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Abstract

Process-centered software development environments are systems that provide automated support for software development activities.

Such environments mediate the efforts of potentially large groups of developers working on a common project. This mediation is based on

runtime support for actual work performance based on formal representations of work.

In the present work, we survey and assess the contributions of the software process literature under the perspective of support for

collaboration and coordination. A broad range of alternative approaches to various aspects of representation and runtime support are

identified, based on the analysis of an expressive number of systems. The identified functionality can serve both as a guide for the evaluation

and selection of systems of this kind as well as a roadmap for the development of new, improved systems.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Software Engineering “deals with the building of soft-

ware systems which are so large or so complex that they are

built by a team or teams of engineers” [1]. Developing non-

trivial software systems is therefore a task that requires that

a group of agents work in concert, that is, they must

collaborate in order to reach the common goal.

Process-Centered Software Development Environments

(PCSDE) allow for the definition and enactment of

procedures performed by groups of developers working on

a common project. A PCSDE stores definitions of processes

in terms of steps that need to be performed, artifacts

produced and transformed by these steps, of users that

should perform the steps, sometimes given in terms of roles,

and of constraints on execution, such as precedence among

steps.

The focus in this paper is on how capable systems are of

supporting groups of software engineers in their common

objective of developing systems. Two complementary

aspects are key in such support: collaboration and

coordination. For the purpose of this paper, we define

collaboration as relating to user communication and user

awareness of each other’s actions; coordination is related to

mechanisms that are used to avoid the need of such inter-

user communication, such as division of labor and

automatic distribution of work.

Large development teams are plagued by what Brooks

called the ‘Tar-pit’ effect [2]—as team sizes grow linearly,

the time spent by team members to align perspectives and to

keep aware of the actions of others might grow exponen-

tially. The challenge then is how to devise strategies for

dividing the work, for assigning work to different devel-

opers and to indirectly coordinate their actions.

PCSDE tackle this problem by allowing complex work

processes to be defined beforehand and by supporting

actual development as processes unfold. These systems

embed knowledge about processes and can serve as a

source of information and guidance, thus avoiding some

of the communication that would be necessary otherwise.

On the other hand, while unnecessary communication

should be avoided, one wants developers to be able to be

as aware as possible of the work of others that might

affect their own. There is a need for strong support for

both indirect and direct communication among team

members aiming at keeping their perspectives aligned.

A support systems should to the extent possible mediate

this communication.
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Support for collaboration and coordination under this

broad perspective includes a wide range of functionality.

Important factors include how expressive the descriptions of

work are; how effective is the distribution among team

members; how flexible is the work execution; how much

support is available for handling unavoidable variations,

among others. Inflexible or otherwise inappropriate func-

tionality along any of these dimensions can adversely

impact the performance of a team, either because of

information overload or information deprivation.

Clearly, no system can match the complexities of actual

work and are therefore by definition limited (and limiting).

Research in process-centered process development

acknowledges this fact, even if indirectly, by proposing

alternatives that make environments more useful by

imposing less restrictions on the way work is performed

or by better adapting to particular work styles.

The goal of this paper is therefore to examine available

PCSDE literature and identify ranges of functionality along

a few key dimensions. The result of this work can be read as

a guide for evaluation of process support systems, by

comparing offered features with those of a wide range of

existing solutions. This paper can also be understood as a

roadmap for developers of new PCSDEs.

For the purpose of contrasting solutions, some references

to the workflow management literature are made. Workflow

management systems (WFMS) are process support systems

as well, but target mostly business, rather than development

processes as PCSDEs. WFMS has a rich literature on

flexibility and support for cooperation [3] that can sometimes

shed light on some of the issues we are interested in here.

Related work deals with similar issues, but under a

different focus. A survey and taxonomy of PCSDE can be

found in Ref. [4]; in depth descriptions of systems’ features

can be found in Refs. [5–7] and in the many papers

mentioned throughout this paper.

The rest of this paper is organized as follows. We start by

presenting background information on the issues surround-

ing collaboration in the context of software development

(Section 2.1). Process Centered Software Development

Environments and the nomenclature used in this paper are

presented in Section 2.2. We then proceed to present an

analysis framework (Section 3) that is employed to classify

system functionalities in this paper. The software develop-

ment literature is then examined in Sections 4–8. The paper

ends with summary and conclusions (Section 9). More

detailed information on a some of the analyzed systems can

be found in Appendix A.

2. Background

2.1. General issues in collaborative software development

In software development, from an initial abstract goal (an

end state consciously selected a priori [8]) a series of

incremental transformations is performed. These transform-

ations need to be soundness preserving, i.e. at the end, the

informational product needs somehow to match the initial

goal, in difficult to qualify ways.

The objective is to keep the adherence to the goal in it’s

many incrementally more detailed incarnations. Each step

in the process should expand the concepts of previous ones,

adding detail but preserving the original intended seman-

tics—preserving the conceptual integrity [2].

When the task is complex enough to require that a large

team or teams be employed, keeping adherence to the goal

becomes a major problem. The agents most probably have

different backgrounds and perspectives that must somehow

be aligned during the work, to avoid deviations from the

goal. It is of the essence that all agents work in concert to

achieve the desired goal throughout the transformation

process. This can only be achieved by a large amount of

information exchange between the involved parties [9].

Paradoxically, the same communication that is vital for

maintaining the conceptual integrity introduces some of the

main problems in such an effort (the Tar-Pit effect).

Communication overload can easily results from the

indiscriminate addition of manpower to a software devel-

opment project. A key issue is, then, how to organize the

effort in such a way that the appropriate level of meaningful

communication is provided, but no irrelevant extra

communication is necessary. The general answer here is

that the resources need to be managed: routines need to be

established, roles assigned, communication patterns ident-

ified and so on. In summary, an orderly process needs to be

devised and then implemented.

The root of the problem is that each single participant of

a project adds potentially up to n communication channels

(where n is the number of other agents), ensuing a

combinatorial explosion of communication that soon leads

to overload. In other words, after a while all resources are

spent in communication and none in the actual work, and of

course, ‘work cannot be achieved by just talking about it’

[9].

Adding to the problem of communication overload is the

semantic loss that is known to occur in longer chains of

communication. The use of deep hierarchies that sound as a

solution to managing and restricting the amount of inter-

communication in a tree-like structure, is not a viable

solution because of the degradation of information that

occurs.

In summary, adherence to the original goal, the

conceptual integrity, demands coupling between the agents,

i.e. they have to communicate frequently to constantly

realign their individual efforts. At the same time, this

essential communication can reach very fast an unmanage-

able level that backfire on the original intent.

PCSDE can potentially help, by incorporating an

abstracted description of work, allowing for distribution of

work policies to be defined and controlled during actual
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development. In Section 2.2 we further explore issues of

automation of software development processes.

2.2. The software development process and its automation

The importance of software processes is directly linked

to the observation, commonly accepted, that the quality of

the product is a result of the quality of the process [10].

Except for the most non-critical, single person effort that

does not aim at generating a product, no more than common

sense is required to assess that only through an orderly

sequence of steps will eventually be possible to generate a

product with acceptable quality. This is not, by the way, a

privilege of information system development efforts. This

same statement is obviously applicable to any other non-

trivial collaborative effort.

Software development presents some peculiarities,

though, that makes it more vulnerable perhaps than other

development efforts. There are some essential problems that

make this kind of effort intrinsically hard, e.g. the high

complexity, conformity and changeability that characterize

software products [2, p. 181], plus the fact that producing

software is a creative process, human-centered and there-

fore unpredictable and subject to variations. The creation of

these complex entities usually takes a long time, which only

worsens the pressure for change even during the creation of

the software itself. After all, this same software reflects in

some way a real-world need that is itself subject to changes

that are unavoidable.

As a result of the afore-mentioned complexities, it is

natural that the process that governs such development will

itself be complex and therefore would benefit from

automated support. This can be linked to Ostwerweil’s

observation that ‘software processes are software too’ [11].

In fact, the idea that similar techniques can be applied for

the manufacture of software and processes is very appeal-

ing. Determining an adequate sequence of steps to be

applied is also a creative, collaborative effort that results in a

potentially complex object, the process definition or model,

that is also subject to change. The next logical step is then to

use tools to help produce, evolve and enact processes.

PCSDEs are environments that provide this support for the

construction, evolution and enactment of process models.

A process model is an abstract representation of software

production activities and their relationship. Process models

can be considered software objects and, as such, have life

cycles, and are themselves specified, designed,

implemented, and deployed. Work steps are the units of

work, that may be sometimes combined into Tasks or

Activities. Tasks can be associated to roles.

Roles describe in an abstract form the set of skills and/or

responsibilities associated with the execution of one or more

tasks. During task execution, developers create and

transform artifacts. Artifacts represent the object of work

in an environment, and correspond to typical software

development objects, such as requirements documents, test

plans, test cases, etc.

A process model usually specifies relationships among

work steps or tasks, in the form of a precedence relation (e.g.

compiling precedes linking). Similarly, artifact types may

be related to each other, e.g. forming a hierarchy of modules

and sub-modules.

Process models are meant to be instantiated, resulting in

an executable entity called a project (or simply process

instance). Zero or more projects based on the same or

different process models can co-exist. Each instance or

project can be in a different stage of its life cycle.

Projects are enacted (or are said to unfold) under the

protection of an environment. This protection can vary

widely, ranging from reporting, through guidance, to

enforcement. The environment is usually responsible for

keeping track of the progress of activities, their termination,

and for enabling new activities as soon as their pre-

conditions are met.

Enactment is guided by a project plan, that might initially

correspond to a parameterized instance of a generic process

plan that is not necessarily complete. As work progresses,

project plans may be adapted to specific contingencies of a

specific project, or might be complemented with additional

project specific definitions. Current and historic process

state and the content of artifacts produced so far by a project

can influence unfolding. For instance, depending on how

many sub-modules a module is defined to have at a certain

moment in the development, a different number of dynamic

sub-activities might be started. The complexity of artifacts

therefore directly influences unfolding.

The environment is also responsible for supporting the

management of the process, i.e. the monitoring and

adjustment that is always necessary in face of the variability

and unpredictability of software development.

Finally, the process itself is also subject to change, so

meta-processes may be used to help in their evolution.

Meta-processes may control the construction and evolution

of generic process plans, or guide co-construction and

evolution of specific project plans.

3. Analysis framework

Technology (including computer technology) is at the

same time enabling and restricting. Tools enhance users’

capabilities (e.g. to communicate), but are obviously only

effective within the limits of the functionality that is made

available by the tool. E-mail technology, for instance, is

adequate for asynchronous support for written messages—it

does not help much in cases where synchronous communi-

cation is required or desired.

PCSDEs can be seen as technology that constrains

possible action according to a description of a process. The

job of a process support system is to try to offer support for

actual work execution based on information contained in
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such a description. Constraining of work according to a

description constitutes both process support systems’

strength and their weakness. The strength is derived from

the guidance that can be provided—only a small fraction of

the possible actions lead successfully or efficiently to

desired goals. By constraining what can be done, process

support systems can help users focus on moving forward in

the direction of a goal. Conversely, the weakness of such

systems comes also from this constraining. It can be the case

that actions that are necessary for actually attaining a goal in

a specific situation will be outside the scope of what is

allowed by a process support system. The system then

becomes a hindrance, instead of a helpful tool.

In the present work, we consider collaboration support

provided by PCSDEs related to five complementary aspects

(Fig. 1): (1) the coverage of descriptions; (2) the latitude of

interpretation; (3) user–environment interaction support;

(4) support for inter-user communication; (5) support for

management and assessment.

Taken as a whole, these aspects determine the overall

support for collaboration and coordination offered by a

PCSDE:

1. Coverage of descriptions. PCSDEs rely on process plans

as the source of information for whatever support they

offer. Such support is therefore directly linked to what

can be represented in such plans. The finitude of process

definition languages force them to necessarily focus on

some areas, that will be made easier to deal with, while

other will be difficult if not impossible.

2. Latitude of interpretation. The dangers of taking

process descriptions to be faithful representations or

models of work are well publicized. Among others,

Suchman [12] and Robinson and Bannon [13] warn us of

the consequences of this seemingly harmless mistake. It

is now understood that workers do not (and cannot)

blindly follow some strictly scripted sequence of steps.

Work needs to be situated, i.e. adapted to actual

contingencies that are many times unique to each

situation. Humans draw upon their common sense,

knowledge of conventions and sheer creativity to

(sometimes unthinkingly) make necessary adjustments.

Systems that constrain action to what is narrowly

described in a script of some sort are unable to offer help

where it is most needed, namely, when some unpredicted

situation surfaces.

3. User–environment interaction. The way systems expose

their services to users is of course key in determining

their usability. Different paradigms facilitate different

aspects of work. User interaction paradigms usually trade

off flexibility for guidance.

4. Inter-user communication. It is known that an important

part of group work is dedicated to realignment of

individual views, particularly in presence of breakdowns.

An essential part of work is thus performed collectively,

rather than in isolation. How much support a system

offers for such communication, and how seamless is the

interaction of this functionality may have therefore a

high impact on system usability for collaboration.

5. Management and assessment. Transparency of the

collective work is an important issue in project devel-

opment. PCSDEs have a potential to make managerial

measurements available and provide tools for inspecting

the state projects are in at any time. Such functionality

provides the means for managers and team leaders to

keep track of progress and intervene whenever they find

fit, corresponding to the human aspect of coordination.

The analysis that follows is based on published literature

describing systems’ functionalities. References to systems

are made throughout the text, to illustrate features and

capabilities. The main cited systems are described in

Appendix A, that can therefore be read before the analysis,

in preparation for the discussion, or afterwards, to obtain a

consolidated picture of capabilities related to individual

systems.

4. Process descriptions

Process descriptions ultimately drive process-oriented

systems’ execution. The coverage that is provided therefore

directly impacts system usability. Process models usually

cover a variety of aspects, such as control, artifacts, tools

and user roles. Different styles of specification result from

focus on one of these aspects that is taken to be central. A

few interesting specification style alternatives are explored

in PCSDEs.

Rule-based specifications are employed by the majority

of the analyzed PCSDE (e.g. MARVEL [14], OIKOS [15],Fig. 1. Analysis framework.
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EPOS [16], Merlin [17] to mention a few). Rules usually

specify an event causing their activation, a guarding

condition and an action to be taken in case the condition

is true. Another popular rule format surrounds an action

with pre- and post-conditions.

Rules permit a proscriptive style of specification [18].

Proscriptive specifications allow freedom of performance—

any sequence of actual operations are acceptable, provided

they result in transformations in which the constraints

(expressed as rules) hold.

The downside is a potential lack of guidance and harder

analysis that might result from their ‘openness’. Heimbigner

[18] highlights the fact that a proscriptive style would better

match human psychology, by not being overly constraining.

Task-based or step-directed specifications are the ones in

which processes are expressed as a partial order of work

steps or tasks, based on ordering constraints (e.g. step A

must be executed before step B).

These specifications are usually associated with (1)

activity-graph representations, e.g. Petri nets used in

SPADE [19] or (2) procedural code, as e.g. in APPL/A [20].

Petri nets are bipartite directed graphs composed of

places p and transitions t connected by arcs C.

Places p connected to a transition t by arcs Cðp; tÞ are said

to be t’s input places. Conversely, places connected to a

transition t by arcs Cðt; pÞ are t’s output places.

Places can contain zero or more tokens. Transitions

whose input places contain tokens are said to be enabled.

Enabled transitions can fire, which is usually associated

with the occurrence of some event. The firing of a transition

causes tokens to be removed from all input places, and

inserted into its output places.

The state of a Petri net is giving by its marking, which is

the set of tokens that are in specific places at any moment

of time.

This elegant formalism can be used to specify con-

currency and synchronism and for this reason is popular for

the specification of processes.

Both graph and procedural representations may lead to a

prescriptive style of specification. A prescriptive style

specifies in detail allowed actions, usually as a sequential

series of instructions that must be followed. Fully

prescriptive specifications may be a hindrance at run-time.

Since it is not usually possible to anticipate all possible

variations of a process, specially a collaborative one, there is

a high chance that performance will at some point deviate

from the fully prescriptive specification. On the other hand,

prescriptive specifications are easier to analyze, as a

consequence of the restrictions imposed on the space of

possible performances.

Even systems that could be considered step-based, as

SPADE and APPL/A integrate rule-based functionality.

APPL/A uses triggers and predicates associated to relations

to handle constraints [20]; SPADE’s Petri net transitions are

associated with conditions and actions, so that the net rather

than describe activity precedence, specifies the precedence

among rules. In both cases the paradigm is better described

as being mixed.

It is interesting to notice that in contrast, most WFMS are

graph-oriented and therefore task-based.

Artifact-based modeling is centered on the objects that

need to be produced, rather than on the tasks that produce

them.

In artifact-based representations, operations are attached

directly to artifact definitions. Transformations performed

on artifacts through operations may trigger notifications and

cause automatic actions to be performed, e.g. compilation

after editing is completed, as in Shamus [21].

This style of specification is semantically equivalent to a

task-based one in the sense that artifacts, operations and

their precedence can be specified using both styles. What

changes is the focus of life-cycle descriptions, that shift

from an activity centered view to an artifact transformation

one.

Artifacts can be related to each other, forming e.g.

hierarchies, as proposed by PROSYT [22], where reposi-

tories, folders and sub-folders can be used. Operations in

PROSYT can be attached to individual artifacts and also

containers (repository or folder).

Role-based specifications, as the name implies, are

centered around roles that are played by executors at

enactment time.

Yu and Mylopoulos [23] present an actor dependency

model that centers on actors and their relationships. An

assessment of the model in the context of a large software

maintenance organization is presented in Ref. [24].

Cain and Coplien [25] introduce Pasteur, a process

evaluation framework that is also centered on roles.

In SOCCA [26], human interaction is incorporated in the

model. Role behavior can be modeled (through state

transition diagrams) along with other modeling entities

(e.g. artifacts, operations). Synchronization between these

entities is then specified in PARADIGM, a formalism to

coordinate parallel processes.

The style of specification and the latitude of interpret-

ation are closely connected. That is what is examined in

Section 5.

5. Latitude of description interpretation

An old and powerful insight of the software process

community is that the focus in a process should not be on

modeling some abstract representation of work, but rather

on understanding and supporting the dynamic and con-

tingent way an actual process unfolds in use [5].

Collaborative processes are characterized by the

impossibility of completely pre-defining their unfolding

due to the high degree of change and potential breakdowns

that are known to occur. The main component of

collaborative work is therefore dedicated to articulation

[27]. A key issue in a system that aims at supporting
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collaboration is therefore the flexibility allowed at run-time

to support such varied and unpredictable unfolding.

In this section, we consider three aspects of unfolding:

(1) Enforcement policy (how strictly performance needs to

match a plan), (2) Evolution (changing a plan to align it to

performance) and (3) living with inconsistencies (allowing

deviations from a plan).

5.1. Enforcement policy

Many PCSDE position themselves as guidance tools

[28], rather than enforcers. Even though it may be

questioned to what degree these systems really guide rather

than enforce [28, p. 337], it is clear that there is a general

agreement in the software process community that strict

enforcement is not a desirable property of a process support

system, and that environments ‘only provide the infrastruc-

ture within which creative and cooperative work is

performed’ [29].

Interesting alternatives to enforcement exist:

† At one end of the spectrum, there are systems that just

track the progress as users go about doing their work, e.g.

Provence [30], that separates process enactment from

process execution, in order to enhance the degree of non-

intrusiveness [4,31]. The assumption is that users know

what to do without being explicitly told and that

therefore the system can remain most of the time

invisible. Interaction with the users takes the form of

notifications (e.g. email messages) that are sent to users

to make them aware of upcoming activities.

† Other alternatives involve making visible actions that are

possible at each moment, allowing them to be executed

in whatever order is desired by the users, provided that

constraints are respected.

This kind of support is usually associated with

systems that employ an artifact-based style of interaction

(Section 6.1), e.g. Merlin [17], PROSYT [32], Shamus

[21].

† A goal-based strategy affords users additional flexi-

bility and support. In systems such as MARVEL [14],

EPOS [16], Grapple [33] and ALF [34], users are free

to choose any possible action supported by the system,

independently of pre-conditions being enabled.

These systems use inferencing to dynamically build

plans that cause the pre-condition of an action to be

satisfied so that it can be executed. Dynamic plans take

into consideration actual state of a project and can thus

describes a broader range of possible alternative unfold-

ings than is usually possible in purely prescriptive,

topological models [35].

Operations can therefore be read as goals that users

want to achieve, perhaps in many steps, if necessary. Once

the necessary preceding actions are identified, forward

chaining causes their automatic execution, if possible;

non-automatic actions are directed to the user.

While backward chaining (inferencing) allows great

flexibility in choosing what to do, forward chaining

produces a sequence of steps that need to be followed in

order to reach a goal. The strategy therefore mixes the best

of both worlds—freedom of execution plus guidance

through more complex process steps if required.

5.2. Evolution and beyond

It is known that static process descriptions do not match

well actual performance [12,36]. This is particularly true in

collaborative processes, due to their exploratory nature.

Divergence between plans and actual performance is

therefore frequent.

Two strategies can be employed in presence of

deviations from a plan. The traditional approach, both in

PCSDE and WFMS is to force realignment through plan

evolution, i.e. by modifying a plan to make it match the

contingency found at execution time. The second approach

proposes that deviations be tolerated. We elaborate briefly

on each of the approaches in Sections 5.2.1 and 5.2.2.

5.2.1. Process evolution

The method of choice for evolution in PCSDE (and to

some extent in WFMS) is reflectivity. Processes are

modified within processes (or more precisely, meta-

processes). Unfolding is then a result of intertwined

execution of a process, that coordinates work, and a meta-

process, that coordinates changes to the way work is

conducted.

† In SPADE [19] plans can be used as tokens, that in this

system are associated to artifacts subjected to transform-

ations according to a (meta) process.

† In EPOS [16] any process element, including plans, can

be used as parameters to processes. EPOS explicitly

supports meta-processes as part of the system. The

creation and evolution of process models themselves is

therefore an integral part of the system.

† ALF [34] supports the instantiation of partially defined

processes. During enactment, missing parts of a plan can

be instantiated taking into consideration the history of the

process so far.

5.2.2. Process deviation

As pointed out by Cugola [32], the effort required to

change a project plan makes this approach unsuitable to

coping with situations that require minor or temporary

deviations. Instead of requiring alignment of a plan every

time a deviation occurs, some researchers [32,37–40]

propose tolerating deviations and allowing inconsistencies

to exist. In other words, performances can explicitly diverge

from plans.

The bulk of the literature on deviation tolerant models is

focused on inconsistent states in artifacts, a problem that is

particularly relevant in software engineering, where
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intricate relationships between artifacts usually exist.

Inconsistencies that are directly process related, such as

divergence in the order of execution, execution by some

user different from the one anticipated and so on, are

addressed eg. in Refs [32,38].

In Cugola [32], a dynamically established deviation

handling policy determines classes of constraints that can be

violated. The dynamic aspect allows one to establish

different policies for different process phases, or for

different users—an expert may be trusted to violate more

constraints than a novice user.

Borgida and Murata [38] propose reifying activities and

workflows, storing related information in classes that are

accessible at execution time, e.g. ordering of tasks and

constraints. Constraint violations are flagged and handling

can be performed either by an automated handler or by

users, by modifying the reified information (e.g. changing

the order of steps). Deviations can be tolerated through the

use of excuses, objects that record, e.g. the authorizing

agent, reason for deviation and so on.

6. User–environment interaction

Two main aspects determine the interaction between

process environments and users: the interaction paradigm

(what the interaction is centered on) and the user binding

strategy. Interaction paradigm refers to the main entity

around which interaction revolves, e.g. steps, artifacts, goals

or roles. User binding strategy is the one employed to match

users to work that has to be performed.

6.1. Interaction paradigm

Interaction paradigms are usually tightly connected to

the style of specification (Section 4). According to

Bandinelli et al. [41,42], support for the varied requirements

of interaction requires decoupling the interaction model

from the semantics of the process modeling language

(PML). In other words, the interaction style can (and should)

be separated from the modeling style. It is usually the case

that the interaction mode offered directly reflects the

internal model used in the modeling language (exceptions

being e.g. SPADE, Merlin and OIKOS, see below).

PCSDEs offer a rich set of alternative approaches to the

human–environment interaction problem:

† Step based: Systems such as MARVEL [14], Oz [43] and

ALF [34] offer command interfaces through which users

select actions to execute.

The paradigm employed is therefore similar to shell-

based operations (e.g. in Unix) familiar to many

programmers. On the one hand this potentially offers

the utmost flexibility and freedom of action, but on the

other hand this style provides the least amount of

guidance.

In systems that support backward and forward

chaining, e.g. MARVEL [14], EPOS [16], Grapple [33]

and ALF [34], actions may cause a system to dynami-

cally produce and initiate execution of a plan that

satisfies the pre-conditions of a chosen action, thus

greatly enhancing the usefulness of this style (Section

5.1).

† Artifact based: Systems such as PROSYT [32] and

Shamus [21] center performance on artifacts and

operations upon them.

This style is usually associated to some form of

graphical representation of artifacts, that allows for

selection of operations to be performed by clicking on

representative icons or menus associated to artifacts.

Automatic actions are transparently executed as artifacts

change state as operations are applied.

† Virtual environment based: Systems adopt a paradigm

originally employed by certain collaborative games

(Multi-User Dungeons, MUDs). The paradigm is

based on interconnected rooms, each containing

objects that can be carried around and acted upon.

Doppke et al. [44] discuss possible different mappings

between process concepts and those employed in

MUDs. Each ‘room’ can be made to correspond to a

task, or to a person’s workspace, or to an artifact or

finally to some resource, such as a testing laboratory.

Some systems offer a mixed strategy:

† Process Weaver [45] presents users with both actions and

related documents that should be used or produced.

These are encapsulated in working contexts that are

placed into users’ agendas (a sort of ‘inbox’).

† Merlin [17], despite supporting a rule-based style of

specification, employs a mixed role/artifact style of

interaction. It presents in graphical form the relevant

documents available for each role, as well as their inter-

relationship. Operations are made available through

menus. Merlin ‘moves’ the documents to the next work

context as the work assigned to each role is completed.

† ALF [34] also defines working contexts for each role.

Within working contexts are artifacts that can be shared

by multiple users playing the same role.

† SPADE [19] allows the use of any interaction style, at

the cost of programming done in SLANG, the Petri

net based formalism used by the systems, that can be

used to control external tools in detail.

Note that these alternative modes of interaction may be

more adequate in situations where users work in a smaller

number of projects or processes, as opposed to a production

situation in which they may receive a high volume of

requests of potentially disparate processes for which they

have to provide some shorter duration service (as is typical,

e.g. in production-oriented WFMS).
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6.2. The role of humans: binding strategies

Binding has to do with the mechanism that is employed

to match executors to what needs to be performed at any one

time. At one end of the spectrum, strictly proactive systems

decide when tasks should be started and which user they

should be routed to. At the other end of the spectrum, users

may be totally in charge of initiating tasks whenever they

find fit. Reactive systems, e.g. Provence [31] assume that

users know what they are doing and simply track user

activity, mapping it into a project plan, remaining invisible

most of the time.

Whenever a proactive policy is followed by a system,

there must be some way of binding users to (non-automatic)

tasks as they get ready to be scheduled, as opposed to

reactive enactment policies, in which users initiate tasks

themselves and become automatically responsible for their

execution.

A mixed strategy combines reaction to user initiated

actions with proactive firing of derivable actions. A cascade

of such automatic activations can take place, until a decision

point is reached, in which case the system stops firing

derived actions and waits for further human initiated

actions. Such systems display a combination of reactive

(user initiated) and proactive (system initiated) actions.

Goal-based systems such as MARVEL [14] and ALF [34]

provide a mixed strategy (Section 5.1).

Alternative binding mechanisms are supported by some

systems. Selection of users based on their attributes (e.g.

availability, special skills) is proposed in Refs. [46,47]. In

SPADE users may be selected according to ‘ownership’ of

some artifact, e.g. a module being coded. If, for instance,

some interface that is used by many modules is changed, the

system is able to request that the person responsible for

these potentially affected modules perform an evaluation of

the proposed interface changes [41].

7. Inter-user communication

In conventional WFMS, collaboration between users is

usually restricted to asynchronous sharing of artifacts,

usually forms or documents, i.e. artifacts are handled in a

serial way, from task to task. In particular, there is usually

no support for concurrent access to documents in parallel

tasks. Such collaboration through document hand-off is

lossy [48]—much of the knowledge is not communicated in

this type of transfer. Documents represent just the end result

of a potentially complex chain of knowledge acquisition

actions that were employed to construct them. Hence,

reliance on this type of channel is only viable in situations

where very little additional knowledge is required, other

than the directly implied by the document itself.

PCSDE approach the issue of user–user interaction in

three different ways: (1) by supporting synchronous sharing

of artifacts, (2) by integrating collaboration tools into

the environment, and (3) by providing built in synergistic

group support. We next examine each of these approaches.

7.1. Communication through artifact sharing

The understanding that users in a collaborative process

share artifacts (such as documents, code) is deeply rooted in

PCSDE [49]. The mechanisms employed are versioning and

extended transaction models [50,51]. Functionality at this

level is usually tied to the underlying support provided by a

database where artifacts are stored. In general, the

mechanisms make users aware of possible conflicts and

help them resolve such conflicts.

Detailed presentation of the complex issues involved is

beyond the scope of the present paper. Interested readers are

referred to Refs. [51,52].

† In ALF [34], several agents can share a single role, which

allows them to work in the same working context,

therefore sharing information—different contexts can

share artifact instances.

† OIKOS [15] offers a rich set of metaphors that handle

different levels of co-operation: the desk, environment

and office. Desks can be shared informally by a group of

cooperating users.

† In Adele/Tempo users operate on private working

environments that contain copies of artifacts stored in a

versioned database (Adele). A transaction manager

handles conflicts that occur when more than one user

modifies the same artifact in parallel.

† EPOS [16] builds on a database (EPOS-DB) that offers

versioned, long, nested and cooperating (non-serial-

izable) transactions. Access conflict resolution can be

specified in detail through a specific language (WUDL:

the Workspace Unit Declaration Language).

† Merlin builds on the GEMSTONE database and offers

long transactions. It can employ pessimistic and

optimistic strategies. Users can help resolve conflicts

by choosing a solution given transactional information

(e.g. who is holding a lock).

† Shamus [21] keeps users aware of each others actions,

in an attempt to reduce conflicts.

Collaboration through concurrency control, even though

essential whenever concurrent access to the same artifacts

exists, does not offer the synergy that is necessary in real

collaboration. Concurrency control, offers only a reactive,

after-the-fact kind of collaboration [53]. Other enhanced

levels of collaboration are offered through the mechanisms

that we briefly described in Section 7.2.

7.2. Integration of group collaboration tools

An enhanced level of human collaboration support is

provided by integrating PCSDE with external tools that are

able to handle a closer mode of collaboration [4]. Usually,
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the tool that is integrated adds some form of synchronous

communication support, such as support for electronic

meetings.

In some systems, external synchronous communication

tools are incorporated through the use of an existing tool

integration functionality. Such integration is done, e.g. in

SPADE [41], that controls the ImagineDesk toolkit from

inside a process. A similar approach is presented in Ref.

[54], where the Marvel PCSDE [14] is integrated with

ConverationBuilder [55]. In Ref. [56], Merlin [17] is

integrated with Multiview, a group collaboration tool to

visualize multiple artifact representations.

An issue regarding tool integration is how closely

coupled this integration really is [41,53]. Ideally, the

integrated tool can be made to influence the process and

vice-versa, i.e. there is a close coupling that permit the

process to control the tool and that actions performed by

users of the tool be visible to the process, so that it can react

to them accordingly.

7.3. Built in synchronous communication support

Some systems make an option of directly supporting

synchronous cooperation. Oz [53], for instance, offers such

built in support, that works in combination with the support

for tasks executed by groups of users. Serendipity [57]

supports synchronous operations through filter/actions, that

can be made to coordinate the use of synchronous tools. The

process model itself can be synchronously edited by a group

of collaborating users.

Other systems support synchronous communication as a

consequence of the paradigm chosen, typically based on

some kind of virtual space or environment, as the one

employed in MUDs [44] and locales [58]. Space-based

paradigms can support synchronous communication in a

natural way, by making visible the ‘presence’ of other users

that are ‘visiting’ a room at the same time (Section 6.1).

8. Management and assessment

Management control aspects take form of meta-

activities, activities whose focus of attention is not the

development of software itself, but the way by which

software is developed. In other words, their object is the

work itself, not the product of the work.

Change seems to be inherent to the development of soft-

ware, due to the fact that development is also (or primarily) a

discovery process. At start little is known about the problem,

and as work progresses, the increased understanding may

cause different approaches to be more desirable.

The amount of success of a PCSDE depends heavily, as a

consequence, on how well the meta-activities are supported

by the environment. Meta-activities are managerial in nature

and include monitoring, assessing, planning and adjustment.

8.1. Monitoring

By monitoring we mean the managerial activities that

involve checking the progress of work against some

schedule, to proactively verify if some adjustment needs

to be done.

Few references can be found about this topic in the

literature. Conceivably, monitoring could be attained

through the modeling of the appropriate role, but this is in

general not discussed in the literature.

† In Process Weaver, an Owner’s View allows a project

manager to overview processes in execution. State of

activities and documents can be visualized, as well as the

overall state of a process, expressed as mappings on a

Petri net [59].

† In PADM, it is suggested that the agents themselves

provide the managers with ‘time-sheets’ with the

necessary information [60].

† Merlin allows managers to retrieve on-line information

about project status [56]. This functionality takes

advantage of the system’s backward chaining capabilities

to respond to queries about the process state, represented

as a dynamically updated Prolog-like rule-base.

† Provence keeps a graphical representation of the state of

processes. This representation can be examined through a

generic visualization tool—Dotty [30].

8.2. Assessment/measurement

A prerequisite for process improvement is the ability to

measure objectively the performance of current processes.

This data can then be used to inform the improvement and

fine tuning of the process in a continuous way (as proposed,

e.g. by the CMM [61]).

Data collection can be incorporated into most process

models through appropriate language constructs (that vary

from system to system), but no standard for that is available.

A few systems offer data collection and assessment

functionality:

† In Process Weaver, a tracer tool can be used to collect

statistical information on process execution, like the

number of times some activity is executed, or the number

of times a loop is iterated [59].

† SynerVision [59] keeps (as task attributes) some

measurement information, e.g. estimated time for

completion and actual time spent. Other attributes can

be defined to fit organization specific metrics.

† Endeavors can be customized to interact with metric

gathering tools [62, p. 22].

Another aspect mentioned by some researchers [63,64]

has to do with the fact that it seems to be specially

difficult to collect exact measurements, given the fact that

some of the relevant actions are performed outside
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the scope of the environment, e.g. in phone conversations,

meetings, etc (off-line). This makes it difficult to maintain

the internal representation of the state with the real one.

As one of the consequences, measuring the process is not

realistic if only the events captured by the system are

considered.

8.3. Planning/resource management

The creation of processes is a managerial task that

precedes in time the process itself [65]. Existing process

models and process instances (projects) are also subject to

(re)planning, whenever some change forces the way the

work is done to be modified.

Realistic managerial planning includes not only the

planning of process steps, but also resource management,

like the assignment of activities, determining their deadlines,

determining costs and so on [66]. Little is mentioned in the

literature regarding this aspect. According to Huff, this is one

of the least developed aspects of process models [63].

† Some references are made in Ref. [66] to modeling of

these aspects in Statemate.

† Effort, time and budget are considered resources in

PEACE [28].

† In PADM, it is suggested the integration of an external

scheduling support tool using the usual tool integration

facility of the system [60].

† Process Weaver [45] can be integrated to existing project

management tools. Library functions can be used to

periodically scan a project management tool’s database.

Activities that are due to get started are then automatically

instantiated by Process Weaver.

† Endeavors allows the augmentation of the system with

project management software. Traditional project man-

agement resources (budgets, computers, meeting rooms,

people) are considered part of the model [62].

9. Summary and conclusions

PCSDE features were analyzed in the context of

collaboration. PCSDE are by nature geared towards

collaboration and coordination, due to their focus on

supporting software development, an activity that can be

characterized as creative, exploratory collaborative work.

Some features offered by such systems can be useful in

the general case:

† Range of possible enforcement policies, from tracking

of user initiated actions to strict, push based

enforcement.

† Rich notion of interaction paradigms that include modes

such as step based, artifact based, or based on virtual

environment paradigms. Mixed strategies are also

employed.

† Support for multi-user tasks. Selection of users, when

automatic, can be based on user attributes, such as

ownership of objects or skills.

† Sharing of artifacts in parallel tasks is supported through

enhanced concurrency mechanisms and versioning.

† Synchronous communication is supported either through

tool integration or as a built in functionality.

† Specifications have broad scope, and include support for

finer grained sub-processes. Artifact directed unfolding is

provided.

† Evolution is not mandatory—systems can live with

inconsistencies.

On the downside, broader coverage for collaboration and

coordination comes at the cost of more complex process

descriptions. Languages are usually too complex for users,

even if these users are software developers themselves. The

effort required to build and evolve a process can be too high.

Modeling languages are in general low-level, and biased

towards the implementation phase and may not be

appropriate for all phases of development, particularly the

more creative design phases [4].

One key aspect is that technology by itself is unable to

provide a final answer to the problem of collaboration.

There are intrinsic limits to how much help tools can

provide. Tools can at most provide adequate support for

knowledge representations. Building and using such knowl-

edge can only be done by humans. The payoff of using a tool

is therefore intrinsically limited.
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Appendix A. Overview of the systems

In this section, PCSDEs are described in fuller detail,

complementing the analysis presented in the previous

sections. Further reviews of these and other systems can

be found, e.g. in Ambriola et al.’s excellent survey [4] and in

Refs. [5–7].

A.1. Adele/Tempo

Adele/Tempo [67,68] was developed at IMAG in

Grenoble.

Adele is a versioned database in which process com-

ponents are stored. Process steps are modeled as objects that

define operations, attributes, and recursively, other process

steps. User activities are modeled as methods associated with

processes and attributes.
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Tempo is a rule-based process modeling language. Tempo

is based on Event-Condition–Action rules (ECA) extended

with time, i.e. the event part can include temporal expres-

sions. Rules are used to control the initiation of activities.

Users perform their activities through working environ-

ments. These are Adele sub-databases associated with one

user. Working environments are composed of directories

and files, tools and a task to be performed [7]. A process

engine monitors execution according to defined rules, e.g.

guiding compilation and testing of modules.

A transaction manager handles conflicts that might

occur when shared objects are accessed concurrently.

Configuration management in Adele is based on the branch

concept. A branch models a sequence of revisions, that are

snapshots of the object attributes.

A.2. ALF

ALF [34] defines models in a language called MASP/DL

(Model for Assisted Software Process Data Language).

Process models consist of hierarchies of model fragments,

called MASP. Each MASP is defined by a 5-tuple (Om,

OPm, Rm, ORm, C) where

† Om is an object model that describes data used in the

fragment;

† OPm is a set of operator types which are abstractions of

tools or tool families, e.g. edit, compile, that are later

associated with actual tools;

† Rm is a set of Event-Condition–Action (ECA) rules

expressing reaction to events, e.g. triggering of a linker

after successful compilation takes place;

† ORm is a set of ordering constraints that express how

operators can be applied (e.g. editðxÞ; compileðxÞ denote

that edits must precede compilations);

† C is an invariant, called the characteristics that must

be true at all times for a specific fragment.

The set of operator types (OPm) define pre- and post-

conditions for operator execution. The activation of an

operator whose pre-conditions have not yet been satisfied

causes a plan to be automatically built through inferencing.

This plan tries to fulfill the violated pre-condition. If that

fails, the user is notified, otherwise the plan is carried out

and the operation is executed.1 Similarly, the ‘character-

istics’ C causes a similar reparation plan to be built,

whenever it becomes false as a result of changes in the state

of a fragment.

MASPs are recursively structured by defining operators

as MASPs. An operation of a higher level fragment can thus

correspond to a whole other fragment.

ALF supports the iterative construction of process

models while in execution, by instantiation of MASPs that

have undefined operators. Later in the process, these

operators can be instantiated according, e.g. to the history

of process enactment.

User interaction with the system happens through a few

tools, e.g. an action tool that allows users to select

operations they want to execute; a guidance tool that

analyzes the impact of an action, or shows what can be done

next; a reporting tool that shows what has been done and

how these results were obtained.

ALF uses a virtual file system that emulates the Unix file

system (PCTE) to map transparently the file operation

requests made by tools into their database equivalents.

A.3. APPL/A

APPL/A [20] is a process programming language used in

the Arcadia Project [69].

Process descriptions in APPL/A are procedural, written

using the basic mechanisms and constructs provided by the

Ada programming language. APPL/A extends Ada to

include constructs that support process modeling, in the

form of first class relations and associated services (e.g.

triggers, transactional statements).

Relations connect software elements in a data model

based on extensions of Codd’s relational model. They can

be used to explicitly represent interdependencies among

software elements.

Triggers add a rule-based flavor to the language and are

used, e.g. for change propagation, log maintenance and

reactive services in general. Predicates can be used to

express constraints on the state of relations.

Serializability of relations and optional recoverable

access is achieved through extended transactional state-

ments. These constructs can be used to implement, e.g.

conventional, nested and cooperative transactions.

A.4. EPOS

EPOS [16,70–73] (Expert System for Program and

(‘og’) System Development) was developed at the Univer-

sity of Trondheim, Norway.

Models are expressed in SPELL, a concurrent reflective

language that is a superset of Prolog. Different aspects of a

process are defined in sub-models: activity/task model,

product model, tool model, human and role model,

cooperation model and meta-process model [70]. Pre-

conditions relate tasks to each other. Task models therefore

form task networks.

SPELL supports a mix of specification styles, ranging

from rule-based to a task-based style using scripts

(surrounded by pre- and post-conditions) [4, p. 291]

(Section 4). Process elements are uniformly modeled as

SPELL types and instances, including process plans

themselves.

EPOS supports meta-processes used for the creation and

evolution of process models as an integral part of the system.

1 This mechanism is thus similar to the one in MARVEL (Section A.5)

and EPOS (Section A.4).
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A reflective object-oriented language can be used to specify

policies for model creation, composition, change, instantia-

tion, refinement and enaction [71]. SPELL tasks can handle

any process element as parameters, thus allowing for

process plans themselves to be the objects of (meta)

processes.

Two components: the execution manager and the

planner work in tandem to handle enactment. The execution

manager evaluates task pre-conditions. Instances whose

conditions evaluate to true are executed directly if they are

atomic. Composite tasks cause the execution manager to

invoke the planner. The planner automatically generates a

new sub-task network, using artificial intelligence (AI)

planning technology. The post-condition of the composite

task is taken to represent a goal. The planner applies

backward chaining and hierarchical decomposition to build

an appropriate sub-network that corresponds to a plan in AI

terms. Since sub-networks are built dynamically and

incrementally, the system automatically readjusts to

changes to task definitions (types) and product structure.

The planner can be automatically invoked whenever

changes are introduced [73].

EPOS-DB is the component that is responsible for

artifact storage in this system. EPOS-DB stores both process

description and data on which processes operate, as well as

the relationships among these elements [7]. EPOS-DB

offers versioned, long, nested and cooperating (non-serial-

izable) transactions with mutual cooperation protocols [16].

The versioning mechanism is based on change-oriented

versioning. In this model, the deltas (a set of changes) are

kept as separate entities that are applied selectively to

baseline artifacts. The combination of a baseline artifact and

one or more change sets originates a logical version.

Predicates in version-rules dictate the change-sets that

should be applied.

A language—Workspace Unit Declaration Language

(WUDL)—can be used to specify how access conflicts

should be handled, e.g. breaking of locks, controlling

change propagation and version merging [4, p. 300].

A.5. MARVEL

MARVEL [14,74,75] is a project conducted at Columbia

University by Kaiser and colleagues.

Processes are specified in MARVEL through rules

expressed in a notation called the MARVEL Strategy

Language (MSL). Three sets are specified for a process:

rules, types and tools. These define, respectively, (1) the

process specific issues, (2) objects employed, and (3) tools

that operate on the objects [7].

Rules consist of a name that corresponds to a user

command, a list of object types used as parameters, a

precondition for initiation, an action expressed as a tool

envelope (a Unix shell script) and one or more effects

(post-conditions) [75, p. 18]. One post-condition is

chosen from the set of available one, depending on

a code returned by the tool that was activated as part of

the action, e.g. success or failure in compiling a piece of

code.

MARVEL employs forward and backward chaining

capabilities to support users in identifying and performing

actions that need to be carried out in order to satisfy the

pre-conditions of some other action. The activation of a

rule whose pre-conditions are not yet satisfied causes the

system to apply backward chaining to identify other rules

(and associated actions) necessary to fulfill these pre-

conditions (unless the rule explicitly forbids this behavior

[17, p. 23]). Forward chaining is then applied to these

identified rules, causing actions to be carried out

automatically whenever possible, or sent to a user for

manual execution [7].

Users select the commands they want to execute. No

enforcement is thus imposed (Section 5.1). As a result of the

pre-condition satisfying logic described above, users may be

proactively requested to execute additional actions. There

are no facilities for associating users to specific steps of a

process. Such facilities were later added to Oz, a successor

of MARVEL (Section A.8).

An experiment integrating MARVEL and Converation-

Builder [55] (a group collaboration tool) is reported in Ref.

[54].

A.6. Merlin

Merlin [17,56,76] was developed at the University of

Dortmund, as part of a project of the same name.

Modeled elements include activities, roles, e.g.

programmer, manager, software objects (artifacts) and

resources (people participating in the project). Software

objects are associated to activities which transform

objects. Inter-object relationships are also represented.

Activities in turn are associated to tools supporting them.

Groups of activities can be associated to roles. Roles, in

turn, are associated to users (resources) that can play

them.

Process representation is based on rules stored in a

shared process database. Prolog-like backward chaining

rules are used to select roles and activities a user may

perform, and to answer queries on the process state.

Forward-chaining rules describe proactive responses

generated by the system and consist of a pre-condition,

list of activities and post-condition. Relationships among

system objects are stored as a dynamic persistent graph

structure [56]. Rules and relationships are updated during

process execution, thus reflecting process change and

unfolding in a flexible way. Rules reflect both a process

structure as well as facts about executing instances, e.g.

marking the operations already performed on a code

module [76], in a Prolog-like style.

User interaction is centered in working contexts

presented for each role. The working context presents

the set of objects (represented as boxes) that are
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associated with the role along with their dependencies

(represented as arrows connecting the boxes), along with

the activities that can be performed on each object (as

menus attached to the boxes). Appropriate tools are

automatically launched and controlled by the system as a

response to a user selecting an action to execute. Users

can select to hide some of the objects on their working

contexts (e.g. specifications). The style of interaction is

therefore artifact-based (Section 6.1), but organized under

a role perspective/view.

Cooperation is supported in an indirect way by the

environment, that ‘moves’ documents between the working

contexts of the different roles. In other words, when some

document has been successfully modified by one role, it

disappears from this role’s context and is included in the

working context of the role responsible for the next step of

transformations. Once a piece of code is completed by a

programmer, it may be moved automatically to the working

context of a quality assurance engineer. If the tests

performed by the latter result in a failure, the piece of

code might, for instance, be moved back to a programmer’s

context for correction [76].

Users can choose to execute available actions in

whichever order they prefer. The system proactively

executes automatic actions that become enable as a result

of completion of other actions. Guidance can be proactively

supported by forward-chaining rules, that might take a user

through the steps required, e.g. for testing some code [7].

Transactional support is built on top of services offered

by GEMSTONE, an OODBMS. Both long transactions

(called working context transactions) and short ones

(activity transactions) are supported. Optimistic and

pessimistic strategies can be employed. Users are presented

with transaction information (who is holding which lock)

and may help choosing the right type of transaction.

An experiment in tool integration produced a version that

incorporates Multiview, an Integrated Development

Environment. Multiview supports multiple representations

of code in addition to the conventional textual form, for

instance, graphical representations of code fragments. This

integration illustrates the system’s capability of incorporat-

ing and controlling complex tools and is described in Ref.

[56].

A.7. OIKOS

OIKOS [4,15,77] gets its name from the ancient Greek

word for house, that has acquired a meaning related to

environment (as, e.g. in ecology). This system was

developed in the late 1980s at the Università a di Pisa by

Montangero and colleagues.

Limbo is the system’s language used to specify

processes. Paté is an enactment language (actually a sub-

language of Limbo). Both languages are declarative. These

are logic languages that are compiled into an intermediate

language that is interpreted by a pre-defined set of Prolog

programs. The system employs blackboards/tuple spaces to

handle concurrency and distribution. Execution is driven by

rule-based agents that fire non-deterministically and con-

currently, based on pre-conditions that are unified with

blackboard tuples. The body of a rule is a Prolog program.

Post-conditions specify tuples that are to be written as a

result of the execution of the body.

OIKOS offers a rich set of paradigms that handle

different levels of cooperation, the desk, environment and

office. A desk corresponds to a shared work space,

potentially used by different roles to share information

about the state of their work. Several agents may play their

roles on the same desk, cooperating in a free fashion. Desks

are part of environments. Several groups can play their roles

in different desks, but under the same environment. The

environment controls access to shared documents and

therefore allows communication formalized by the envir-

onment’s rules. Finally, an office groups many environ-

ments. The interaction of groups in different environments

is the most formalized one and is controlled by the

surrounding process.

Users interact with the system through graphical user

interfaces that expose the contents of the blackboards as

icons. Users then apply commands directly to these icons.

This style of interaction can be considered artifact based

(Section 6.1).

A.8. Oz

Oz [43,46,53,78] was developed at Columbia University

as an enhancement to the MARVEL system (Section A.5).

Oz supports geographically dispersed teams by coordi-

nating a federation of decentralized autonomous processes

[43]. These autonomous processes are described using a

common formalism (as opposed to systems such as Process-

Wall [79] that supports multiple formalisms).

Oz shares the process description language of its

predecessor, MARVEL. MARVEL’s rule specification is

extended to include the definition of executors. In Oz,

activities associated to rules can have multiple executors.

The selection of users is based on a flexible query

mechanism that can be used, for instance, to identify all

users that are connected to a document that needs to be

changed by an owner relationship. As a result, changes to

different documents will be executed by potentially different

groups of people [53].

Oz embeds support for synchronous group collaboration

through which a group of users appointed as executors of an

activity can jointly perform it. Such group activities might

be supported, for instance, by group editors, or shared

white-boards [53].

A.9. Process weaver

Process weaver [45,80] is a commercial PCSDE.

It defines process models as (1) a hierarchy of activity
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types (denoted methods) and (2) an associated flow control

specification (called cooperative procedure).

Methods decompose higher level activities into lower-

level ones, in a tree-like structure. Each activity is

associated with a textual description, input and output

artifact types and the human roles involved.

Activities are represented in cooperative procedures as

Petri net transitions. Transitions are associated with a

condition and an action. Conditions and actions can be

expressed in the Co-shell language, which is similar to Unix

shell languages. A few pre-specified conditions can also be

employed: wait for event generated by one or a group of

users (through workcontexts buttons, discussed below); wait

for a specific place to be marked in another cooperative

procedure (allowing synchronization); or empty (no con-

dition). Similarly, pre-defined actions can be used: send a

workcontext to an agent or to a group of agents; initiate the

execution of another cooperative procedure; or empty (no

action).

Workcontexts correspond to individual work assign-

ments, associated to atomic work-steps in a process.

Workcontexts group a set of documents, tools, help

references and buttons. Buttons generate corresponding

events that are then used in conditions in cooperative

procedures, as discussed above.

Users interact with the system through their individual

agendas, which display the workcontexts each one is

supposed to work on. ‘Send to group’ actions cause copies

of a workcontext to be placed in the agendas of all users in a

group. The corresponding ‘wait for event generated by

group’ will only become true when all users in a group have

signaled an event through their individual workcontexts.

Process Weaver can be integrated to project management

tools. Through a library of standard procedures, a project

management repository can be periodically scanned and

activities that are due to start can be automatically

instantiated by Process Weaver.

A tracer tool can be used to collect statistical information

on process execution, like the number of times some activity

is executed, or the number of times a loop is iterated [59].

A.10. PROSYT

PROSYT [22,32] (PROcess Support sYstem capable of

Tolerating deviations) was developed at the Politecnico di

Milano by Cugola and colleagues, based on previous

experiences related to the SPADE system (Section A.13)

and to SENTINEL [81].

PROSYT is based on a distributed event infrastructure,

and offers code mobility to support nomadic users. It is built

on top of the JEDI infrastructure, developed locally to

provide necessary services for the system [22].

Process specification is artifact-based (Section 4).

Artifacts can be organized hierarchically by placing them

into repositories and folders within repositories. Folders in

turn can contain a mixture of other folders and artifacts.

Repositories, folders and artifacts (that we will call

system objects) can be associated with operations that can

be directly invoked by users and automatic operations that

are proactively executed by the system. Automatic oper-

ations are triggered by events, e.g. the invocation of some

operation in some other related artifact.

Constraints and invariants can be set for system objects.

Constraints provide guidance as to which actions can be

chosen by users, but are not mandatory. Users can override

the constraints and execute actions independently of the

condition of the guarding expressions. The system keeps

track of these deviations and guarantees that invariants are

satisfied.

As indicated by the name of the system, the main

research focus is on tolerating deviations (Section 5.2). A

dynamically established deviation handling policy deter-

mines classes of constraints that can be violated. The

dynamic aspect allows one to establish different policies for

different process phases, or for different users—an expert,

for instance, may be trusted to violate more constraints than

a novice user.

The style of specification is therefore proscriptive

(Section 4), with the added benefit of flexible overriding

of constraints (Section 5.2).

A.11. Provence

Provence focus on providing non-intrusive support for

project execution. In this system, users go about their jobs as

usual, activating regular tools they are used to, such as their

favorite editors. Provence transparently monitors users’

actions and maps them back into corresponding process

actions. A project’s state can thus be kept updated with little

or no direct intervention from users (users still have to

inform the system the completion of activities such as

meetings, that might not be represented by any action taken

through a computerized system). As a result of this state

update, notifications can be generated, advising users of

upcoming activities.

The system is built from a combination of four general

purpose tools: a process server (MARVEL), a smart file

system (the 3D File System), an event engine (Yeast), and a

graph visualization tool (Dotty). A component called the

enactor binds these tools together. The enactor is respon-

sible for mapping actual user actions into equivalent process

model activities (interfacing the event engine and the

process server). The enactor also updates a network

representation of the process state that is used by the

graph visualization tool.

The event engine is initially loaded with a description of

the low level file system events to be monitored, that would

indicate that corresponding process activities are taking

place. These low level events are extracted from a process

model kept by MARVEL.

The smart file system traps user file-related actions and

reports them back to the event engine, that in turn causes
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updates to a project state, via a mapping performed by the

enactor.

The main question is of course how a system such as this

can determine in which phase the artifacts that are

transparently controlled are. A programmer may, for

instance, open and save a piece of code repeatedly in the

course of many days while she is working on it. The

meaningful event would in this case be not the repeated

opening and closing of a file, but something else that

indicates that the code is considered to be ready. The

solution seems to be related to the use of folders. Whenever

an artifact moves to a new state, it is required that the users

write them to a different (apparently pre-specified) folder. It

is this file writing action that is then taken to represent

completion of an activity [30].

A.12. Shamus

Lamarca et al.’s Shamus System [21] explores a

document-centered approach to software development

support. Shamus is an ‘application’ within the Placeless

Documents system. The approach used consists of

attaching active properties to documents, in the specific

case of Shamus, to code fragments. Active properties can

be used, for instance, to ‘implement access control, handle

reading and writing from repositories and to perform

notifications of document changes to interested parties’

[21, p. 6].

Development is supported by providing awareness of

changes others are applying to a code base in real-time,

aiming at reducing conflicts when code is checked in back to

repositories. The system can show, for instance, which

methods and classes are being modified even before the

respective files are checked back in. Other active properties

allow for the automation of common development tasks

such as compilation and code generation whenever code is

changed.

The approach is therefore artifact based, both from the

point of view of specification (Section 4) as from the point

of view of interaction (Section 6.1). The system employs a

mixed reactive/proactive strategy (Section 6.2): on the one

hand users are responsible for choosing whatever action is

available at any moment, in any desired order, on the other

hand, the system can proactively initiate automatic actions,

e.g. the above-mentioned compilation and document

generation.

A.13. SPADE

SPADE [19,41,82,83] was developed in the early 1990s

by Bandinelli and colleagues at the Politecnico di Milano.

Its specification language (SLANG) is based on a higher-

level Petri Net formalism. Petri net transitions are associated

to Condition–Action rules. Enabled transitions wait for

corresponding conditions to become true. When that

happens, an action is initiated and tokens are written to

the transitions’ output places. Initiation of a compilation

might, for instance, cause a token to be written to a place

that enables a linking rule. The linking rule’s condition

waits for compilation to complete before activating the

linker. Actions are specified using a logic-like language.

The topology of the net describes a precedence relation

among rules.

Project artifacts are embedded in objects that correspond

to the tokens flowing in a net. These tokens/objects are

managed by an object-oriented database ðO2Þ: Objects are

transparently moved to/from the database to a file system to

allow the use of conventional (non-database-enabled) tools

to operate on them.

Rules associated to transitions are responsible for

extracting an enabling token from the database as part of

their condition. Rules also include a set of statements that

specify how output tuples are created [4].

In summary, SLANG combines in a single formalism

both the object-oriented representation of artifacts (data

aspect) as well as the specification of the synchronization

and parallelism through a Petri net (control aspect).

The formalism is used to uniformly represent different

aspects of a process, e.g. human resource management,

interaction between users and the environment (describing

complex sequences of tool activations, for example), in

addition to the basic specification of events and their

precedence relation.

The flexibility of SLANG is explored in the system to

integrate tools, for instance, based on the DEC FUSE tool

integration suite [84], and Sun Tooltalk [85]. Through

SLANG, tools can be controlled in detail, and results of tool

execution can be reified and made to flow as tokens. More

sophisticated integrations were also implemented, e.g. the

detailed control of the ImagineDesk toolkit from inside a

process [41]. ImagineDesk is a group conferencing system

also developed at the Politecnico di Milano. The resulting

integrated system bridges two models of collaboration, the

synchronous collaboration provided by the conferencing

system and the asynchronous process support provided by

SPADE.

Process evolution is supported by a reflective mechan-

ism: process definitions themselves can be seen as tokens.

As such, process definitions can be manipulated in meta-

processes that apply some transformation, as would happen

to any other artifact/object flowing through a net in the

system.

Users interact with SPADE through tools, some of

which are conventional software development tools and

others are specific SPADE tools, such as the process

agenda that provides feedback on the state of a project.

The presence of the environment is therefore kept most

of the time hidden from users. Its presence is mostly felt

indirectly, as user-initiated actions cause related actions

to take place. Different styles of interaction (Section 6.1)

can be supported at the cost of specifying them in

SLANG [42].
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