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 32 

ABSTRACT 33 

Obesity is one of the risk factors for atherosclerosis. Fat accumulation and adipocyte 34 
differentiation are associated with the occurrence and development of obesity. Thus, 35 

suppression of adipocyte differentiation provides a potential anti-obesity approach. This study 36 
examined the effect of mangosteen pericarp extract (MPE) and xanthone (α-Mangostin (AM) 37 
and γ-Mangostin (GM)) on the expression of PPARγ, C/EBPα, SCD1, LPL, aP2, adipoQ, and 38 

FAS in 3T3-L1 cells. Concentrations of MPE and xanthones used were based on cytotoxic 39 
assay on 3T3-L1 cells. Three different MPE concentrations (0, 25, and 50 µg/ml) were used in 40 

this study. Likewise, three different concentrations of AM (0, 25, and 50 µM) and GM (0, 50, 41 

and 75 µM) were also used in the experiment. The expressions of PPARγ, C/EBPα, SCD1, 42 

LPL, aP2, adipoQ, and FAS genes were measured using real-time quantitative PCR. The 43 
expression of the genes was down-regulated in the group of cells treated with 50 µg/ml of MPE 44 

and 50 µM of GM. However, 25 µM and 50 µM of AM did not suppress PPARγ and SCD-1 45 
expression. 50 µM of AM also failed to reduce aP2 gene expression. In conclusion, MPE and 46 

GM showed potential anti-adipogenesis and anti-obesity effects by suppressing the expression 47 
of PPARγ, C/EBPα, SCD1, LPL, aP2, adipoQ, and FAS genes in 3T3-L1 cells.  48 
 49 

Keywords: adipogenesis, atherosclerosis, gene expression, mangosteen, obesity 50 

 51 

INTRODUCTION 52 

Obesity is a complex metabolic disease which can cause various serious diseases, such 53 

as atherosclerosis (Kang et al., 2013). An imbalance in energy intake and expenditure in obesity 54 

eventually lead to the pathological growth of adipocytes (Jou et al., 2010). Fat accumulation 55 

and adipogenesis are related to the occurrence and development of obesity (Jeon et al., 2004). 56 

Adipogenesis causes the differentiation of preadipocytes to adipocytes which play an important 57 

role in fat mass growth (Choi et al., 2007; Giri et al., 2006). 58 

Some genes have responsible in adipogenesis regulation such as CCAAT/enhancer 59 

binding protein beta (C/EBPβ), nuclear receptor peroxisome proliferation-activated receptor 60 

mailto:wahyu_w60@yahoo.com


 

3 
 

gamma (PPARγ), and CCAAT/enhancer binding protein-alpha (C/EBPα), playing an 61 

important role in the complex transcriptional cascade that occurs during adipogenesis 62 

(Cristancho & Lazar, 2011). Moreover, several enzymes are also involved in adipocyte 63 

differentiation such as lipogenic and glycolytic enzymes, the fatty-acid-binding protein aP2, 64 

the stearoyl-CoA desaturase (SCD), the fatty acid synthase (FAS) (Mackall et al., 1976; 65 

Spiegelman et al., 1983; Bernlohr et al., 1984; Ntambi et al., 1988; Obregon, 2014), the 66 

lipoprotein lipase (LPL) (Obregon, 2014; Cook et al., 1987; Flier et al., 1989), and adipoQ, 67 

nowadays known as adiponectin (Hu et al., 1996). Therefore, the potential strategy to prevent 68 

obesity is to control adipogenesis (Wang et al., 2008). 69 

The side effects from the conventional drugs for obesity usually can lead to the 70 

regaining of body weight if the medication is stopped. Hence, it is required to find novel 71 

approaches to obesity prevention focusing on healthy foods or natural drugs without negative 72 

side effects. Mangosteen (Garcinia mangostana L.) has been used in traditional medicine 73 

(diarrhea, dysentery, eczema and other skin diseases) for decades (Shen et al., 2014). The 74 

pericarp has been reported to contain abundant xanthones (α-Mangostin and γ-Mangostin) that 75 

show various bioactivities (Fig 1) such as antioxidant, antifungal, antibacterial, cytotoxic, anti-76 

inflammatory, anti-histamine, anti-HIV, and other activities (Ibrahim et al., 2014, Widowati et 77 

al., 2016).  78 

 79 

 80 

Figure 1. Chemical structure of a) α-Mangostin and b) γ-Mangostin 81 

 82 

This study examined the effect of mangosteen pericarp extract (MPE) and xanthone 83 

compounds (α-Mangostin (AM) and γ-Mangostin (GM)) on the expression of adipogenic genes 84 

such as PPARγ, C/EBPα, SCD1, LPL, aP2, adipoQ, and FAS in 3T3-L1 cells. The results may 85 

provide better understanding regarding molecular mechanisms of MPE in controlling 86 

adipogenesis as an obesity therapy. 87 

 88 

MATERIALS AND METHODS 89 

Plant material preparation and extraction  90 
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G. mangostana L. was collected in March 2011 from Cisalak, Subang, West Java, 91 

Indonesia. The plant was identified by Mr. Juandi in the herbarium of the School of Life 92 

Sciences and Technology, Bandung Institute of Technology, West Java, Indonesia. The 93 

voucher specimen was deposited in Aretha Medika Utama (005/AMU-BBRC). The pericarps 94 

were collected, chopped, and dried using a drying device (40–45 ˚C) until a stable water level 95 

was obtained (±13%). Afterwards, the extraction was performed using maceration with ethanol 96 

70% (Widowati et al., 2014; Widowati et al., 2016). 97 

 98 

3T3-L1 cell culture 99 

The 3T3-L1 cell line (ATCC®CL-173) or mouse pre-adipocytes (Aretha Medika 100 

Utama, Biomolecular and Biomedical Research Center, Bandung, Indonesia) were cultured in 101 

Dulbecco’s Modified Eagle Medium (DMEM, Biowest L0104-500), supplemented with 10% 102 

calf serum (Biowest S0400) and 100 U/ml penicillin-streptomycin (Biowest L0022), and 103 

incubated for 24 hours at 37 ˚C, 5% CO2. Cells were collected and seeded into 6-well plates (1 104 

x 104 cells/well) with DMEM + 10% calf serum until confluent (80-90%). Subsequently, 105 

subcultures were performed and the culture was re-incubated until it was confluent. 106 

Adipogenesis induction was conducted using an adipogenesis assay kit (Abcam ab133102). 107 

After the cells were 80% confluent, the medium was replaced with induction medium (DMEM 108 

+ IBMX + insulin + dexamethasone + fetal bovine serum (FBS) (Biowest S1810) for positive 109 

control, growth medium for negative control, and treatment medium (DMEM + IBMX + 110 

insulin + dexamethasone + FBS  + MPE or xanthones (AM and GM)). Plates were incubated 111 

for 3 d at 37 ˚C, 5% CO2, and humidified atmosphere. The cells were then washed with PBS 112 

1x and the medium was decanted. Fresh medium was added: insulin medium (DMEM + FBS 113 

+ insulin) for positive control, the culture medium for negative control, and insulin medium + 114 

MPE or xanthones for treatment. The culture was incubated at 37 ˚C, 5% CO2, and fresh 115 

medium was added every 2 d to maintain the culture. After 7 d, the medium was decanted, and 116 

more than 80% cells had differentiated. The adipocytes were then observed under an inverted 117 

microscope (Hidayat et al., 2015) (Huang et al., 2006). 118 

 119 

Viability assay  120 

An MTS assay was performed to investigate cell viability and determine the non-toxic 121 

concentration of MPE or xanthones on 3T3-L1 cells. The cells were seeded into 96-well plates 122 

(5 x 103 cells per well) with DMEM + 10% calf serum + 100 U/ml penicillin and streptomycin, 123 

and then incubated for 24 h at 37 ˚C, 5% CO2, in a humidified atmosphere. The incubated 124 
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medium was decanted, and 90 µl serum-free medium with 10 µl MPE in various concentrations 125 

(6.25, 12.5, 25, and 50 µg/ml diluted in DMSO) was added to the cells. For the cells in xanthone 126 

(AM or GM) treatment group, 90 µl serum-free medium with 10 µl AM or GM in various 127 

concentrations (12.5, 25, 50, and 75 µM diluted in DMSO) were added. The plates were then 128 

incubated for 24 h at 37 ˚C, 5% CO2, in a humidified atmosphere. Untreated cells were 129 

presented as a control. After incubation, 20 µl MTS was added to each well. The plates were 130 

then re-incubated for 3 h at 37 ˚C, 5% CO2, in a humidified atmosphere. The absorbance was 131 

then measured at 490 nm using a microplate reader (Multiskan Go, Thermo Scientific, USA) 132 

(Darsono et al., 2015; Laksmitawati et al., 2016; Novilla et al., 2017). 133 

 134 

Quantification of adipogenesis gene expression by Real-Time qPCR  135 

RNA extraction was performed using an Aurum Total RNA Kit (Bio-Rad 732-6820) 136 

according to the manufacturer’s instructions. The RNA yield was estimated 137 

spectrophotometrically at 260/280 nm. Subsequently, the RNA was used for cDNA synthesis 138 

using a Mix iScript cDNA Synthesis Kit (Bio-Rad 170-8841) with three incubation steps: at 25 139 

˚C for 5 min, 42 ˚C for 30 min, and 85 ˚C for 5 min (Hidayat et al., 2016). The product was 140 

stored at -20 ˚C. RNA concentrations and purities are shown in Table 1.   141 

 142 

Table 1. RNA purity of adipogenesis-induced 3T3L1, non-induced 3T3L1, MPE-treated 143 
3T3L1, AM-treated 3T3L1, GM-treated 3T3L1 144 

Sample RNA purity 

(260/280 nm) 

Negative Control 2.7079 ± 0.3202 

Positive Control 2.5700 ± 0.4403 

MPE 50 µg/ml 2.4128 ± 0.4230 

MPE 25 µg/ml 2.3358 ± 0.2921 

AM 50 µM 2.7036 ± 0.3432 

AM 25 µM 2.3858 ± 0.3469 

GM 75 µM 2.7203 ± 0.3703 

GM 50 µM 2.5279 ± 0.2364 

*The data are presented as a mean ± standard deviation. The experiment was conducted in 145 
triplicate.  146 

 147 

The expression of PPARγ, C/EBPα, SCD1, LPL, aP2, adipoQ, and FAS genes along 148 

with the constitutively expressed β-actin gene was analyzed using real-time qPCR. The primers 149 
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used in this study can be seen in Table 2. PCR amplification was carried out using a 150 

PikoRealTM Real-Time PCR System (Thermo Scientific Inc.) with preincubation cycle at 95 151 

˚C for 30 s, 40 cycles of denaturation at 95 ˚C for 30 s, annealing at 59 ˚C for 20 s, and 152 

elongation at 72 ˚C for 10 s (Hidayat et al., 2016). 153 

 154 

Table 2. Sequence of primers used in real-time quantitative PCR 155 

Primer Forward Reverse 

PPAR-

G 

5’-TTT TCA AGG GTC CCA GTT TC-3’ 5’-TTA TTC ATC AGG GAG GCC AG-

3’ 

C/EBPα 5’-GCC GAG ATA AAG CCA AAC AA-3’ 5’-CCT TGA CCA AGG AGC TCT CA-

3’ 

SCD1 5’-CTG TAC GGG ATC ATA CTG GTT C-3’ 5’-GCC GTG CCT TGT AAG TTC TG-3’ 

FAS 5’-GCG ATG AAG AGC ATG GTT TAG-3’ 5’-GGC TCA AGG GTT CCA TGT T-3’ 

LPL 5’-CTG CTG GCG TAG CAG GAA GT-5’ 5’-GCT GGA AAG TGC CTC CAT TG-

3’ 

aP2 5’-CTG AAA TGG GGA TTT GGT CA-3’ 5’-TCG ACT TTC CAT CCC ACT TC-3’ 

AdipoQ 5’-CCT GGT GAG AAG GGT GAG AA-3’ 5’-CAA TCC CAC ACT GAA TGC TG-

3’ 

β-actin 5’-TCT GGC ACC ACA CCT TCT ACA 

ATG-3’ 

5’-AGC ACA GCC TGG ATA GCA 

ACG-3’ 

 156 

Statistical analysis  157 

Statistical analysis was performed using SPSS version 16.0 software. To compare 158 

negative and positive control, the data was analyzed using unpaired-T test. The differences 159 

among treatment, the data were analyzed using one-way analysis of variance (ANOVA) with 160 

SPSS 20.0 statistical package. Only probability values of P<0.05 were considered statistically 161 

significant and later subjected to Tukey HSD post hoc test. Data are presented as mean ± SD. 162 

 163 

RESULTS AND DISCUSSION 164 

Nowadays, adverse effects after therapy have been threatening patients suffering from 165 

obesity. Therefore, medicines obtained from natural sources have the potential to substitute the 166 

commercial drugs because are much safer and more effective. Mangosteen pericarp extract 167 

(MPE) contains various beneficial secondary metabolites such as prenylated and oxygenated 168 

xanthones which are promising anti-obesity drugs (Pedraza-Chaverri et al., 2008; Adnyana et 169 

al., 2016). Xanthone founded in mangosteen fruit has derivatives such as α-Mangostin (AM) 170 

and γ-Mangostin (GM) that showed several pharmacological activities such as antioxidant, 171 

antitumor, anti-inflammatory, antibacterial, anti-allergy, antifungal, and antiviral activities 172 



 

7 
 

(Pedraza-Chaverri et al., 2008; Widowati et al., 2014). A previous study reported that MPE and 173 

xanthones (AM and GM) exhibited anti-inflammatory properties by inhibiting the COX-2 174 

gene, IL-6, IL-1β, and NO activities in LPS-induced RAW264.7 (Widowati et al., 2016). 175 

MTS assay showed that MPE, AM, and GM concentrations used in this study were non-176 

toxici to cells due to the percentage of viable cells more than 85%. The results of the viability 177 

assay are related to the adverse effects of bioactive substances on living organisms prior to 178 

their use as drugs or chemicals in clinical settings (Depress et al., 1989; Lalitha et al., 2012). 179 

In this study, two concentrations of MPE (25 and 50 µg/ml), AM (50 and 25 µM), and GM (75 180 

and 50 µM) were used for further treatments on 3T3-L1 cells. Cytotoxic or viability assays 181 

showed that the viability of cells was concentration dependent. The percentage of cell viability 182 

was determined by comparing treatment (MPE, AM, GM) to control groups. All sample 183 

concentrations were safe for the 3T3-L1 cell, except 75 µM of AM, which resulted in less than 184 

85% of cells being viable. Based on these results, all concentrations of MPE, AM, and GM, 185 

except 75 µM of AM, can be used for further treatment in 3T3-L1 cells (Table 3). 186 

 187 

Table 3. 3T3-L1 cell viability in various concentrations of MPE, AM, and GM measured in 188 

triplicates 189 

Samples 

Viability (%) 

75 (µg/ml or µM) 50 (µg/ml or 

µM) 

25 (µg/ml or 

µM) 

12.5 (µg/ml or 

µM) 

6.25 (µg/ml or µM) 

Control 

MPE 

AM 

GM 

100.00 ± 0.00 

- 

79.48 ± 6.29a 

97.91 ± 10.39a 

100.00 ± 0.00 

87.77 ± 6.69a 

87.33 ± 9.81a 

111.79 ± 3.90ab 

100.00 ± 0.00 

95.86 ± 3.25a 

109.71 ± 2.11b 

112.20 ± 4.16ab 

100.00 ± 0.00 

103.19 ± 7.76a 

113.98 ± 3.93b 

122.24 ± 10.06b 

100.00 ± 0.00 

130.73 ± 7.25b 

- 

- 

*The data are presented as a mean ± standard deviation. Different superscript small letters (a, 190 
ab,b) in the same row (among various concentrations of MPE, AM, GM toward cells viability) 191 
are significant at p < 0.05 based on Tukey HSD post hoc test. The experiment was conducted 192 
in triplicate.  193 

 194 

In certain conditions, 3T3-L1 cells may differentiate into adipocytes. (Fig. 2) shows the 195 

normal cells and induced adipocyte differentiation. After induction using insulin for five days, 196 

lipid droplets were formed. The accumulation of fat and adipogenesis are the sign of obesity 197 

development (Jeon et al., 2004). Adipogenesis is a complex process that involves specific genes 198 

and enzymes. Those genes are involved in the regulation of adipocyte differentiation, thus the 199 

potential strategy to prevent obesity is to inhibit the adipogenesis genes and enzymes (Obregon, 200 

2014; Gwon et al., 2013). In this study, it was found that 50 µM of GM were the most effective 201 
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concentrations to suppress the expression of adipogenesis-related genes, such as PPARγ. This 202 

gene is one of the main regulators of adipogenesis, which is induced during adipocyte 203 

differentiation (Rosen et al., 2000). MPE, AM, GM  were sufficient to suppress C/EBPα, 50 204 

μg/ml of MPE, while 75 µM and 50 µM of GM  were capable of reducing the expression of 205 

C/EBPα, SCDI, LPL, adipoQ, and FAS genes. These results indicated the potential of MPE 206 

and GM as anti-obesity agents in differentiated-3T3-L1 cells.  207 

  208 

 209 

Figure 2. Morphology of 3T3-L1 cell culture. (A) Non-induced cell; (B) Adipogenesis-induced 210 

cells. 211 
*Black arrow shows accumulated intracellular lipid droplet which show higher lipid droplet.  212 

 213 

PPARγ gene is activated by fat accumulation (Tontonoz et al., 1994; Hidayat et al. 214 

2016), which has an important role in inducing adipocyte differentiation (Tontonoz et al., 2008; 215 

Lefterova & Lazar, 2009). PPARγ and C/EBPα are master regulators of adipogenesis (Christy 216 

et al., 1991; Hidayat et al. 2016), and the activation of those genes is important for the 217 

progression of the terminal stage of adipogenesis (Christy et al., 1991; Tamori et al., 2002; 218 

Hidayat et al. 2016). Fifty µM of GM significantly suppressed PPARγ gene expression, whilst 219 

the other concentrations of GM and extracts showed no significant difference in suppressing 220 

PPARγ gene expression compared to the positive and/or negative control (Fig. 3a). PPARγ 221 

expression is maintained by C/EBPα which regulates insulin sensitivity in adipocytes as well 222 

(Rosen et al., 2002; Hidayat et al. 2016). C/EBPα is commonly expressed in the adipose tissue, 223 

liver, lung, adrenal, and placenta (Birkenmeier et al., 1989; Yeh et al., 1995; Moseti et al., 224 

2016). C/EBPα mRNA in 3T3-L1 cells treated with MPE, AM, or GM was significantly 225 

suppressed compared to the positive control. MPE, AM, GM were active in reducing C/EBPα 226 

gene expression (Fig. 3b). Transient expression of C/EBPβ and C/EBPδ occurs during the early 227 

stages of differentiation, followed by expression of PPARγ and C/EBPα that induce the 228 

expression of specific genes in terminal adipocyte differentiation (Kudo et al., 2004). Insulin 229 
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resistance can be caused by the lack of C/EBPα expression in terminal adipocyte differentiation 230 

(Moseti et al., 2016; El-Jack et al., 1999; Linhart et al., 2001). PPARγ and C/EBPα genes can 231 

activate some other specific genes in adipogenesis, such as aP2, FAS, and LPL (Song et al., 232 

2013). Fig. 3c shows that only MPE and GM reduced SCD1 gene expression. The expression 233 

of proteins involved in adipogenesis is regulated by specific genes. Adipogenesis can be 234 

inhibited by suppressing LPL gene expression (Merkel et al., 2002; Linehan et al., 2012). Fig. 235 

3d demonstrates that LPL gene expression was inhibited by MPE, AM, or GM in this study.  236 

  237 

 238 

Figure 3. Histogram of gene expressions in 3T3-L1 cell. a) Relative expression of PPARγ in 239 

3T3-L1; b) Relative expression of C/EBPα in 3T3-L1; c) Relative expression of 240 
SCD1 in 3T3-L1; d) Relative expression of LPL in 3T3-L1. 241 

*This histogram as the mean ± SD value. The experiment was conducted in triplicate.  242 
Figure 3a, the asterisk symbol (*) indicate significant difference between negative and positive 243 

control according un-paired T-test (P<0.05). Different letters (a,ab,abc,bc,c,d) indicate 244 

significant differences among the means of groups (concentrations of MPE, AM, GM and 245 
positive control) based on Tukey HSD post-hoc test (P< 0.05) toward gene expression of 246 

PPARγ in 3T3-L1 cells.   247 
Figure 3b, the asterisk symbol (*) indicate significant difference between negative and positive 248 

control according to un-paired T-test (P<0.05), Different letters (a,b,c) indicate significant 249 
differences among the means of groups (concentrations of MPE, AM, GM and positive 250 
control) based on Tukey HSD post-hoc test (P< 0.05) toward gene expression of C/EBPα 251 

in 3T3-L1 cells. 252 
Figure 3c, the asterisk symbol (*) indicate significant difference between negative and positive 253 

control according un-paired T-test (P<0.05). Different letters (a,b) indicate significant 254 
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differences among the means of groups (concentrations of MPE, AM, GM and positive 255 

control) based on Tukey HSD post-hoc test (P< 0.05) toward gene expression of SCD1 in 256 
3T3-L1 cells.  257 

Figure 3d, the asterisk symbol (*) indicate significant difference between negative and positive 258 

control according un-paired T-test (P<0.05). Different letters (a,ab,b,c) indicate significant 259 
differences among the means of groups (concentrations of MPE, AM, GM and positive 260 
control) based on Tukey HSD post-hoc test (P< 0.05) toward gene expression of LPL in 261 
3T3-L1 cells.   262 

 263 

C/EBPα regulates normal adipocyte differentiation by expressing LPL, SCD, and FAS. 264 

C/EBPα has been reported to induce the activation of some adipogenesis genes including SCD 265 

and aP2 (Moseti et al., 2016). SCD is associated with several disorders including diabetes and 266 

obesity and its suppression can result in loss of body fat (Ntambi et al., 2002). aP2 is a member 267 

of the cytoplasmic fatty acid binding protein family which is highly expressed during the 268 

adipogenesis process (Gwon et al., 2013). The presence of PPARγ and C/EBPα activates the 269 

aP2 gene expression in early adipocytes differentiation (Lin & Lane, 1992; Mandrup & Lane, 270 

1997; Obregon, 2014). MPE and GM were found to suppress aP2 gene expression. Fifty µg/ml 271 

of MPE was again shown to have the highest suppression activity. The suppression of AdipoQ 272 

gene expression in all 3T3-L1 cells treated with MPE, AM, or GM was lower than for the 273 

positive control (Fig. 4b). 274 

FAS has an important role in the regulation of de novo lipogenesis by converting acetyl-275 

CoA and malonyl-CoA into palmitate, which is subsequently esterified into triacylglycerols 276 

and stored in adipose tissue (Griffin & Sul, 2004; Ranganathan et al., 2006). FAS gene 277 

expression in all 3T3-L1 cells treated with MPE, AM, or GM was lower than the positive 278 

control. The lowest expression of FAS gene was found in 3T3-L1 cells treated with 50 µM of 279 

GM (Fig. 4c). These findings are in accordance with Quan et al. (2012), where AM could 280 

induce apoptosis of 3T3-L1 preadipocytes via inhibition of FAS. This process results in the 281 

decreasing of intracellular lipid accumulation during adipocyte differentiation and stimulates 282 

lipolysis in mature adipocytes.  283 

  284 
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 285 

 286 

Figure 4. Histogram of gene expressions in 3T3-L1. a) Relative expression of aP2 in 3T3-L1; 287 

b) Relative expression of AdipoQ in 3T3-L1; c) Relative expression of FAS in 3T3-288 

L1. 289 

*This histogram as the mean ± SD value. The experiment was conducted in triplicate.  290 
Figure 4a, the asterisk symbol (*) indicate significant difference between negative and positive 291 

control according un-paired T-test (P<0.05). Different letters (a,ab,b,c,d,e) indicate 292 
significant differences among the means of groups (concentrations of MPE, AM, GM and 293 
positive control) based on Tukey HSD post-hoc test (P< 0.05) toward gene expression of 294 
aP2 in 3T3-L1 cells.   295 

Figure 4b, the asterisk symbol (*) indicate significant difference between negative and positive 296 
control according un-paired T-test (P<0.05), Different letters (a,b,c) indicate significant 297 
differences among the means of groups (concentrations of MPE, AM, GM and positive 298 
control) based on Tukey HSD post-hoc test (P< 0.05) toward gene expression of AdipoQ 299 
in 3T3-L1 cells. 300 

Figure 4c, the asterisk symbol (*) indicate significant difference between negative and positive 301 

control according un-paired T-test (P<0.05). Different letters (a,ab,b,c,d) indicate 302 

significant differences among the means of groups (concentrations of MPE, AM, GM and 303 
positive control) based on Tukey HSD post-hoc test (P< 0.05) toward gene expression of 304 
FAS in 3T3-L1 cells.  305 

 306 

CONCLUSION 307 

MPE and xanthones (AM and GM) showed the potential as anti-obesity agents, through 308 

down-regulation of genes involved in adipogenesis. Fifty µg/ml of MPE and 50 µM of GM 309 
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was found to be the most suitable concentrations for suppressing the expression of genes 310 

involved in adipogenesis. AM was also shown to reduce the expression of those genes, except 311 

for PPARγ, SCD1, LPL and aP2. Further preclinical and clinical investigations should be 312 

performed prior to the application of MPE, AM, and GM for obesity therapy. 313 

 314 

ACKNOWLEDGMENTS 315 

We gratefully acknowledge the financial support of Hibah Bersaing 2016 from 316 

Directorate of Higher Education Indonesia (DIPA DIKTI No. DIPA-023-04.1.673453/2015). 317 

This study was successfully conducted by the facilities support from Biomolecular and 318 

Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia, and 319 

assisted by Hayatun Nufus and Annisa Amalia. 320 

 321 

REFERENCES 322 

Adnyana I, Abuzaid A, Iskandar E, Kurniati N. 2016. Pancreatic lipase and α-amylase 323 

inhibitory potential of mangosteen (Garcinia mangostana Linn.) pericarp extract. Int J 324 
Med Res Health Sci 5(1):23-28. 325 

Bernlohr DA, Angus CW, Lane MD, Bolanowski MA, Kelly TJ. 1984. Expression of specific 326 

mRNAs during adipose differentiation: identification of an mRNA encoding a 327 
homologue of myelin P2 protein. Proc Natl Acad Sci U S A 81(17):5468-5472. 328 

Birkenmeier E, Gwynn B, Howard S, Jerry J, Gordon J, Landschulz W, ... McKnight SL. 1989. 329 
Tissue-specific expression, developmental regulation, and genetic mapping of the gene 330 

encoding CCAAT/enhancer binding protein. Genes Dev 3(8):1146-1156. 331 

Choi H, Eo H, Park K, Jin M, Park EJ, Kim SH, ... Kim S. 2007. A water-soluble extract from 332 

Cucurbita moschata shows anti-obesity effects by controlling lipid metabolism in a 333 
high-fat diet-induced obesity mouse model. Biochem Biophys Res Commun 334 

359(3):419-425. 335 

Christy R, Kaestner K, Geiman D, Lane M. 1991. CCAAT/enhancer binding protein gene 336 
promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. 337 

Proc Natl Acad Sci USA 88(6):2593-2597. 338 

Cook K, Min H, Johnson D, Chaplinsky R, Flier J, Hunt C. 1987. Adipsin: a circulating serine 339 

protease homolog secreted by adipose tissue and sciatic nerve. Sci 237(4813):402-405. 340 

Cristancho A, Lazar M. 2011. Forming functional fat: a growing understanding of adipocyte 341 

differentiation. Nat Rev Mol Cell Biol 28(11):722-34. 342 

Darsono L, Hidayat M, Maesaroh M, Fauziah N, Widowati W. 2015. Ex vivo study of Garcinia 343 
mangostana L. (mangosteen) pericarp extract and xanthones as anti-adipogenesis in 344 
HEPG2 cell model. Int J Med Res Health Sci 4(3):566-571. 345 

Depress J, Moorjani S, Tremblay A, Ferland M, Lupien P, Nadeau A. 1989. Relation of high 346 

plasma triglyceride level associated with obesity and regional adipose tissue 347 
distribution to plasma lipoprotein-lipid composition in premenopausal women. Clin 348 
Invest Med 12(6):374-80. 349 



 

13 
 

El-Jack AK, Hamm JK, Pilch PF, Farmer SR. 1999. Reconstitution of insulin-sensitive glucose 350 

transport in fibroblasts requires expression of both PPARγ and C/EBPα. J Biol Chem 351 
274(12): 7946-7951. 352 

Flier J, Lowell B, Napolitano A, Usher P, Rosen B, Cook K. 1989. Adipsin: regulation and 353 

dysregulation in obesity and other metabolic states. Recent Prog Horm Res 45:567-580. 354 

Giri S, Rattan R, Haq E, Khan M, Yasmin R, Won J, ... Singh I. 2006. AICAR inhibits 355 
adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced 356 
obesity mice model. Nutr Metab (Lond) 3(31):1-20. 357 

Griffin M, Sul H. 2004. Insulin regulation of fatty acid synthase gene transcription: roles of 358 

USF and SREBP-1c. IUBMB Life 56(10):595-600. 359 

Gwon S, Ahn J, Jung C, Moon B, Ha T. 2013. Shikonin suppresses ERK ½ phosphorylation 360 
during the early stages of adipocyte differentiation in 3T3-L1 cells. BMC 13(207):1-8. 361 

Hidayat M, Soeng S, Prahastuti S, Erawijantari P, Widowati W. 2015. Inhibitory potential of 362 
ethanol extract of detam 1 soybean (Glycine max) seed and jati belanda (Guazuma 363 
ulmifolia) leaves on adipogenesis and obesity models in 3T3-L1 cell line. JSRR 364 
6(4):304-312. 365 

Hidayat M, Prahastuti S, Fauziah N, Maesaroh M, Balqis B, Widowati, W. 2016. Modulation 366 
of adipogenesis-related gene expression by ethanol extracts of Detam 1 soybean and 367 

Jati belanda leaf in 3T3-L1 cells. Bangladesh J Pharmacol 11(3):697-702. 368 

Hu E, Liang P, Spiegelman B. 1996. AdipoQ is a novel adipose-specific gene dysregulated in 369 

obesity. Biol Chem 271(18):10697-10703. 370 

Huang C, Zhang Y, Gong Z, Sheng X, Li Z, Zhang W, Qin Y. 2006. Berberine inhibits 3T3-371 
L1 adipocyte differentiation through the PPAR gamma pathway. Biochem Biophys Res 372 

Commun 348(2):571-8. 373 

Ibrahim M, Hashim N, Mariod A, Mohan S, Abdulla M, Abdelwaha  S. 2014. α-mangostin 374 
from Garcina mangostana Linn: An updated review of its pharmacological properties. 375 
Arabian J Chem 2(11):1-13. 376 

Jeon T, Hwang S, Hirai S, Matsui T, Yano H. 2004. Red yeast rice extracts suppress 377 

adipogenesis by down-regulating adipogenic transcription factors and gene expression 378 
in 3T3-L1 cells. Life Sci 75(26):3195-3203. 379 

Jou P, Ho B, Hsu Y, Pan T. 2010. The effect of Monascus secondary polyketide metabolites, 380 
monascin, and ankaflavin, on adipogenesis and lipolysis activity in 3T3-L1. J Agric 381 
Food Chem 58(24):3195-3203. 382 

Kang J, Nam D, Kim K, Huh J Lee J. 2013. Effect of gambisan on the inhibition of adipogenesis 383 
in 3T3-L1 adipocytes. J Evid Based Complementary Altern Med 2013(2013):1-11.   384 

Kudo M, Sugawara A, Uruno A, Takeuchi K, Ito S. 2004. Transcription suppression of 385 
peroxisome proliferator-activated receptor gamma2 gene expression by tumor necrosis 386 
factor alpha via an inhibition of CCAAT/enhancer binding protein delta during the early 387 
stage of adipocyte differentiation. Endocrinol 145:4948-56. 388 

Laksmitawati DR, Widyastuti A, Karami N, Afifah E, Rihibiha DD, Nufus H, Widowati W. 389 

2017. Anti-Inflammatory effects of Anredera cordifolia and Piper crocatum extracts 390 
on lipopolysaccharide-stimulated macrophage cell line. Bangladesh J Pharmacol 391 
12(1):35-40 392 



 

14 
 

Lalitha P, Shubashini K, Jayanthi P. 2012. Acute toxicity of extracts of Eichhornia crassipes 393 

(MART.) SOLMS. Asian J Pharm Clin Res 5(4):59-61. 394 

Lefterova M, Lazar M. 2009. New developments in adipogenesis. Trends Endocrinol Metab 395 
20(3):107-14. 396 

Linhart H, Ishimura-Oka K, DeMayo F, Kibe T, Repka D, Poindexter B, …Darlington GJ. 397 
2001. C/EBPα is required for differentiation of white, but not brown, adipose tissue. 398 
Proc Natl Acad Sci USA 98(22):12532-12537. 399 

Linehan C, Gupta S, Samali A, O'Connor L. 2012. Bisphenol A-Medicated Suppression of LPL 400 
gene expression inhibits triglyceride accumulation during adipogenic differentiation of 401 

human adult stem cells. PLoS One 7(5):1-11. 402 

Lin F, Lane M. 1992. Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate 403 
gene expression and triglyceride accumulation during differentiation of 3T3-404 

L1preadipocytes. Genes Dev 6(4):533-544. 405 

Mackall JC, Student AK, Polakis SE, Lane MD. 1976. Induction of lipogenesis during 406 
differentiation in a "preadipocyte" cell line. J Biol Chem 251(20):6462-6464. 407 

Mandrup S, Lane M. 1997. Regulating adipogenesis. J Biol Chem 272: 5367-5370. 408 

Merkel M, Eckel R, Goldberg I. 2002. Lipoprotein lipase: genetics, lipid uptake, and 409 
regulation. J Lipid Res 43:1997-2006. 410 

Moseti D, Regassa A, Kim W. 2016. Molecular regulation of adipogenesis and potential anti-411 
adipogenic bioactive molecules. Int J Mol Sci 17(1):1-24. 412 

Novilla A, Djamhuri DS, Nurhayati B, Rihibiha DD, Afifah E, Widowati W. 2017. Anti-413 
inflammatory properties of oolong tea (Camellia sinensis) ethanol extract and 414 
epigallocatechin gallate in LPS-induced RAW 264.7 cells. Asian Pac J Trop Biomed 415 

7(11):1005-9. 416 

Ntambi J, Buhrow S, Kaestner H, Christy R, Sibley E, Kelly TJ. 1988. Differentiation-induced 417 
gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed 418 
gene encoding stearoyl-CoA desaturase. J Biol Chem 263(33):17291-17300. 419 

Ntambi J, Miyazaki M, Stoehr J, Lan H, Kendzikiorski C, Yandell B, ... Attie AD. 2002. Loss 420 

of stearoyl-CoA desaturase- 1 function protects mice against adiposity. PNAS 421 
99(17):11482-11486. 422 

Obregon M. 2014. Adipose tissue and thyroid hormones: a review article. Front Physiol 423 
5(479):1-12. 424 

Pedraza-Chaverri J, Cardenas-Rodriguez N, Orozco-Ibarra M, Perez-Rojas J. 2008. Medicinal 425 

properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 46(10):3227-426 

3239. 427 

Quan X, Wang Y, Liang Y, Tian W, Ma Q, Jiang H, Zhao Y. 2012. a-Mangostin induces 428 
apoptosis and suppresses differentiation of 3T3–L1 cells via inhibiting fatty acid 429 
synthase. PLoS One 7(3):33376-33379. 430 

Ranganathan G, Pokroyskaya I, Unal R, Yao-Borengasser A, Phanayanh B. 2006. The 431 
lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: effects of obesity, insulin 432 

resistance, and TZD treatment. J Lipid Res 47(11):2444-2450. 433 

Rosen E, Walkey C, Puigserver P, Spiegelman B. 2000. Transcriptional regulation of 434 
adipogenesis. Genes Dev 14(11):1293-1307. 435 



 

15 
 

Rosen E, Hsu CH, Wang X, Sakai S, Freeman M, Gonzalez F, Spiegelman BM. 2002. C/EBPα 436 

induces adipogenesis through PPARγ: a unified pathway. Genes Dev 16(1):22-26. 437 

Spiegelman B, Frank M, Green H. 1983. Molecular cloning of mRNA from 3T3 adipocytes. 438 
Regulation of mRNA content for glycerophosphate dehydrogenase and other 439 

differentiation-dependent proteins during adipocyte development. J Biol Chem 440 
258(16):10083-10089. 441 

Shen Q, Chitchumroonchokchai C, Thomas J, DiSilvestro D, Failla M, Ziouzenkova O. 2014. 442 
Adipocyte receptor assays: Application for identification of anti-inflammatory and 443 
antioxidant properties of mangosteen xanthones. Mol Nutr Food Res 58(2):239-247. 444 

Song Y, Park H, Kang S, Jang S, Lee S, Ko Y, ... Cho J. 2013. Blueberry pericarps extracts 445 
inhibit adipogenesis in 3T3-L1 cells and reduce high-fat induced obesity. PLoS One 446 
8(7):1-12. 447 

Tamori Y, Masugi J, Nishino N, Kasuga M. 2002. Role of peroxisome proliferator-activated 448 
receptor-gamma in the maintenance of the characteristics of mature 3T3-L1 adipocytes. 449 
Diabetes 51(7):2045-2055. 450 

Tontonoz P, Spiegelman B. 2008. Fat and beyond: the diverse biology of PPARg. Annu Rev 451 

Biochem 77:289-312. 452 

Tontonoz P, Hu E, Spiegelman B. 1994. Stimulation of adipogenesis in fibroblasts by PPAR 453 

gamma 2, a lipid-activated transcription factor. Cell 79(7):1147-1156. 454 

Wang T, Wang Y, Kontani Y, Kobayashi Y, Sato Y, Mori N, Yamashita H. 2008. Evodiamine 455 

improves diet-induced obesity in an uncoupling protein-1 -independent manner: 456 
involvement of antiadipogenic mechanism and extracellularly regulated 457 
kinase/mitogen-activated protein kinase signaling. Endocrine 149(1):358-366. 458 

Widowati W, Darsono L, Suherman J, Yelland Y, Maesaroh M. 2014. High-performance liquid 459 

chromatography (HPLC) analysis, antioxidant, anti-aggregation of mangosteen 460 
pericarp extract (Garcinia mangostana L.). Int J Biosci Biochem Bioinforma 4(6):458-461 
466. 462 

Widowati W, Darsono L, Suherman J, Fauziah N, Maesaroh M, Erawijantari PP. 2016.  463 

Mangosteen (Garcinia mangostana L.) pericarp extract and its compounds in LPS-464 
induced RAW264.7 Cells. Nat Prod Sci 22(3):147-153. 465 

Widowati W, Darsono L, Suherman J, Afifah E, Rizal R, Arinta Y, … Suciati T. 2018. 466 
Mangosteen peel extract (Garcinia mangostana L.) and its constituents to lower lipid 467 
content on adipogenesis cell model (3T3L1). J Nat Rem 18(2):41-8. 468 

Yeh W, Cao Z, Classon M, McKnight S. 1995. Cascade regulation of terminal adipocyte 469 
differentiation by three members of the C/EBP family of leucine zipper proteins. Genes 470 

Dev 9(2):168-181. 471 


