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Abstract. Rainfall simulation and overland-flow experiments enhance understanding of surface 
hydrology and erosion processes, quantify runoff and erosion rates, and provide valuable data for 20 
developing and testing predictive models. We present a unique dataset (1021 experimental plots) 
of rainfall simulation (1300 plot runs) and overland flow (838 plot runs) experimental plot data 
paired with measures of vegetation, ground cover, and surface soil physical properties spanning 
point to hillslope scales. The experimental data were collected at three sloping sagebrush 
(Artemisia spp.) sites in the Great Basin, USA, each subjected to woodland-encroachment and 25 
with conditions representative of intact wooded-shrublands and 1-9 yr following wildfire, 
prescribed fire, and/or tree cutting and shredding tree-removal treatments. The methodologies 
applied in data collection and the cross-scale experimental design uniquely provide scale-
dependent, separate measures of interrill (rainsplash and sheetflow processes) and concentrated 
overland-flow runoff and erosion rates along with collective rates for these same processes 30 
combined over the patch scale (tens of meters). The dataset provides a valuable source for 
developing, assessing, and calibrating/validating runoff and erosion models applicable to diverse 
plant community dynamics with varying vegetation, ground cover, and surface soil conditions. 
The experimental data advance understanding and quantification of surface hydrologic and 
erosion processes for the research domain and potentially for other patchy-vegetated rangeland 35 
landscapes elsewhere. Lastly, the unique nature of repeated measures spanning numerous 
treatments and time scales delivers a valuable dataset for examining long-term landscape 
vegetation, soil, hydrology, and erosion responses to various management actions, land use, and 
natural disturbances. The dataset is available from the National Agricultural Library at 
https://data.nal.usda.gov/search/type/dataset (DOI: 40 
https://doi.org/10.15482/USDA.ADC/1504518; Pierson et al., 2019). 
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rainfall simulation; rangeland hydrology; runoff; sagebrush steppe; tree cutting; tree shredding; 
tree removal; woody plant encroachment  45 
 
1 Introduction 
 
Rangelands are one of the most common occurring sparsely-vegetated wildland landscapes 
around the world. These lands cover about half of the world’s land surface and about 31% (> 300 50 
million ha) of the land surface in the US (Havstad et al., 2009). The patchy vegetation structure 
typical to these water-limited landscapes regulates connectivity of runoff and erosion sources and 
processes and thus controls hillslope scale runoff and sediment transport (Pierson et al., 1994; 
Wainwright et al., 2000; Wilcox et al., 2003; Ludwig et al., 2005). Runoff and erosion in isolated 
bare patches on well-vegetated rangelands occur as splash-sheet (rainsplash and sheetflow) 55 
processes. Sediment entrained by raindrops and shallow sheetflow in bare patches typically 
moves a limited distance downslope before deposition immediately upslope of and within 
vegetated areas (Emmett, 1970; Reid et al., 1999; Puigdefábregas, 2005; Pierson and Williams, 
2016). Disturbances such as intensive land use, plant community transitions, and wildfire can 
alter this resource-conserving vegetation structure and thereby facilitate increases in runoff and 60 
soil loss through enhanced connectivity of overland flow and sediment sources during rainfall 
events (Davenport et al., 1998; Wilcox et al., 2003; Pierson et al., 2011; Williams et al., 2014a, 
2014b, 2018a). The negative ramifications of woody plant encroachment and wildfire have been 
extensively studied on rangelands around the World and have advanced understanding of runoff 
and erosion processes for these commonly occurring ecosystems (Schlesinger et al., 1990; 65 
Wainwright et al., 2000; Shakesby and Doerr, 2006; Shakesby, 2011; Pierson and Williams, 
2016). Recent widespread plant community transitions and trends in wildfire activity and 
associated amplified runoff and erosion rates spanning rangelands to dry forests throughout the 
western US (Williams et al., 2014a) and elsewhere (Shakesby, 2011) underpin a need for 
compiling data sources that further contribute to process understanding and improved 70 
parametrization of rangeland hydrology and erosion predictive technologies. 
 Sagebrush rangelands in the western US are an extensive (> 500 000 km2) and important 
vegetation type that have undergone substantial degradation associated with encroachment by 
pinyon (Pinus spp.) and juniper (Juniperus spp.) woodlands, invasions of fire-prone annual 
cheatgrass (Bromus tectorum L.), and altered fire regimes (Davies et al., 2011; Miller et al., 75 
2011, 2019). Pinyon and juniper woodland encroachment of sagebrush vegetation can have 
negative hydrologic impacts (Miller et al., 2005; Petersen and Stringham, 2008; Pierson et al., 
2007; Petersen et al., 2009; Pierson et al., 2010; Williams et al., 2014a, 2018a). Encroaching 
trees outcompete understory sagebrush and herbaceous vegetation over time and thereby increase 
bare ground and connectivity of runoff and sediment sources (Bates et al., 2000; Miller et al., 80 
2000; Bates et al., 2005; Petersen et al., 2009; Pierson et al., 2010; Roundy et al., 2017). 
Extensive well-connected bare patches in the later stages of woodland encroachment propagate 
broad-scale runoff generation and soil loss during storms events. Runoff from splash-sheet 
processes during these events combine along hillslopes to form concentrated overland flow with 
high sediment detachment rates and ample transport capacity (Pierson et al., 2010; Williams et 85 
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al., 2014a, 2016a). Amplified soil loss over time perpetuates a woodland ecological state and 
long-term site degradation (Petersen et al., 2009). Land managers commonly employ various 
mechanical treatments and prescribed and natural fires to reduce tree cover and re-establish 
sagebrush vegetation and associated resource-conserving hydrologic function (Bates et al., 2000, 
2005; Pierson et al., 2007; Bates et al., 2014; Miller et al., 2014; Roundy et al., 2014; Bates et al., 90 
2017; Williams et al., 2018a). However, managers are challenged with predicting potential 
vegetation and ecohydrologic effects of tree removal across diverse woodland landscapes and 
with determining the appropriate type and timing of available treatment options. Invasions of 
fire-prone cheatgrass following prescribed and natural fires are particularly problematic. This 
annual grass commonly invades open patches on woodlands at lower elevations or on warmer 95 
sites, subsequently increases wildfire frequency, and potentially promotes long-term loss of 
surface soil and nutrients associated with recurrent burning and fire-induced runoff events 
(Pierson et al., 2011; Wilcox et al., 2012; Williams et al., 2014a). 
 Land managers around the World need improved understanding of runoff and erosion 
processes for the various disturbances common to rangelands and need improved tools for 100 
predicting responses to and making decisions on a host of management alternatives. Managers 
rely on local understanding and conceptual and quantitative science-based models to aid 
management decisions. Local knowledge is often limited and data necessary to populate 
conceptual and science-based models are likewise limited given vast rangeland domain. 
Vegetation and ground cover inventories and field-based experiments are primary resources for 105 
informing conceptual models (Petersen et al., 2009; Chambers et al., 2014; Williams et al., 
2016a; Chambers et al., 2017). Rainfall simulation and overland flow experiments likewise 
provide data for developing, evaluating, and enhancing quantitative hydrology and erosion 
predictive technologies (Flanagan and Nearing, 1995; Robichaud et al., 2007; Wei et al., 2009; 
Nearing et al., 2011; Al-Hamdan et al., 2012a, 2012b, 2013, 2015, 2017; Hernandez et al., 2017). 110 
To this need, we present an ecohydrologic dataset containing 1021 experimental plots. The 
dataset consists of rainfall simulation (1300 plot runs, 0.5 m2 to 13 m2 scales) and overland flow 
(838 plot runs, ~9 m2 scale) experimental data with paired measures of vegetation and ground 
cover, and surface soil physical properties spanning point to hillslope scales (Pierson et al., 
2019). The experimental data were collected at multiple sagebrush rangelands in the Great Basin, 115 
USA, each with woodland encroachment and sampled in untreated conditions and following fire 
and mechanical tree-removal treatments over a 10 yr period. The dataset therefore represents 
diverse vegetation, ground surface, and surface soil conditions common to undisturbed and 
disturbed rangelands in the western US and elsewhere. The resulting dataset contributes to both 
process-based knowledge and provision of data for populating, evaluating, and improving 120 
conceptual and quantitative hydrology and erosion models. 
 
2 Study Sites and Experimental Design 
 
A series of vegetation, soils, rainfall simulation (Figures 1 and 2a-2c), and overland flow 125 
experiments (Figure 2d-2e) were completed at three pinyon and juniper woodlands historically 
vegetated as sagebrush shrublands. The study sites were selected from a network of sites as part 
of a larger study on the ecological impacts of invasive species and woodland encroachment into 
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sagebrush ecosystems and the effects of sagebrush restoration practices, the Sagebrush Steppe 
Treatment Evaluation Project (SageSTEP, www.sagestep.org). Study site climate, physical, and 130 
vegetation attributes are provided in Table 1. The data were collected in years 2006-2015, with 
sampling years varying by site and by treatment area within each site (see Table 2). Vegetation 
and ground cover were patchy and sparse at the sites when the study began in 2006 (Table 1). 
Tree-removal treatments (prescribed fire, tree cutting, tree shredding [bullhog]) were applied at 
the Marking Corral and Onaqui sites in 2006 (late summer and autumn) to evaluate effectiveness 135 
of pinyon and juniper removal in re-establishing sagebrush vegetation and ground cover, 
improving hydrologic function, and reducing erosion rates. The Castlehead site burned by 
wildfire in summer 2007 before tree-removal treatments could be applied, and, wildfire was 
assessed as a prescribed natural-fire tree-removal treatment for that site. At all three sites, a cut-
tree (downed tree) treatment was placed across a subset of large-rainfall and overland-flow plot 140 
bases (Figure 2d-2e) within the various treatments to measure effects of downed trees on surface 
hydrology and erosion processes. This additional treatment was applied in 2007 and 2015 to 
some plots in cut treatment areas at Marking Corral and Onaqui and in 2008 and 2009 in 
unburned areas at Castlehead. Treatment applications and descriptions and the study 
experimental design are explained in earlier papers by Pierson et al. (2010, 2013, 2014, 2015) 145 
and by Williams et al. (2014a, 2018b, 2019a) and all treatments for each site each year are 
provided in Table 2. 
 A suite of biological and physical attributes at each site were measured at point, small-
rainfall plot (0.5 m2), overland-flow plot (~9 m2), large-rainfall plot (13 m2), and hillslope plot 
(990 m2) scales. Soil bulk density of the near-surface (0-5 cm depth) was sampled as a point 150 
measure in interspace microsites between plants, shrub coppice microsites underneath shrub 
canopies, and tree coppice microsites underneath three canopies. The bulk density sampling was 
conducted by compliant cavity method within all treatment areas 1-2 yr after respective 
treatments. Surface soil texture was quantified as a point measure using grab samples (0-2 cm 
depth) from interspace, shrub coppice, and tree coppice microsites within all treatment areas at 155 
Marking and Onaqui in 2006 prior to treatments and within unburned and burned treatment areas 
at Castlehead in 2008. Vegetation and ground cover were measured at small-rainfall, large-
rainfall, and overland-flow plot scales and at the hillslope scale pre- and post-treatment in all 
treatment areas at Marking Corral and Onaqui and in unburned and burned treatment areas at 
Castlehead. Vegetation and ground cover measures at the hillslope scale (site characterization 160 
plots) were conducted to describe site-level cover conditions prior to and over time after 
treatment. Site characterization plots were installed and sampled prior to treatment (2006) in all 
treatment areas at Marking Corral and Onaqui and were re-sampled 1 yr (2007) and 9 yr (2015) 
after treatment. Castlehead site characterization plots were installed and sampled in unburned 
and burned areas 1 yr after the fire (2008) and were re-sampled the 2nd year post-fire (2009). 165 
Vegetation and ground cover measures on rainfall simulation and overland flow plots were used 
to evaluate resisting and driving forces on surface hydrology and erosion processes and to 
quantify treatment effects on cover components at those plot scales. Sampling of vegetation and 
ground cover on rainfall simulation and overland flow plots in untreated areas (control and 
unburned) and treated areas varied by site and year as described in Table 2.  170 
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 Rainfall simulations and overland flow experiments were employed at the different plot 
scales to quantify specific scale-dependent runoff and erosion processes (Pierson et al., 2010; 
Williams et al., 2014a). Small-plot rainfall simulations (Figure 1) were applied to quantify runoff 
and erosion by splash-sheet processes. Each small rainfall plot was installed, as described by 
Pierson et al. (2010) and Williams et al. (2014a), to occur on either a tree coppice, shrub coppice, 175 
or interspace microsite (Figure 1b-1e). Small plots at Marking Corral and Onaqui were installed 
and sampled in control and all other treatment areas in 2006 before application of the tree-
removal treatments and were left in place for subsequent sampling 1 yr (2007), 2 yr (2008), and 
9 yr (2015)  after treatment. Small plots at Castlehead were installed and sampled in unburned 
and burned areas 1 yr after the fire (2008) and left in place for subsequent sampling the 2nd year 180 
after fire (2009). Large-plot rainfall simulations (Figure 2a-2b) were used to quantify runoff and 
erosion from combined splash-sheet and concentrated overland flow processes. Each plot was 
installed, as described by Pierson et al. (2010) and Williams et al. (2014a), on either a tree zone 
(tree coppice and area just outside tree canopy drip line) or a shrub-interspace zone (intercanopy 
area between tree canopies) inclusive of shrub coppice and interspace microsites (Figure 2). 185 
Large plots at Marking Corral and Onaqui were installed and sampled in all treatment areas in 
2006 immediately before treatment application (controls) and were extracted following 
sampling. New plots were installed and sampled in treatment areas at Marking Corral and 
Onaqui in 2007, 1 yr post-treatment, and were then extracted. Large rainfall plots at Castlehead 
were installed and sampled in unburned and burned areas in 2008, 1 yr after the fire, and were 190 
then extracted. Overland flow simulations (Figure 2d-de) were conducted on large rainfall plots 
(Figure 2a-2c) at Marking Corral and Onaqui in 2006 and 2007 immediately following 
respective rainfall simulations. Overland flow simulations were conducted in control and treated 
areas at those sites in 2008, but those plots were not subjected to rainfall simulation. Castlehead 
overland flow simulations in 2008, 1 yr post-fire, were run on large rainfall simulation plots 195 
following rainfall simulations and, in 2009, 2 yr post-fire, were run on newly installed plots 
without rainfall simulations. Overland flow experiments conducted on large-rainfall simulation 
plots had borders on all sides and contained a collection trough for runoff measurement at the 
plot base (Figure 2c; Pierson et al., 2010, 2013, 2015; Williams et al., 2014a). Overland flow 
simulations run independent of rainfall-simulation experiments were conducted on borderless 200 
plots, but contained a runoff collection trough at the downslope plot base (Figure 2d-2e; Pierson 
et al., 2013, 2015; Williams et al., 2014a, 2018b, 2019a).  
 
3 Field Methods 
 205 
3.1 Hillslope scale site characterization plots 
 
 Understory vegetation and ground cover and overstory tree cover at the hillslope scale at each 
site were sampled on 30 m × 33 m site characterization plots using a suite of line-point and belt 
transect methods and various tree measures (see Pierson et al., 2010; Williams et al., 2014a). 210 
Foliar and ground cover on each site characterization plot were recorded for 60 points (50 cm 
spacing) along each of five line-point transects (30 m in length; spaced 5-8 m apart) for a total of 
300 sample points per plot. Percent cover by each sampled cover type was derived for each plot 
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as the number of respective cover type hits divided by the total number of points sampled. 
Multiple canopy layers were possible and therefore the total foliar cover across all sampled cover 215 
types potentially exceeded 100%. The number of live tree seedlings 5-50 cm height and shrubs 
exceeding 5-cm height were quantified along three belt transects on each plot. Each of the three 
belt transects on each plot were centered along a foliar/ground cover line-point transect, sized 2 
m wide × 30 m long, and spaced 6 m apart. Shrub and tree seedling densities were calculated for 
each plot as the total number of respective individuals tallied along the three belt transects 220 
divided by total belt transect area (180 m2). The number of live trees > 0.5 m in height was 
quantified for each plot, and tree height and minimum and maximum crown diameters were 
measured for each live tree. A crown radius for each live tree was derived as one-half the 
average of measured minimum and maximum crown diameters. Individual tree crown area (tree 
cover) was calculated as equivalent to the area of a circle, derived with the respective crown 225 
radius. Total tree cover for each plot was quantified as the sum of measured tree cover values on 
the plot.  
 
3.2 Small-rainfall simulation plots and experiments 
 230 
Foliar cover, ground cover, and ground surface roughness on all small-rainfall plots were 
quantified using point frame methods explained in Pierson et al. (2010). Foliar and ground cover 
on each plot were sampled at 15 points spaced 5 cm apart along each of seven transects spaced 
10 cm apart and oriented parallel to hillslope contour (105 sample points per plot). Percent cover 
for each cover type sampled on each plot was derived from the frequency of respective cover 235 
type hits divided by the total number of points sampled. Multiple canopy layers were allowed 
and therefore total foliar cover across all cover types potentially exceeded 100%. A relative 
ground surface height at each sample point on each plot was determined by metal ruler as the 
distance between the ground surface and a level-line (top of point frame). Ground surface 
roughness for each plot was then derived as the mean of standard deviations of ground surface 240 
heights for each of the transects sampled on the respective plot. Litter depth on each plot was 
measured along the outside edge of the two plot borders located perpendicular to the hillslope 
contour. Measurements were made to the nearest 1 mm using a metal ruler at four evenly spaced 
points (15-cm apart) along the two plot borders. An average litter depth was derived for each plot 
as the averaged of the eight litter depth measures.      245 
 Soil water repellency of the mineral soil surface and at depths near the mineral soil 
surface (0-5 cm depths) was measured immediately adjacent (~ 50 cm away) to each small-
rainfall plot immediately before rainfall simulation using the water drop penetration time 
(WDPT) method (see Pierson et al., 2010). Litter and ash cover were carefully removed from the 
mineral soil surface prior to application of the WDPT. Eight water drops (~ 3-cm spacing) were 250 
then placed on the mineral soil surface and the time required for infiltration of each drop was 
recorded up to a 300-s maximum. The WDPT was then repeated at 1-cm soil depth increments 
until 5-cm soil depth was reached. For each sampled depth, 1 cm of soil was excavated 
immediately underneath the previously sampled area and the WDPT procedure was repeated 
with eight drops. A mean WDPT for each sampled soil depth on each plot was recorded as the 255 
average of the eight WDPT (s) samples at the respective depth. Soils were classified as wettable 
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where mean WDPT < 5 s, slightly water repellent where mean WDPT ranged 5 s to 60 s, and 
strongly water repellent where mean WDPT > 60 s.  
 Surface soil moisture and aggregate stability were also sampled for each small-rainfall 
plot prior to rainfall simulations. Soil samples were collected at 0-5 cm depth immediately 260 
adjacent to each small rainfall plot and were subsequently analyzed in the laboratory for 
gravimetric soil water content. Some samples were excluded from the dataset due to poor sealing 
of soil cans in the field. Aggregate stability of the surface soil on each plot was determined using 
a modified sieve test on six soil peds approximately 2-3 mm thick and 6-8 mm in diameter (see 
Pierson et al., 2010). Each soil ped sampled on each plot was assigned to one of the following 265 
classes, as defined by Herrick et al. (2005): (1) > 10% stable aggregates, 50% structural integrity 
lost within 5 s, (2) > 10% stable aggregates, 50% structural integrity lost within 5-30 s, (3) > 
10% stable aggregates, 50% structural integrity lost within 30-300 s, (4) 10-25% stable 
aggregates, (5) 25-75% stable aggregates, or (6) 75-100% stable aggregates. An average 
aggregate stability was derived for each plot as the arithmetic average of the classes assigned to 270 
the six aggregate samples for the respective plot. 
 Rainfall was applied to small-rainfall plots at approximate intensities of 64 mm h-1 (dry 
run) and 102 mm h-1 (wet run) for 45 min as explained in Pierson et al. (2010). The dry run was 
applied to dry antecedent soil conditions, and the wet run was applied to wet soil conditions, ~ 
30 min after the dry run. Rainfall was applied to small-rainfall plots by a Meyer and Harmon- 275 
type portable oscillating-arm rainfall simulator with 80-100 Veejet nozzles (Figure 1a; Meyer 
and Harmon, 1979; Pierson et al. 2010, 2013, 2014; Williams et al., 2014a, 2018b, 2019a). The 
applied rainfall kinetic energy (200 kJ ha-1 mm-1) and raindrop size (2 mm) were within 
approximately 70 kJ ha-1 mm-1 and 1 mm respectively of values reported for natural convective 
rainfall (Meyer and Harmon, 1979). Rainfall amount applied to each plot during rainfall 280 
simulation was estimated by integrating a pan catch of a 5-min calibration run prior to each 
rainfall simulation plot run. Total rainfall amount was estimated on plots where debris and/or 
vegetation prevented placement of calibration pans. In such cases, the estimated rainfall amount 
was derived as the average of all calibration runs for the respective simulation date. Timed plot 
runoff samples were collected at 1-3-min intervals throughout each 45-min rainfall simulation 285 
and were subsequently analyzed in the laboratory for runoff volume and sediment concentration. 
Cumulative runoff and sediment amounts were obtained for each runoff sample by weighing the 
sample before and after drying at 105°C. A mean runoff rate (mm h-1 and L min-1) was derived 
for each sample interval as the interval runoff divided by the interval time. Sediment discharge (g 
s-1) for each sample interval was calculated as the cumulative sediment for the sample interval 290 
divided by the interval time. Sediment concentration for each sample interval was obtained by 
dividing cumulative sediment by cumulative runoff (g L-1). Some field samples were discarded 
from the final dataset because of laboratory errors or various issues noted on field datasheets 
(i.e., spillage, bottle overrun, etc.). 
 295 
3.3 Large-rainfall simulation plots and experiments 
 
Vegetation and ground cover were measured on large-rainfall simulation plots using line-point 
methods as described by Pierson et al. (2010) and Williams et al. (2014a). Foliar cover and 
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ground cover on large-rainfall plots were recorded for 59 points with 10-cm spacing along each 300 
of five transects (6 m long, spaced 40 cm apart) oriented perpendicular to the hillslope contour, 
295 sample points per plot. The percentage cover by each sampled cover type for each plot was 
derived as the number of point contacts or hits for each respective life form divided by the total 
number of points sampled on the respective plot. Multiple canopy layers were allowed and 
therefore total foliar cover across all sampled cover types potentially exceeded 100%. Cut trees 305 
placed on a subset of rainfall simulation plots (see experimental design above) were excluded 
from foliar and ground cover measurements. However, various attributes of downed trees (i.e., 
length [height], crown width, etc.) were measured and are reported. Ground surface roughness 
for each plot was calculated as the average of the standard deviations of ground surface heights 
measured across the line-point cover transects. The relative ground-surface height at each sample 310 
point was calculated as the distance between a survey transit level-line above the point and the 
ground surface. Distances in excess of 20 cm between plant canopies (canopy gaps) and plant 
bases (basal gaps) were measured along each of the line-point transects on each plot. Average 
canopy and basal gap sizes were calculated for each plot as the mean of all respective gaps 
measured in excess of 20 cm. Additionally, maximum canopy and basal gap sizes were 315 
calculated for each plot as the maximum of all respective gaps measured in excess of 20 cm. 
Percentages of canopy gaps and basal gaps representing 50-cm incremental gap classes (e.g., 51-
100 cm, 101-150 cm, etc.) were derived for each transect and averaged across the transects on 
each plot to determine gap-class plot means.   
 Rainfall was applied to pairs of large-rainfall plots (Figure 2a-2b) at the same dry-run and 320 
wet-run target rates and sequence and durations as described above for small-rainfall plots 
(Pierson et al., 2010; Williams et al., 2014a). Each paired-rainfall simulation was run with a 
Colorado State University (CSU) type rainfall simulator (Figure 2a-2b; Holland, 1969). The 
CSU-type design delivers rainfall energy at approximately 70% of that for a natural convective 
rainfall event and produces rainfall drop diameters within approximately 1 mm of natural rainfall 325 
(Holland, 1969; Neff, 1979).  The applied simulator design consists of seven stationary 
sprinklers evenly spaced along each of the outermost borders of the respective rainfall-plot pair, 
with each sprinkler elevated 3.05 m above the ground surface. Total rainfall applied to large-
rainfall plots was quantified from the average of six plastic rainfall depth gages organized in a 
uniform grid within each plot. Runoff from direct rainfall on the large-plot collection troughs 330 
(trough catch, Figure 2b) was quantified by sampling collection trough runoff before plot-
generated runoff occurred. Once plot runoff occurred, timed samples of runoff were collected at 
1-3-min intervals throughout each 45-min simulation run and were subsequently analyzed in the 
laboratory for runoff volume and sediment concentration as with small-plot rainfall simulation 
samples. Sample weights were adjusted to appropriately account for trough catch, as described 335 
by Pierson et al., 2010. Some field samples were discarded from the final dataset because of 
laboratory errors or various issues noted on field datasheets (i.e., spillage, bottle overrun, etc.). 
Runoff and erosion rates were determined consistent with methods for small-plot rainfall 
simulations.   
 340 
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3.4 Overland-flow simulation plots and experiments 
 
Vegetation and ground cover on overland-flow plots were measured using methods consistent 345 
with those on large-rainfall simulation plots. For overland-flow plots that underwent rainfall 
simulation, foliar and ground cover measures were derived from the large-rainfall plot line-point 
transect data, but were restricted to the lower 4 m of the respective plots. Foliar and ground cover 
on overland-flow plots not subjected to rainfall simulations were recorded at 24 points with 20-
cm spacing, along each of nine line-point transects (4.6 m in length, spaced 20 cm apart) oriented 350 
perpendicular to the hillslope contour, for a total of 216 points per plot. Percentage cover for 
each cover type sampled on each plot was derived from the number of point contacts or hits for 
each respective cover type divided by the total number of points sampled within the plot. As on 
large-rainfall plots, total foliar cover across all cover types potentially exceeded 100% given 
multiple canopy were allowed. Cut trees placed on a subset of overland-flow plots (see 355 
experimental design above) were excluded from foliar and ground cover measurements. 
However, various attributes of downed trees (i.e., length [height], crown width, etc.) were 
measured and are reported. The ground surface roughness for each overland-flow plot was 
calculated as the average of the standard deviations of the ground surface heights across the 
foliar/ground cover line-point transects. The relative ground-surface height at each cover sample 360 
point was calculated as the distance between a survey transit level line above the respective 
sample point and the ground surface. Canopy and basal gaps exceeding 20 cm on overland-flow 
plots were recorded along each line-point transect. Average and maximum canopy and basal 
gaps were derived consistent with methods for large-rainfall simulation plots. Percentages of 
canopy and basal gaps representing 50-cm incremental gap classes (e.g., 51-100 cm, 101-150 365 
cm, etc.) were derived for each transect and averaged across the transects on each plot to 
determine gap-class plot means, similar as on large-rainfall plots.   
 Datalogger-controlled flow regulators (see Pierson et al., 2010, 2013, 2015; Williams et 
al., 2014a, 2018b, 2019a) were used to apply concentrated flow release rates of 15, 30, and 45 L 
min-1 to each overland-flow plot. Flow was routed into and through a metal box filled with 370 
Styrofoam pellets and was released through a 10-cm wide mesh-screened opening at the box 
base (Figure 2d; see Pierson et al., 2010). Each flow release on each plot was applied for 12 min 
from a single release-point located 4 m upslope of the collection trough apex. Flow release rate 
progression on each plot was consecutive from 15 L min-1 to 30 L min-1 to 45 L min-1. Flow 
samples were collected at various time intervals (usually 1-min to 2-min) for each 12-min 375 
simulation at each release rate. As with rainfall simulation samples, runoff samples were taken to 
the laboratory, weighed, oven-dried at 105°C, and then re-weighed to determine the runoff rate 
and sediment concentration. Also as noted above for rainfall simulation samples, a small number 
of runoff samples were discarded because of laboratory errors or various issues noted on field 
datasheets (i.e., spillage, bottle overrun, etc.). Runoff and sediment variables for each flow 380 
release rate were calculated for an 8-min time period starting at runoff initiation. The resulting 8-
min runoff and sediment variables were derived as explained for the 45-min rainfall simulations. 
The velocity of overland flow was measured using a concentrated salt tracer applied into the 
flow and electrical conductivity probes to track the mean transit time of the tracer over a set flow 
path length (usually 3 m; Pierson et al., 2010, 2013, 2015; Williams et al., 2014a, 2018b, 2019a). 385 
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The width, depth, and a total rill area width (TRAW) of overland flow were measured along flow 
cross-sections 1 m, 2 m, and 3 m downslope from the flow release point. The TRAW variable 
represents the total width between the outermost edges of the outermost flow paths at the 
respective cross section (Pierson et al., 2010). Overland flow simulations conducted on large-
rainfall simulation plots at Marking Corral and Onaqui in 2006 and 2007 and at Castlehead in 390 
2008 were run approximately two hours after respective rainfall simulations. Overland flow 
simulations on plots not subjected to rainfall simulation at Marking Corral and Onaqui in 2008 
and 2015 and at Castlehead in 2008 were conducted on soils pre-wet with a gently misting 
sprinkler (see Pierson et al., 2013, 2015; Williams et al., 2014, 2018, 2019a). 
 395 
4 Data Application 
 
Subsets of the dataset have been used to improve understanding of rangeland hydrologic and 
erosion processes, assess the ecohydrologic impacts of wildland fire and management practices 
on sagebrush rangelands, and improve and enhance rangeland hydrology and erosion models. 400 
Examples of data use for such applications are presented in Figures 3-5. Pierson et al. (2010) 
applied pre-treatment data across all plot-scales and experiment types from Marking Corral and 
Onaqui to evaluate the ecohydrologic impacts of woodland encroachment on sagebrush 
rangelands. Studies by Pierson et al. (2014, 2015) assessed the initial (1st and 2nd year) effects of 
prescribed fire and mechanical tree removal treatments on vegetation, ground cover, and 405 
hydrology and erosion processes at Marking Corral and Onaqui. Williams et al. (2014a) applied 
vegetation, ground cover, rainfall simulation and overland flow experiments from unburned and 
burned areas at Castlehead to evaluate the utility of fire to reverse the negative ecohydrologic 
impacts of juniper encroachment on rangelands and to frame conceptual concepts on process 
connectivity for burned and degraded rangelands (Figure 4). Pierson et al. (2013 and 2015) 410 
evaluated the immediate effects of cut-downed trees on runoff and erosion processes on 
woodlands. Williams et al. (2018b, 2019a, 2019b) applied data from all experimental plot scales 
and methods in untreated and treated areas at Marking Corral and Onaqui to evaluate the long-
term ecohydrologic impacts of prescribed fire and mechanical tree-removal treatments on 
woodland-encroached sagebrush steppe (Figure 5). Al-Hamdan et al. (2012a, 2012b, 2013, 2015, 415 
2017) applied subsets of the data to develop, test, and enhance various parameter estimation 
equations for flow hydraulics and erodibility parameters in the Rangeland Hydrology and 
Erosion Model (RHEM). Collectively, these studies have improved understanding of rangeland 
hydrology and erosion processes and informed both conceptual and quantitative models 
applicable to assessment and management of diverse rangelands (McIver et al., 2014; Pierson 420 
and Williams, 2016; Williams et al., 2016a, 2016b, 2016c; Hernandez et al., 2017; Williams et 
al., 2018a).        
 
5 Data Availability 
 425 
The full dataset is available from the National Agricultural Library website at 
https://data.nal.usda.gov/search/type/dataset (DOI: 
https://doi.org/10.15482/USDA.ADC/1504518; Pierson et al., 2019). The suite of files therein 
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includes an abbreviated description and field methods; a data dictionary; geographic information 
for study sites; photographs of the study sites, field experiments, and experimental plots; and 430 
datafiles for vegetation, ground cover, soils, and hydrology and erosion time series measures 
spanning the associated plots scales. Subset examples of the datafiles are shown in Tables 4 (site 
level soil particle size and bulk density), 5 (site characterization plots), 6 (small-rainfall plot 
attributes), 7 (large-rainfall plot attributes), 8 (overland-flow plot attributes), 9 (small-plot 
rainfall simulation time series), 10 (large-plot rainfall simulation time series), and 11 (overland-435 
flow simulation time series).  
 
6 Summary and Conclusions 
 
Rangelands are uniquely managed using ecological principles. As such, our functional 440 
understanding of regulating ecohydrologic processes, such as soil conservation and runoff 
moderation, are limited by our ability to track these processes in the context of interdependent 
land management decisions. Pinyon-juniper encroachment into sagebrush shrublands and the 
resulting management actions provide a model system for observing hydrologic processes under 
disturbances and interventions typical of extensively managed rangelands. To provide detailed 445 
understanding of ecohydrologic processes under realistic management conditions, we collected 
long-term data at multiple sites, spatial scales, and treatments. The combined dataset includes 
1021 experimental plots and contains vegetation, ground cover, soils, hydrology, and erosion 
data spanning multiple spatial scales and diverse vegetation, ground cover, and surface soil 
conditions from three study sites and five different study years. The dataset includes 57 plots 450 
from the hillslope scale (site characterization plots), 528 small rainfall simulation plots, 146 large 
rainfall simulation plots, and 290 overland-flow simulation plots. The hydrology and erosion 
experiments provide time series data for small-rainfall plot, large-rainfall plot, and overland-flow 
plot simulations. After excluding some time series rainfall- and overland-flow simulation data 
due to various lab and equipment failures, the final time series dataset contains 1020 small-455 
rainfall, 280 large-rainfall, and 838 overland-flow plot-run hydrographs and sedigraphs if plots 
without runoff are retained. Retaining only plots that generated runoff results in a time series 
dataset of 749 small-rainfall, 251 large-rainfall, and 719 overland-flow plot simulation 
hydrographs and sedigraphs. Overall, the hydrology and erosion time series dataset totals to 2138 
hydrographs/sedigraphs including plots with no runoff and 1719 hydrographs/sedigraphs for 460 
plots that generated runoff. The methodology employed and resulting experimental data improve 
understanding of and provide quantification of separate scale-dependent (e.g., rainsplash and 
sheetflow) and combined (e.g., interrill and concentrated flow/rill) surface hydrology and erosion 
processes for sagebrush rangelands and pinyon and juniper woodlands in the Great Basin before 
and after tree removal and for sparsely vegetated sites elsewhere. This separate and combined 465 
experimental approach yields a valuable data source for testing and improving isolated process 
parameterizations in quantitative hydrology and erosion models. The long-term nature of the 
dataset is unique and provides a substantial database for populating conceptual ecological models 
of changes in vegetation, ground cover conditions, and soils resulting from management 
practices and disturbances. Likewise, the combined data on short-term and long-term 470 
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ecohydrologic impacts of management practices and fire provide valuable insight on trends in 
ecohydrologic recovery of rangeland ecosystems.  
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Figure 1. Photographs of small-plot rainfall simulator (a) and example small-rainfall plots on 
tree coppice (b), shrub coppice (c), and interspace (d and e) microsites as applied in this study. 
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Figure 2. Images showing paired large-rainfall plots during rainfall simulations (a), 
experimental set-up of paired large-rainfall plot simulation experiments (b), a fully-bordered 
large-rainfall simulation plot on a tree coppice microsite (c), a borderless overland-flow 
simulation plot and experiment on an intercanopy (shrub-interspace) microsite (d), and a 
borderless overland-flow simulation plot with a cut, downed tree on an intercanopy microsite, all 
as respective examples as applied in this study.
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 1 
 2 

Figure 5. Example relationships/correlations in runoff and bare ground (bare soil plus rock 3 
cover; a), cumulative sediment and overland flow velocity (b), and overland flow velocity and 4 
runoff (c) derived from a subset of the overland flow dataset for Marking Corral and Onaqui 5 
sites, as presented in Williams et al. (2019a). Data from overland flow simulations on 6 
untreated/control (Cont) plots, cut treatment (Cut) plots without and with a cut, downed tree 7 
(Cut-Downed Tree), and bullhog plots (Bullhog, Onaqui site only) in tree (Tree) and intercanopy 8 
(shrub-interspace, Shr-Int) microsites 9 yr after respective tree removal treatments. The data 9 
demonstrate that, for the studied conditions, runoff is largely regulated by bare ground, sediment 10 
delivery is controlled by flow velocity, and flow velocity is strongly correlated with the amount 11 
or runoff.   12 
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Table 2. Number of plots sampled by plot type (site characterization and small plot rainfall, large plot rainfall, and overland flow simulations) at 
each study site (Castlehead, Marking Corral, and Onaqui) by treatment and microsite (small plots - tree coppice, shrub coppice, and interspace; 
large plots and overland flow – tree zone and shrub-interspace zone [intercanopy]) combination each year of the study. Control refers to untreated 
areas at Marking Corral and Onaqui sites. Unburned refers to areas immediately adjacent to, but outside the wildfire area (burned treatment) at 
the Castlehead site. Downed tree sub-treatments (cut-downed tree and unburned-downed tree) refer to plots with a single downed tree across each 
respective plot within the specified associated treatment (cut or unburned). Tree and shrub coppice microsites are areas underneath or previously 
(prior to treatment) underneath tree and shrub canopy, respectively. Interspace microsites are areas between tree and shrub coppice microsites. 
Tree zone microsites are areas underneath, or previously underneath, and immediately adjacent (just outside canopy drip line) to a tree canopy. 
Shrub-interspace zones are the areas between tree canopies, collectively inclusive of shrub coppice and interspace microsites [the intercanopy].  
 

  Site Characterization Experimental Plots (990 m2) 
Year Treatment Castlehead Marking Corral Onaqui 
2006 Control - 6 9 

2007 
Bullhog - - 3 
Burned - 3 3 

Cut - 3 3 

2008 Unburned 3 - - 
Burned 3 - - 

2009 Unburned 3 - - 
Burned 3 - - 

2015 
Bullhog - - 3 
Burned - 3 3 

Cut - 3 3 
  Small Plot Rainfall Simulation Experimental Plots (0.5 m2) 
  Castlehead Marking Corral Onaqui 

Year Treatment 
Tree 

Coppice 
Shrub 

Coppice Interspace 
Tree 

Coppice 
Shrub 

Coppice Interspace 
Tree 

Coppice 
Shrub 

Coppice Interspace 
2006 Control - - - 24 13 23 23 21 36 

2007 
Control - - - 7 5 8 4 3 3 
Bullhog - - - - - - 10 10 30 

Burn - - - 8 4 8 5 5 10 

2008 
Control/ 

Unburned 8 8 8 4 2 4 4 3 3 

Burned 5 5 10 8 4 8 5 5 10 

2009 Unburned 3 3 4 - - - - - - 
Burned 5 5 10 - - - - - - 

2015 

Control - - - 8 4 6 8 6 6 
Bullhog - - - - - - 5 5 10 
Burned - - - 8 4 6 5 5 10 

Cut - - - 8 4 6 5 5 10 
  Large Plot Rainfall Simulation Experimental Plots (13 m2) 
  Castlehead Marking Corral Onaqui 

Year Treatment 
Tree 
Zone 

Shrub-
Interspace Zone 

Tree 
Zone 

Shrub-
Interspace Zone 

Tree 
Zone 

Shrub-
Interspace Zone 

2006 Control - - 12 12 18 18 

2007 

Bullhog - - - - 4 4 
Burned - - 6 6 6 6 

Cut - - - 6 - 6 
Cut-Downed Tree - - - 6 - 6 

2008 

Unburned 6 6 - - - - 
Unburned- 

Downed Tree - 6 - - - - 

Burned 6 6 - - - - 
  Overland Flow Simulation Experimental Plots (~9 m2) 
  Castlehead Marking Corral Onaqui 

Year Treatment 
Tree 
Zone 

Shrub-
Interspace Zone 

Tree 
Zone 

Shrub-
Interspace Zone 

Tree 
Zone 

Shrub-
Interspace Zone 

2006 Control - - 12 12 18 18 

2007 

Bullhog - - - - 4 4 
Burned - - 6 6 6 6 

Cut - - - 6 - 6 
Cut-Downed Tree - - - 6 - 6 

2008 

Control 
Unburned 6 6 3 3 2 2 

Unburned- 
Downed Tree - 6 - - - - 

Burned 6 6 6 6 6 6 

2009 
 

Unburned 6 6 - - - - 
Unburned- 

Downed Tree - 6 - - - - 

Burned 6 6 - - - - 

2015 

Control - - 5 5 5 5 
Bullhog - - - - 5 5 
Burned - - 5 5 5 5 

Cut - - 5 5 5 5 
Cut-Downed Tree - - - 5 - 5 

- Indicates not applicable, no plots. 
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Table 4. Soil texture and bulk density variables and data structure for those measures for all study sites. 
 

Site Microsite Percent Sand Percent Silt Percent Clay 
Bulk Density 

(g cm-3) 
Castlehead interspace 50.4 43.7 5.9 1.04 
Castlehead juniper_cop 65.3 31.5 3.2 0.72 
Castlehead shrub_cop 61.8 34.6 3.6 0.76 

Marking Corral interspace 63.5 32.3 4.3 1.35 
Marking Corral juniper_cop 74.4 23.2 2.3 1.05 
Marking Corral pinyon_cop 68.4 28.3 3.4 1.1 
Marking Corral shrub_cop 59.9 35.4 4.7 1.14 

Onaqui interspace 57.4 36.2 6.5 1.07 
Onaqui juniper_cop 58.9 35.6 5.4 0.83 
Onaqui shrub_cop 56.2 36.9 6.9 1.02 
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