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The Landscape Similarity Toolbox: new tools for optimizing
the location of control sites in experimental studies

Thomas E. Dilts, Jian Yang and Peter J. Weisberg

T. E. Dilts (tdilts@cabnr.unr.edu), J. Yang and P. J. Weisberg, Great Basin Landscape Ecology Lab, Dept of Natural Resources and
Environmental Science, Univ. of Nevada Reno, 1000 Valley Road, Reno, NV 89512, USA.

Large-scale manipulative experiments are critically important for linking ecological theory with land management at a
relevant spatial scale. Statistically powerful inferential approaches such as the before-after-control-impact design involve
pairing a small number of treatment sites with control sites of analogous ecological structure and landscape context.
Pairing treatment and control sites that are as analogous as possible is an important step to ensuring that differences are
due to a treatment effect. The Landscape Similarity Toolbox provides tools for optimizing the location of potential
control sites based upon the spatial characteristics of the treatment site.

There is increasing recognition of the need for large-scale
experimental studies in ecology, to provide an appropriate
scope of inference for understanding episodic and spatially
heterogeneous phenomena (Carpenter 1996, Grace et al.
1997). However, robust experimental design for large-scale
studies can be problematic for two primary reasons: lack of
true replication and lack of true randomization (Hobbs
2003). High cost and logistical limitations when experi-
mental treatments are conducted over large areas generally
lead to a low number of replicates. The potential for bias
also increases with scale (Hobbs 2003) because ‘‘all land-
scapes are different’’ with respect to various ecological
processes including those related to or confounding treat-
ment effects. Hence random assignment of large replicate
areal units to treatments becomes infeasible (Hargrove and
Pickering 1992).

Faced with the challenges of implementing inferentially
strong, landscape-level experiments, some have proposed
that the before-after-control-impact (BACI) design (Stewart-
Oaten et al. 1986) provides the greatest inferential power,
particularly where the treatment is expressed as a one-time
perturbation such as road construction, modification or
removal (Roedenbeck et al. 2007) or forest harvesting
impacts (Bennett and Adams 2004). The BACI design
compares treated sites with untreated control sites (i.e.
control-impact main effect) both before and after treatment
occurs (i.e. before-after main effect). A significant effect of
the treatment is indicated when the difference in the
response variable between treatment and control sites is
greater after treatment occurs (i.e. a significant interaction
term between the two main effects). Such an approach
requires a high level of ecological similarity between control

and treatment sites; so that ‘‘before-after’’ treatment effects
are not masked by ‘‘control-impact’’ effects, where differ-
ences in the response variable between the treatment and the
control may be due to initial site characteristics rather than
the actual treatment effect (Underwood 1992). Thus, the
placement of control and treatment sites is critical to the
overall viability of the experiment.

Despite the great importance in identifying suitable
control sites there is a lack of objective methods to facilitate
this process. Commonly used methods, such as field visits
by experts and comparison using maps or aerial photo-
graphs, lack repeatability among observers. Furthermore it
may be infeasible to visit all candidate field sites. Existing
GIS methods, such as Boolean logic (Burrough and
McDonnell 1998), are commonly used to narrow the
search for suitable control areas, but tend to be simplistic.
For example, GIS-based methods that employ Boolean
logic can only tell us whether a site is suitable according to
some pre-defined criteria. If the criteria are too strict it is
possible that no candidate sites meet all of the criteria.
Alternatively, if the criteria are too relaxed then there may
be many potential sites that the researcher needs to choose
from. This paper describes a more advanced GIS-based
approach (the Landscape Similarity Toolbox) that incorpo-
rates many types of spatial information to maximize the
similarity between paired control and treatment sites.

The Landscape Similarity Toolbox incorporates three
types of spatial variation: compositional, configurational,
and continuous. All three types of spatial variation are
calculated at a local level using moving window analysis and
then mapped throughout the entire study region. Composi-
tional variation refers to the frequency distribution of cells
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among categories without regard to their spatial location.
Configurational variation provides information about the
arrangement of individual cells or groups of contiguous cells
referred to as patches. Much of the discipline of landscape
ecology has focused on describing the shape and arrange-
ment of patches which can be characterized using patch-
based metrics (Turner 1989). Configurational variation at
the cell or pixel level has received less attention than at the
patch level, although one might argue that for two sites
to be maximally similar they should have precisely the same
arrangement of cells. Continuous patterns of variation most
appropriately describe environmental gradients such as soil,
climate, and topography that vary continuously rather than
abruptly across the landscape (McGarigal et al. 2009).

The Landscape Similarity Toolbox methodology allows
the researcher to retain critical spatial information concern-
ing the arrangement of cells and patches within the
treatment and to compare that arrangement to all potential
control sites. The method is flexible in that it allows the
researcher to incorporate the level of spatial information
that most closely matches the landscape attributes requiring
experimental control. Moving window (neighborhood)
analysis within a GIS environment is used to generate
per-pixel maps of similarity between the treatment and all
potential control areas that can be used to augment the
control site selection process. The Landscape Similarity
Toolbox consists of python scripts that can be run stand-
alone or within ArcGIS software and is freely available
for download at <http://purl.oclc.org/similaritytools>. All
tools employ a moving window methodology in which a

window of similar size and dimensions to the treatment area
is generated (Fig. 1). This window is referred to as the
‘‘template’’. The surrounding area from which potential
control sites can be located is known as the ‘‘region’’.
Moving window analysis is used to compare the treatment
window to all moving windows (potential control sites)
within the region to generate maps of similarity. The
approach is flexible in that it can generate similarity maps
for any spatial dataset provided by the user, and it allows the
user to determine how to combine those maps to provide an
overall measure of site similarity. Users may opt to combine
various maps of similarity outside of the Toolbox using a
number of existing methods, such as principal components
analysis or weighted overlay.

The Toolbox includes tools for Data Preparation and Data
Analysis of both categorical and continuous data (Fig. 2).
The compositional similarity tool measures similarity
between the treatment and all possible control sites without
regard to the relative or absolute position of those cells within
the treatment or the moving window. It first creates a
value table that contains each class and the number of cells
present in the treatment as well as each window. Then the
absolute difference in the count of each class in the treatment
is weighted by the number of cells in each class to generate a
dissimilarity map.

d (x)�
Xm

i�1

1

pi;T

½Ni;T �Ni;Mx ½

where d(x) is dissimilarity for cell x, Pi,T is the proportion of
class i in the treatment window T, Ni,T is abundance (i.e.

Figure 1. Moving window procedure used for conducting similarity analysis. (A) Shows a three category raster map (colored using red,
green, and pink) with the treatment area outlined with the bold box. Areas with hatching represent potential sites that cannot be included
because of boundary issues (hatching at 2258) and overlap with the treatment area (hatching at 458). (B) Shows the results of the
compositional similarity analysis. Cells with hotter colors represent potential sites that are more similar to the treatment. Each nine cell
neighborhood is represented by the value in the center cell. Values represent the proportion of cells that are the same as the treatment
without regard to position within the nine cell neighborhood. Cells with edge effects have been removed from the illustration on the right
while cells within and overlapping with the treatment area have been included for visual reference. The value of the center cell in the nine
cell treatment area is 1.00.
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number of pixels) of class i in the treatment window T, Ni,Mx

is abundance of class i in the moving window Mx that is
centerred on cell x, and m is total number of classes.

The patch-level similarity tool measures configurational
similarity at the patch level. A patch is defined as a group of
contiguous cells of the same class surrounded by cells of a
different class (Forman 1995). Patches can have properties
that describe their shape as well as their position relative to
other patches. Patches can be derived from imagery using
object-based image analysis and object-based image analysis
could be used as a tool to consider multiple scales of data in
a hierarchical fashion (Burnett and Blaschke 2003). This
tool utilizes output raster datasets derived from a free
software known as FRAGSTATS (McGarigal et al. 2002).
Patch metrics are summarized in FRAGSTATS at the class
level for the treatment; moving window analysis is then
used to calculate those same metrics for each possible
control site. The patch-level similarity tool compares metric
values derived from the treatment to the values for each
window.

d (x)� jCMx �CT j

where CMx is the class-level metric value for the moving
window Mx, CT is the class-level metric value for the
treatment window T. Both CMx and CT are calculated by
FRAGSTATS.

Both the cell agreement and the fuzzy cell agreement
measure configurational similarity at the cell level rather
than the patch level. Measures of cell-level configurational
similarity may offer advantages over measures of patch-level
similarity because they can simultaneously incorporate
information about both overlap and structure (Hagen-
Zanker 2006). The cell agreement tool compares the
specific arrangement of cells within the treatment with
the moving window and determines which cells match in
terms of their relative postions within the window. The tool
totals the number of matches between the treatment and the
window and compares this value to the total number of
cells. The cell agreement tool can be viewed as the strictest
of all of the tools for comparing similarity.

d (x)�1�
1

NMx

X
z �Mx

IA(z); IA(z)�
1; z � A
0; z QA

;

�

A�fz :z � Mx and Vz �VT (z)g

where IA(z) is the indicator function (i.e. IA(z) equals one if
cell z belongs to set A and zero otherwise), A is the subset of
non-background cells in the moving window that have the
same class as the corresponding cells in the treatment
window, Vz is the value (i.e. class) of cell z, T(z) is the cell
in the treatment window that spatially corresponds to cell z
in the moving window, Mx is the set of all non-background
cells in the moving window, and NMx is the total number of
such cells in the moving window.

Precise cell agreement becomes unlikely at the landscape
level. Therefore, the fuzzy cell agreement tool uses fuzzy set
theory to relax the assumption of an exact match in terms of
relative position. Fuzziness of location is incorporated by
allowing partial values when cells of the same category are
within a specified distance (Hagen 2003). The partial values
are assigned based upon a user-specified distance using a
linear decay function.

d (x)�1�
1

NMx

X
x �Mx

Sfuzzy (x);

Sfuzzy(x)� 1�
min(dist (x ; y)½y � Y )

distmax

;Y "¥

0 ;Y �¥

;

8<
:

Y �fy:y � Mx and Vy �VT (x) and dist (x ; y)5distmaxg

where Y is the subset of cells in the moving window Mx
that are within the maximum search distance (distmax) of the
focal cell x and match the class of the corresponding cell
T(x) in the treatment window, and dist(x,y) is the distance
between cell x and cell y.

The numeric comparison tool allows for similarity
comparisons using continuous rather than categorical
data. The tool first identifies the row and column position
for each cell in the treatment as well as the corresponding

Figure 2. The Landscape Similarity Toolbox within ArcGIS. The Landscape Similarity Toolbox is divided into a set of tools designed for
preparing data for analysis and for conducting analysis. The data analysis tools are split into separate toolsets for continuous data and
categorical data. The dialog for the fuzzy cell agreement tool is shown to illustrate the types of inputs and parameters required. The data
analysis tools are written in Python and can be run stand-alone in a free Python development environment.
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Figure 3. Maps showing the output of the Similarity Toolbox for the South Ruby Mountain site in Nevada, USA. Values for each cell on
the map represent an area the same shape, size, and dimensions as the treatment. Control and treatment sites were identified by scientists
and managers without using the Landscape Similarity Toolbox. (A) Vegetation map with underlying topographic relief,
(B) compositional similarity for vegetation with the top 2% of most similar sites highlighted, (C) patch-level configuration similarity
for vegetation with the top 2% of most similar sites highlighted, (D) cell-level configuration similarity using the fuzzy cell agreement
method for vegetation with the top 2% of most similar sites highlighted. Results from the cell agreement tool and the continuous data
tool are not shown.

1100



row and column position of each cell within each moving
window. It then takes the absolute value of the difference
between the value in the treatment and the corresponding
value in the moving window. Finally, the absolute value
of the differences is summarized for each window and
is written to the center cell to produce a map of similarity.

d (x)�
1

NB

X
z �B

jVz �VT (z )j;

B�fz :z � Mx and T (x) � Tg

where Mx and T comprise the set of all non-background
cells in the moving window and the treatment window
respectively, and B is the subset of non-background cells in
the moving window whose corresponding cells in the
treatment window are also non-background cells.

We tested the Landscape Similarity approach by com-
paring the outputs of each of the tools using a Sagebrush
Steppe Treatment Evaluation Project (SageSTEP) treatment
site (McIver et al. 2005) and the Southwest ReGAP
vegetation map (Lowry et al. 2007). Maps of vegetation
similarity were produced using three methods: composi-
tional similarity, patch-level configurational similarity, and
the fuzzy cell agreement version of cell-level configurational
similarity (Fig. 3). The compositional similarity map
selected areas along ecotone boundaries where the propor-
tion of each class was the most similar. In contrast, both the
patch-level and the cell-level configurational similarity
approaches produced relatively similar maps. However,
the fuzzy cell-level configurational similarity approach
identified those areas where patch configurations were
more clustered compared to the patch-level configurational
similarity approach.

Although we have developed the Landscape Similarity
Toolbox to assist with the selections of control sites for large-
scale manipulative experiments, other types of studies could
benefit from improved pairing of treatment and control
sites. ‘‘Natural experiments’’ in which the treatment is not
controlled by the researcher, but rather results from
a natural disturbance event, could benefit from improved
pairing of treatment and control sites. Quantitative
approaches to identifying control sites can be used for
smaller-scale studies as well as larger ones by incorporating
landscape context. Landscape context can easily be incorpo-
rated into the Landscape Similarity framework by expanding
the template beyond the boundary of the treatment area
to incorporate neighboring areas. The Landscape Similarity
Toolbox represents an improvement in the identification
of potential control sites that are maximally similar to a
pre-defined treatment area. The Toolbox builds upon
existing software (e.g. FRAGSTATS) by comparing metrics
derived from a treatment to all potential control sites in the
surrounding region, producing maps that indicate the degree
of similarity between the treatment and potential control
sites. Use of the Toolbox enforces clear definition of
landscape similarity in the context of sources of potentially
confounding, spatial variation for large-scale ecological
studies.

To cite the Landscape Similarity Toolbox or acknowl-
edge its use, cite this Software note as follows, substituting

the version of the application that you used for ‘‘Version
1.0’’:

Dilts, T. E., Yang, J. and Weisberg, P. J. 2010. The Landscape
Similarity Toolbox: new tools for optimizing the location of
control sites in experimental studies. � Ecography 33: 1097�
1101 (Version 1.0).
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Sagebrush Steppe Treatment Evaluation Project (SageSTEP),
funded by the U.S. Joint Fire Science Program.

References

Bennett, L. T. and Adams, M. A. 2004. Assessment of ecological
effects due to forest harvesting: approaches and statistical
issues. � J. Appl. Ecol. 41: 589�598.

Burnett, C. and Blaschke, T. 2003. A multi-scale segmentation/
object relationship modelling methodology for landscape
analysis. � Ecol. Model. 168: 233�249.

Burrough, P. A. and McDonnell, R. A. 1998. Principles of GIS.
� Oxford Univ. Press.

Carpenter, S. R. 1996. Microcosm experiments have limited
relevance for community and ecosystem ecology. � Ecology
77: 677�680.

Forman, R. T. T. 1995. Land mosaics: the ecology of landscapes
and regions. � Cambridge Univ. Press.

Grace, J. et al. 1997. Tackling large-scale problems by scaling-up.
� In: Van Gardingen, P. R. et al. (eds), Scaling-up: from cell to
landscape. Cambridge Univ. Press, pp. 7�16.

Hagen, A. 2003. Fuzzy set approach to assessing similarity of
categorical maps. � Int. J. Geogr. Inform. Syst. 17: 235�249.

Hagen-Zanker, A. 2006. Map comparison methods that simulta-
neously address overlap and structure. � J. Geogr. Inform.
Syst. 8: 165�185.

Hargrove, W. W. and Pickering, J. 1992. Pseudoreplication a sine
qua non for regional ecology. � Landscape Ecol. 6: 251�258.

Hobbs, N. T. 2003. Challenges and opportunities in integrating
ecological knowledge across scales. � For. Ecol. Manage. 181:
223�238.

Lowry, J. H. Jr et al. 2007. Land cover classification and mapping.
� In: Prior-Magee, J. S. et al. (eds), Southwest regional gap
analysis final report. U.S. Geological Survey, Gap Analysis
Program, Moscow, ID, chapter 2.

McGarigal, K. et al. 2002. FRAGSTATS: spatial pattern analysis
program for categorical maps. � Computer software program,
Univ. of Massachusetts, Amherst, <www.umass.edu/landeco/
research/fragstats/fragstats.html>.

McGarigal, K. et al. 2009. Surface metrics: an alternative to
patch metrics for the quantification of landscape structure.
� Landscape Ecol. 24: 433�450.

McIver, J. H. et al. 2005. A regional experiment to evaluate effects
of fire and fire surrogate treatments in the sagebrush biome.
� <www.sagestep.org/pdfs/SageSTEP_proposal.pdf>.

Roedenbeck, I. A. et al. 2007. The Rauischolzhausen agenda
for road ecology. � Ecol. Soc. 12: 11, <www.ecologyand
society.org/vol12/iss1/art11>.

Stewart-Oaten, A. et al. 1986. Environmental impact assessment:
‘‘pseudoreplication’’ in time? � Ecology 67: 929�940.

Turner, M. G. 1989. Landscape ecology: the effect of pattern on
process. � Annu. Rev. Ecol. Syst. 20: 171�197.

Underwood, A. J. 1992. Beyond BACI � the detection of
environmental impacts on populations in the real, but variable,
world. � J. Exp. Mar. Biol. Ecol. 161: 145�178.

1101

www.umass.edu/landeco/research/fragstats/fragstats.html
www.umass.edu/landeco/research/fragstats/fragstats.html
www.sagestep.org/pdfs/SageSTEP_proposal.pdf
www.ecologyandsociety.org/vol12/iss1/art11
www.ecologyandsociety.org/vol12/iss1/art11

	The Landscape Similarity Toolbox: New Tools for Optimizing the Location of Control Sites in Experimental Studies
	Recommended Citation

	The Landscape Similarity Toolbox: new tools for optimizing the location of control sites in experimental studies

