(Chambers et al., 2014; Miller et al., 2013).

5 | SUMMARY AND CONCLUSIONS

Our study of two woodlands over a 9‐year period postfire demon-

strates fire can act as an ecohydrologic threshold reversal mechanism

on late‐succession woodland‐encroached sagebrush shrublands. We

measured extensive bare ground and depauperate vegetation across

fine to hillslope scales within the intercanopies of two woodland‐

encroached sagebrush sites in the Great Basin. The degraded cover

conditions were associated with competition between encroaching

trees and understory vegetation for limited water and soil resources.

The extensive bare conditions promoted high levels of run‐off and ero-

sion at the fine spatial scale that accumulated into concentrated flow

paths with high flow velocity and sediment detachment and transport

capacity over larger spatial scales. Burning initially increased bare condi-

tions, exacerbated pre‐existing high run‐off and erosion rates in

degraded intercanopy areas, and amplified run‐off and soil loss from

areas previously vegetated by shrub and trees. Over a period of 9 years,

the eradication of tree dominance increased cover and the spatial distri-

bution of grasses throughout previously bare intercanopy patches and

thereby enhanced infiltration at the fine spatial scale, limited run‐off

and sediment delivery to the patch scale, and decreased run‐off and

erosion across all spatial scales. The shift in plant community physiog-

nomy with tree removal indicates fire can effectively decrease late‐

succession woodland ecohydrologic resilience by increasing vegetation

and ground cover, over a 9‐year period postfire in this case. The shift

from an abiotic‐driven run‐off and long‐term soil loss degraded state

to a “resource‐conserving” state of biotic‐controlled resource retention

at the two sites in this study demonstrates fire can reverse the soil ero-

sion feedback on late‐succession woodland encroached sagebrush

sites. This assertion is of course based on the sites studied here, and

we acknowledge that the long‐term effects of burning on vegetation,

ground cover, and run‐off and erosion processes likely vary with initial

site conditions, burn severity, and climate trends and land management

in the postfire recovery period. Furthermore, persistence of favourable

responses as measured in this study likely requires follow‐up treatment

to prevent re‐establishment of tree dominance and degradation of

understory cover over time.
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