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Abstract System reliability assessment is a critical task for design engineers. Iden-
tifying the least reliable components within a to-be system would immensely as-
sist the engineers to improve designs. This represents a pertinent example of data
informed decision making (DIDM). In this chapter, we have looked into the the-
oretical frameworks and the underlying structure of system reliability assessment
using prior elicitation and analysis of imprecise judgements. We consider the is-
sue of imprecision in the expert’s probability assessments. We particularly examine
how imprecise assessments would lead to uncertainty. It is crucial to investigate
and assess this uncertainty. Such an assessment would lead to a more realistic rep-
resentation of the expert’s beliefs, and would avoid artificially-precise inferences.
In other words, in many of the existing elicitation methods, it cannot be claimed
that the resulting distribution perfectly describes the expert’s beliefs. In this paper,
we examine suitable ways of modelling the imprecision in the expert’s probabil-
ity assessments. We would also discuss the level of uncertainty that we might have
about an expert’s density function following an elicitation. Our method to elicit an
expert’s density function is nonparametric (using Gaussian Process emulators), as
introduced by Oakley and O’Hagan [1]. We will modify this method by including
the imprecision in any elicited probability judgement. It should be noticed that mod-
elling imprecision does not have any impact on the expert’s true density function,
and it only affects the analyst’s uncertainty about the unknown quantity of interest.
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We will compare our method with the method proposed in [2] using the ’roulette
method’. We quantify the uncertainty of their density function, given the fact that
the expert has only specified a limited number of probability judgements, and that
these judgements are forced to be rounded. We will investigate the advantages of
these methods against each other. Finally, we employ the proposed methods in this
paper to examine the uncertainty about the prior density functions of the power law
model’s parameters elicited based on the imprecise judgements and how this uncer-
tainty might affect our final inference.

1 Introduction

Assume the elicitation of a single expert’s belief about some unknown continuous
quantity denoted by θ . Identifying the underlying density function for θ based on
the expert’s beliefs, is the objective of the elicitation process. We denote this den-
sity function by f (θ). This function can be a member of a convenient parametric
family. O’Hagan et al. [3] present a comprehensive review of the methods to elicit
the density function chosen from a wide range of parametric families. Oakley and
O’Hagan [1] criticised this way of eliciting expert’s density function, and reported
the following deficiencies as the main drawbacks of the so-called parametric elicita-
tion methods: 1) The expert’s beliefs are forced to fit the parametric family; 2) other
possible distributions that might have fitted the elicited statements equally well have
not been taken into account.

In order to tackle these drawbacks, they propose a nonparametric elicitation ap-
proach. In this approach, two parties are involved: an expert (female) and the analyst
(male). The analyst receives the expert’s elicited statements and will then make in-
ference about the expert’s density function, f (θ) based on her statements. In this
approach, the analyst’s fitted estimate of the expert’s density function f (θ) is non-
parametric, thereby avoiding forcing the expert’s density into a parametric family.

This nonparametric elicitation approach can be seen as an exercise in Bayesian
inference where the unknown quantity is f (θ). Moreover, the analyst’s wishes are
to formulate his prior beliefs about this unknown quantity. He then updates this
prior in light of the data received from the expert in the form of probabilities as-
sessments (e.g., quantiles, quartiles, mode, or mean) in order to obtain his posterior
distribution for f (θ). The analyst’s posterior mean serves as the ‘best estimate’ for
the expert’s density function f (θ), while the variance around this estimate describes
the uncertainty in the elicitation process.

One crucial question that might arise in this non-parametric elicitation method
is that, can the expert specify the probabilities assessments with absolute precision?
This is evident that the facilitator cannot elicit her probabilities with absolute pre-
cision (or she cannot present her beliefs with the absolute precision). We are then
interested to investigate what implications this might have on the uncertainty of the
elicited prior distribution. There are several factors ([3]) that caused this issue. One
of the most important challenges is that it is difficult for any expert to give precise
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numerical values for their probabilities; nevertheless, this is a requirement in most
elicitation schemes. For instance, in many elicitation schemes, it is common to ask
for percentiles or quantiles rather than probabilities. However, if the expert is unable
to make precise probability assessments, then she will not be able to make precise
percentile (or quantile) assessments either (see Section 3 and [3] for the differences
between the ‘precise’ and ‘imprecise’ probabilities).

An obvious and natural source of imprecision comes from rounding done by the
expert during probability assessments. We outline such imprecisions by the follow-
ing explanation. Assuming expert’s degree of belief probability θ < 0.1, she may
only consider probabilities rounded to the nearest, for instance, 0.05 (unless she
wishes to state a probability close to 0 or 1). There may be an element of ‘vagueness’
in her imprecisely stated probabilities. She may believe that the event {θ < 0.1} is
‘quite unlikely, ’yet she may find it difficult to attach a single numerical value to this
belief. For example, she may find the question, “Is your probability of {θ < 0.1} less
than 0.45?” straightforward to answer, but have difficulty in answering the question,
“Is your probability of {θ < 0.1} closer to 0.1 or 0.2?”, as she may have difficulty
in deciding whether a probability of 0.1 describes her belief better than a probability
of 0.2. The actual probability she reports may be chosen somewhat arbitrarily from
the lower end of the probability scale, and all the subsequent probability judgements
regarding θ will be dependent on this choice.

In order to investigate the impact of the imprecise probabilities stated by the ex-
pert on the elicited prior distribution and uncertainty around it (due to the impreci-
sion), the elicitation methods must be modified in a way to capture this imprecision.

The purpose of this paper is to modify a nonparametric elicitation approach that
is originally proposed by Oakley and O’Hagan [1] when the stated probabilities by
the experts are imprecise. In Section 2, we briefly introduce this elicitation method
and its properties and flexibility in practice. Section 3 is devoted to the short liter-
ature review of some main papers regarding the modelling of the imprecise prob-
abilities. We also introduce a simple way for modelling the imprecision which is
more straightforward to combine with the nonparametric elicitation method with a
view to report the expert’s density function and uncertainty around it. Section 4 is
dedicated to the modification of Oakley and O’Hagan’s elicitation method where
the stated probabilities are not precise. Instead of eliciting percentiles or quantiles,
we prefer to use a simpler type of fixed interval elicitation method known as trial
roulette which is originally introduced in [4]. This method is introduced in Section
5. Finally, in Section 6, we employ the proposed methods in this paper to examine
the uncertainty about the prior density functions of the power law model’s param-
eters elicited based on the imprecise judgements and how this uncertainty might
affect our final inference.
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2 Nonparametric elicitation

Let’s consider eliciting an expert’s beliefs about some unknown continuous variable
θ . The elicitation is the process of translating someone’s beliefs about some un-
certain quantities into a probability distribution. The expert’s judgements about the
uncertain quantities are traditionally fitted to some member of a convenient para-
metric family. There are few deficiencies in this approach that can be tackled by the
nonparametric approach proposed in [1] which will be briefly introduced in this sec-
tion. In this approach, two parties are involved: expert and facilitator. We suppose
that the elicitation is conducted by a (male) facilitator, who interviews the (female)
expert and identifies a density function f that represents her beliefs about θ . He
will help her as much as possible, for example by providing suitable training and
discussing the various biases that can influence probability judgements.

The expert is usually only able to provide certain summaries of her distribution
such as the mean or various percentiles. O’Hagan et al. [3] show that these infor-
mation are not enough to determine f (θ), uniquely. In the traditional methods, a
density function that fits those summaries, as closely as possible, is chosen from
some convenient parametric family of distributions. Oakley and O’Hagan [1] re-
ported two deficiencies regarding this approach: first, it forces the expert’s beliefs to
fit the parametric family; and second, it fails to acknowledge the fact that many other
densities might have well fitted the same summaries equally. They then presented
an approach that addresses both deficiencies together in a single framework.

This nonparametric approach allows expert’s distribution to take any continuous
form. The issue of fitting a density function to the summaries stated by the expert
is considered as an exercise in Bayesian inference, where an unknown quantity of
interest is the expert density function, denoted by f (θ). The facilitator formulates
his prior beliefs about this quantity. He then updates his beliefs about the expert’s
true density function in light of the data that are obtained from the expert in the form
of (probability) judgements. This is to obtain his posterior distribution for f (θ). The
facilitator’s posterior mean can then be offered as a ‘best estimate’ for f (θ), while
his posterior distribution quantifies the remaining uncertainty around this estimate.

A very useful and flexible prior model for an unknown function (e.g., expert den-
sity function) is the Gaussian process. Thus, it is reasonable that the facilitator rep-
resents prior uncertainty about f using a Gaussian process: for any set {θ1, . . . ,θn}
of values of θ , his prior distribution for { f (θ1), . . . , f (θn)} is multivariate normal.
The reason that the joint distribution of f (.) at some finite points is multivariate nor-
mal comes from the formal definition of a Gaussian process over f (θ), and further
details and examples can be seen in [3] and references therein. As f (θ) is a density
function, two constraints are applied to the facilitator’s prior:

∫
∞

−∞
f (θ)dθ = 1 and

f (θ) ≥ 0 for all θ . The first constraint is applied as part of the data from the ex-
pert, and second constraint is applied (approximately) using simulation, which we
discuss in later sections.

The facilitator specifies his mean and variance-covariance functions for f hierar-
chically, in terms of a vector α of hyperparameters. His prior expectation of f (θ) is
some member g(θ |u) of a suitable parametric family with parameters u, contained
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within α , so
E( f (θ) | α) = g(θ | u), (1)

where g(. | u) denotes the underlying density, in particular case, where u = (m,v),
is distributed as a normal density with mean m and variance v (t distribution can
be considered as an alternative as suggested in [1, 6], but we do not consider this
extension here), and

Cov{ f (θ), f (φ) | α}= σ
2g(θ | u)g(φ | φ)c(θ ,φ | u,b), (2)

where c(., . | u,b) is a correlation function that takes value 1 at θ = φ and is a
decreasing function of |θ − φ |, σ2 specifies how close the true density function
will be to its estimation, and so governs how well it approximates to the parametric
family, and α = (m,v,b,σ2). The following correlation function is used:

c(θ ,φ | u,b) = exp{− 1
2vb

(θ −φ)2}, (3)

where b is the smoothness parameter. The correlation function above makes f (.) in-
finitely differentiable with probability 1 (see [6] for further details and exploitation
of this property).

The prior distribution of α = (m,v,σ2,b∗) have the following form

p(m,v,σ2,b∗) ∝ p(m,v)p(σ2)p(b∗). (4)

Oakley and O’Hagan [1] used an improper prior distribution for the Gaussian
process variance σ2. However, this prior makes the computation more feasible, but
the analyst’s posterior distribution of the expert density might be sensitive to the
choice of prior of σ2 (and b∗ as well). We use the following proper prior distribu-
tions for σ2 and b∗, respectively.

p(σ2) = IG(a,d), logb∗ ∼ N(0,1) or N(0,4), (5)

where IG stands for Inverse Gamma.
We will also investigate sensitivity of the expert density with respect to changes

of the prior distributions for σ2 and b∗. For instance, other reasonable distributions
for b∗, used in [1], are N(0,1) or N(0,4). The result of this study will be presented
in the next section.

To update the facilitator’s prior beliefs about the expert’s density, we need to elicit
some summaries as the data from the expert. O’Hagan et al. [3] recommended that
the expert should be asked about the probabilities, percentiles or quntiles. However,
the nonparametric approach is being used in this paper can be applied to any of
probabilities, percentiles or quntiles, we generate the data by an elicitation scheme
called ‘trial roulette’ that will be introduced in the next section. This method is quite
simple to implement by the expert and originally suggested by Gore [4] in a medical
case study. Suppose that the vector of data, D, is
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DT =

(∫ a1

a0

f (θ)dθ , . . . ,
∫ an

an−1

f (θ)dθ

)
, (6)

where the end points a0, . . . ,an denote the possible value of θ , and ai > ai−1,
i = 1, . . . ,n. It should be mentioned that D will also include this information that∫

∞

−∞
f (θ)dθ = 1.

Because f (θ) has a normal distribution for all values of θ , then any data point
also has a normal distribution and the joint distribution of D and any finite set of
points on the function f (θ) is multivariate normal. The mean and variance of D are
given by

HT = E(D | (m,v))T =

(∫ a1

a0

g(θ | (m,v))dθ , . . . ,
∫ an

an−1

g(θ | (m,v))dθ

)
,

and

Cov(PAi ,PA j | α) = σ
2
∫

A j

∫
Ai

g(θ | (m,v))g(φ | (m,v))c(θ ,φ | b∗,v)dθdφ = σ
2A,

(7)
where Ai = [ai−1,ai] and A j = [a j−1,ai] for all i, j = 1, . . . ,n. The details of the
computation of H and A can be found in [5].

It then follows immediately from properties of the multivariate normal distribu-
tion that the updated facilitator’s beliefs about f (θ) given D and α also has a normal
distribution with

E( f (θ) | D,α) = g(θ | m,v)+ t(θ | α)T A−1(D−H), (8)

and

Cov( f (θ), f (φ) |D,α)=σ
2{g(θ |m,v)g(φ |m,v)c(θ ,φ | b∗,v)−t(θ |α)T A−1t(θ |α)},

(9)
where t(θ | α) is given by

t(θ | α)T = (Cov( f (θ),PA1 | α), . . . ,Cov( f (θ),PAn | α)),

Ai = [ai−1,ai], and α = (m,v,b∗,σ2).
In fact, conditional on α and data, the analyst’s posterior distribution of f (θ) is

again a Gaussian process with equations (8) and (9) giving its mean and covariance
structure, respectively.

The posterior distribution of α is given by

p(m,v,σ2,b∗ | D) ∝ v−1
σ
−n|A|−

1
2 exp{− 1

2σ2 (D−H)T A−1(D−H)}p(b∗)p(σ2)

(10)
where n denotes the number of elements in D.

The conditioning on σ2 can be removed analytically to obtain

p(m,v,b∗ | D) ∝ v−1|A|−
1
2 (σ̂2)−

n
2 p(b∗) (11)
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where

σ̂
2 =

(D−H)T A−1(D−H)

n−2
.

The conditioning on the rest of the hyperparameters cannot be removed analyti-
cally. We then use MCMC to obtain a sample of values of {m,v,b∗} from their joint
posterior distribution. Given a set of values for the hyperparameters, a density func-
tion is sampled at a finite points of θ , {θ1, . . . ,θk}, from the Gaussian process model.
Repeating this many times, a sample of functions from f (.) | D is obtained and the
negative-valued functions are then removed. The remaining function are used to
report estimates and pointwise credible bounds for the expert’s density, f (θ).

3 Imprecise probabilities: modelling and modification issues

In this section, we briefly review the statistical literature of modelling of the impre-
cise subjective probabilities. We then present our approach to model the imprecision
which exists in the expert’s elicited probabilities. Finally, we modify the nonpara-
metric elicitation approach presented in the previous section.

Imprecise probability models are needed in many applications of probabilistic
and statistical reasoning. They have been used in the numerous scenarios such as:

• when there is little information for evaluating a probability (see Walley, 1991 and
1996);

• in robust Bayesian inference, to model uncertainty about a prior distribution (see
Berger, 1984; Berger and Berliner, 1986; DeRobertis and Hartigan, 1981; Peric-
chi and Walley, 1991);

• in frequentist studies of robustness, to allow imprecision in a statistical sampling
model, e.g., data from a normal distribution may be contaminated by a few out-
liers or errors that come from a completely unknown distribution (see Huber,
1981);

• to account for the ways in which people make decisions when they have inde-
terminate or ambiguous information (see Einhorn and Hogarth, 1985; Smithson,
1989).

Imprecise probability is used as a generic term to cover all mathematical mod-
els which measure chance or uncertainty without sharp numerical probabilities. It
includes both qualitative and imprecise or nonadditive quantitative models. Most
probability judgements in everyday life are qualitative and involve terms such as
“probably” and “more likely than”, rather than numerical values. There is an exten-
sive amount of literature on this types of imprecise probability model.

Our main attempt here is to represent the imprecise probability stated by an ex-
pert as precise as possible in numbers. The most relevant work has been reported
by Walley (1991) who considered bounding a probability P with upper and lower
probabilities, P and P respectively. Unfortunately, this still leaves the issue of how
to specify P and P with absolute precision unresolved. Additionally, the expert may
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also feel that values in the center of the interval [P,P] represent their uncertainty
more appropriately than values towards the ends of the interval.

We express the stated probability P∗(θ ∈ A) as the expert’s true probability plus
an additive error which represents the imprecision in the stated probability as fol-
lows,

P∗(θ ∈ A) = P(θ ∈ A)+ ε, (12)

where ε ∼ N(0,τ2) for some appropriate values of τ2.
It should be noticed that normality itself can be considered as a strong assump-

tion, but we now no longer have absolute lower and upper limits for the true prob-
ability P(θ ∈ A). This is also more plausible for the facilitator to give greater prob-
ability to value P(θ ∈ A) closer to P∗(θ ∈ A). The variance parameter τ2 now de-
scribes the imprecision in the probability assessment, and may vary for different
probability judgements. These values could be appropriately chosen in consultation
with the expert.

Now, suppose that the expert provides k probability statements, denoted by
p∗1, . . . , p∗k that are imprecise and modelled as follows

p∗i = pi + εi, i = 1, . . . ,k, (13)

where pi’s are the expert’s true probabilities that cannot be precisely stated, and εi
is considered as a noise which has a distribution centered around zero and variance
that describes the imprecision in the probability assessment.

The noise components in (13) can be followed of either normal distribution or
uniform distribution. Oakley and O’Hagan (2007) have briefly discussed the effect
of including this noise with a specific variance for each noise on the elicited expert’s
density function.

In this section, the focus is to study the impact of a uniform noise on the ex-
pert’s density function. The uniform noise is considered as ε ∼U(−a,a), where the
length of the interval 2a, denotes the maximum possible error that would exist in
the expert’s stated probabilities.

We consider a type of fixed interval method known as trial roulette elicitation
method originally proposed by Gore (1987). In this method, the expert is given
n gaming chips and asked to distribute them amongst k bins. The proportion of
chips allocated to a particular bin is representing her probability of θ lying in that
bin, though clearly this probability is then subject to rounding error. This approach
can be attractive to some experts, as they do not need to determine the probability
statements directly, and the distributions of chips distributed between bins gives a
histogram of their beliefs.

One element of this method is the lack of precision in the expert’s stated prob-
abilities. Suppose the expert distributes n given chips into k bins, then her stated
probabilities must be multipliers of 1/n. If the expert selects smaller n, then she is
only able to make coarse probability assessments, so the precision will be lowered.
Another issue to be considered is to locate the bins (particularly close to the end-
points). The choice of scale can have a substantial effect on an expert’s judgements
(Garthwaite, 2007) which is not further studied in this chapter.
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We now modify the non-parametric elicitation method described above, by elicit-
ing the imprecise probabilities using the trial roulette scheme. The k bins considered
in this method are represented by the following intervals:
[a0,a1), [a1,a2), . . . , [ak−1,ak) (with the possibility of a0 =−∞ and ak =∞). The ex-
pert allocates ni chips to the ith bin, [ai−1,ai), with ∑

k
i=1 ni = n. We define p∗i = ni/n

to be the expert’s stated probability of θ ∈ [ai−1,ai), with p∗ = (p∗1, . . . , p∗k). These
stated probabilities are usually subject to rounding errors which can be linked to the
true probabilities through (13), where the noise components can be represented as
εi ∼U(−a,a), such that ∑

k
i=1 εi = 0.

The facilitator’s data consists of p∗, together with this knowledge that ∑
k
i=1 εi = 0,

and f (θ) ≥ 0 ∀θ . The latter constraint implies pi ≥ 0 ∀i. We are now required to
compute the facilitator’s posterior distribution denoted by considering these condi-
tions:
(∑k

i=1 εi = 0, f ≥ 0).
If the expert was to provide her true probabilities p rather than her stated prob-

abilities p∗, it would be straightforward to derive the distribution of f |p,α =
(m,v,b∗),σ2. This was discussed and presented in Section 2. However, it is more
challenging to derive the posterior distribution of f (θ)|p∗,α =(m,v,b∗,σ2),∑k

i=1 εi =
0), as H and A cannot be computed as presented above. In this scenario, we consider
ε = (ε1, . . . ,εk) as extra hyperparameters. Therefore, the following prior distribution
for the new set of hyperparameters (α,ε) would be considered as follows:

p(α,ε | Σ k
i=1εi = 0) ∝ v−1 p(σ2)p(b∗)p(ε | Σ k

i=1εi = 0), (14)

where p(σ2), p(b∗) are the same priors presented in (5).
The main issue is to generate k random variables from U(−a,a) such that

Σ k
i=1εi = 0. We propose the following procedure to generate the noise components:

• Let ξ = 1+ k−2
k ;

• Draw a random sample of size k from yi∼U(0,1) and define xi = 2ayi−a. These
randomly variables follow U(−a,a);

• Let εi =
xi−x̄

ξ
, where x̄ = 1

k Σ k
i=1xi.

The posterior distribution of (α,ε), after integrating out σ2, is then given by

p(m,v,b∗,ε | D) ∝ v−1|A|−
1
2 (σ̂2)−

n+d
2 p(b∗)p(ε) (15)

where σ̂2 = 1
n+d−2 [a+(D+ ε−H)T A−1(D+ ε−H)].

To derive the expert’s density function, we are similarly required to use MCMC
to obtain samples of the hyperparameters, α = (m,v,b∗) from their joint posterior
distribution. Weak priors are assumed for m and v as in (4). The following proposal
distributions are chosen for the Metropolis-Hasting sampler:

mt | mt−1 ∼ N(mt−1,0.01)

log(vt) | mt−1,mt ,vt−1 ∼ N(log(vt−1),0.1× (1+5×|mt −mt−1|))
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log(b∗t ) | b∗t−1 ∼ N(log(b∗t−1),0.01).

The chain is run for 20,000 iterations and the first 10,000 runs are discarded to allow
for the burn-in period. A random density function is generated for each of the last
10,000 runs. Given a set of values for the hyperparameters, a density function is
sampled at k points of θ , {θ1, . . . ,θk}, from the Gaussian process model. Repeating
this will give us a sample of functions from the posterior p{ f (.) |D}, and estimated
and pointwise credible bounds for f (θ) can then be reported.

4 A Gaussian process model for imprecise probabilities

In the trial roulette elicitation scheme described above, we only addressed the pos-
sible imprecision due to rounding errors. The more fundamental problem is that the
expert does normally have the challenge of representing a feeling of uncertainty
with a numerical value. The expert usually first states a small number of probabil-
ity assessments about θ . She may then wish to draw her cumulative distribution or
density function between these points. However, this would completely specify her
distribution for θ over the chosen range, but it does not seem reasonable that the fa-
cilitator should know her distribution in this range with no uncertainty. In particular,
if the expert’s original probabilities were imprecisely given, she might then believe
that other probabilities would represent her beliefs equally well, which would have
led to different curves being drawn.

This motivates the development of a model for imprecision in which the facil-
itator will still have some uncertainty about the expert’s true density function re-
gardless of how many probabilities the expert provides. Therefore, there is a need
to consider correlation in the expert’s imprecision. In the case that the stated prob-
ability departs from her true probability by some amount at a particular value of θ ,
θ0 say, a similar deviation at values of θ close to θ0 would be then expected. In this
section, we present an alternative way to model the imprecise probabilities, in which
the error terms have a different distribution and correlation structure.

Suppose that f ∗(θ) illustrates the expert’s reported imprecise density function.
The relationship between the f ∗(θ) and her true distribution f (θ) can be given by

f ∗(θ) = f (θ)+q(θ), (16)

where q(θ) is an error indicating the imprecision in the expert’s probabilities; q(θ)
is a distortion of the expert’s true, precise probabilities that result in the imprecise
reported probabilities.

Suppose that, the stated probabilities reported by the expert are presented as fol-
lows:

D = (P∗B1
=
∫

B1

f ∗(θ)dθ , . . . ,P∗Bn =
∫

Bn

f ∗(θ)dθ ,
∫

Θ

q(θ)dθ = 0), (17)
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where P∗Bi
is the expert’s stated probability for the ith interval, denoted by Bi, and

Θ =
⋃n

i=1 Bi.
We believe both the expert’s true distribution and reported distribution to be

smooth functions, and we also specify a Gaussian process distribution of q(θ) that
ensures that q(θ) will also be smooth. The variance of q(θ) is constructed in such a
way that it will decrease when f (θ) approaches 0 or 1, so that the absolute magni-
tude of any imprecision error will decrease appropriately. Additionally, we condition
on this assumption that the expert’s imprecise probabilities still sum to 1. Therefore,
the error term can be modelled by a Gaussian process with zero mean and the fol-
lowing covariance matrix,

Cov(q(θ),q(φ)) = σ
2
2 g(θ)g(φ)c2(θ ,φ).

As shown above, the facilitator’s prior distribution of f (θ) can be also expressed by
a Gaussian process:

f (θ)∼ GP(g(θ),σ2
1 g(θ)g(φ)c1(θ ,φ)),

where g(θ) = N(m,v).
It can be shown that f ∗(θ) |D ,m,v,b∗1,b

∗
2,σ

2
1 ,σ

2
2 has a normal distribution with

E( f ∗(θ) | α,D) = g(θ)+ t(θ)T A−1{D−H}

Cov{ f ∗(θ), f ∗(φ) | α,D}=

σ
2
1 {g(θ)g(φ)c(θ ,φ)− t(θ)T A−1

1 t(φ)}+σ
2
2 {g(θ)g(φ)c(θ ,φ)− t(θ)T A−1

2 t(φ)}

where, A = σ1A1 +σ2A2, b∗i = bi
v , and details of calculating H , A1, A2 and t are

available in [5].
The posterior distribution of α = (m,v,b∗1,b

∗
2,σ

2
1 ,σ

2
2 ) is easily found from the

multivariate normal likelihood for D given α:

p(α |D) ∝ v−1|A|−
1
2 × exp{−1

2
(D−H)T A−1(D−H)}p(σ2

1 )p(σ2
2 )p(b∗1)p(b∗2),

(18)
where p(σ2

i ) and p(b∗i ) are the same priors presented in (5).

5 Applications in Reliability Analysis

In this section, we are going to investigate how allowing imprecision in the expert’s
probability assessments could influence the expert’s density function regardless of
its skewness to the right or left through some applications in reliability analysis. We
focus on two main prior distributions that are widely used in Bayesian analysis of
failure data: Beta distribution and Gamma distribution. The former one has been
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commonly used as a prior distribution to study success/failure data, while the latter
one is the most popular conjugate prior for failure count data and failure time data.

5.1 Example: Beta prior distribution

In order to conduct a reliability assessment for a single item or for a system, ana-
lysts might require to obtain success/failure data. Such data is comprised of details
surrounding the component’s or system’s success or failure while performing with a
view to complete its intended function. For instance, testers may try an emergency
diesel generator to see if it will start on demand, and record whether this genera-
tor starts or not. The record of whether the launched missile system completes its
mission successfully or not is another example of such a dataset. This data can be
modelled using binomial distribution for a fixed number of tests. For this model, the
unknown parameter is the success probability, denoted by θ , that must be estimated
based on the test data and experts’ knowledge.

The conjugate prior distribution for success/failure data is the beta distribution,
denoted by B(α,β ) and is defined as follows:

f (θ) =
Γ (α +β )

Γ (α)+Γ (β )
θ

α−1(1−β )β−1, θ ∈ [0,1], α > 0, β > 0,

where α is usually interpreted as the prior number of successful component tests
and β as the prior number of failed component tests; and Γ (.) stands for the Gamma
function.

In this example, we focus on eliciting prior distribution for θ using the non-
parametric prior elicitation described above and modelling the imprecision when
the expert is asked to present her probability statements with trial roulette elicitation
scheme. Without loss of generality, we suppose that the expert’s true distribution is
B(4,2).

The trail roulette scheme is chosen to elicit the expert’s probabilities. The method
is explained to the expert and she is then asked to choose the number of bins and
chips to express her belief. Assuming that the expert has allocated her chips pre-
cisely, as shown in Table 1, the facilitator has two sources of uncertainty about
the expert’s distribution. Firstly, the expert has only provided four probabilities,
corresponding to the four bins. This is illustrated in Figures 1 and 2 which show
the facilitator’s pointwise 95% intervals for the expert’s density and distribution
functions (based on a sample of 4000 functions), respectively. This issue is also
investigated in Oakley et al. (2010) in details. The second source of uncertainty,
which is of main interest in this paper, is due to the rounding in the expert’s judge-
ments. The effect of accounting for this as discussed above is also shown in Fig-
ures 1 and 2, where the dashed lines show the facilitator’s pointwise 95% inter-
vals for the expert’s density/distribution function, the solid lines show the expert
true density/distribution function, and dot-dashed (.− .−) line illustrate the expert’s
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Fig. 1 The mean (dashed-point line) and pointwise 95% intervals (dashed lines) for the expert’s
density, and the true density (solid line) with uniform noise when the imprecise probabilities are
included and rounded to nearest 5% (10 chips) and 2.5% (20 chips).

Fig. 2 The mean (dashed-point line) and pointwise 95% intervals (dashed lines) for the expert’s
CDF, and the true CDF (solid line) with uniform noise when the imprecise probabilities are in-
cluded and rounded to nearest 5% (10 chips) and 2.5% (20 chips)

desnity/distribution function estimation based on the stated probabilities. Account-
ing for this imprecision has resulted in a wider range of distributions that might be
consistent with the expert’s beliefs.

num. of chips P(θ ≤ 0.4) P(0.4≤ θ ≤ 0.6) P(0.6≤ θ ≤ 0.8) P(θ ≥ 0.8)
10 0.10 0.20 0.40 0.30
20 0.10 0.25 0.40 0.25

Table 1 Stated expert’s probabilities given 20 chips and 4 bins. True probabilities are generated
from a B(4,2) distribution.

The facilitator’s uncertainty about the expert’s PDF (probability density func-
tion) (or CDF (cumulative distribution function) when she uses 4 bins and 20 chips
(i.e., the imprecisely stated probabilities are rounded to nearest 2.5%) to express her
beliefs is smaller than the uncertainty of the corresponding elicited PDF (CDF), cal-
culated based on 10 chips (where the probabilities stated by the expert are rounded
to nearest 5%). Therefore, a combination of a small number of bins and large num-
ber of chips can result in fairly little uncertainty about the expert’s density. This is
to be expected: the Gaussian process model for f implies that the CDF is also a
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smooth function, so observing a small number of points on the CDF should reduce
uncertainty substantially. In addition, it is trivial to conclude that including the noise
in the data would effect the expert’s density (see Oakley and O’Hagan (2007) for
another example and relevant details).

In other words, the approach proposed in this paper to modelling the imprecision
would help the facilitator to measure the level of his uncertainty about the expert’s
density by decreasing/ increasing the number of chips and/or bins. The elicitation
task might become easier for the expert by choosing the suitable number of chips
and bins. In the following table, we have shown that if 20 chips (instead of 10 chips)
are used by the expert, then the uncertainty of the expert’s density will be decreased
by more than 50%. This rate will be more than 300%, if we use 40 chips against
10 chips. The corresponding results are given in Table 2. In this table, n stands for
the number of chips used by the expert, and Em and Vm are the mean and variance
of the expert density function obtained by fitting a Gaussian process to her stated
beliefs using the trial roulette scheme, respectively. In addition, EL and EU are the
endpoints of 95% bound around the posterior mean of the fitted Gaussian process
to the experts probabilities, and VL and VU are the endpoints of 95% bounds around
the corresponding posterior variance.

n EL Em EU VL Vm VU EU −EL VU −VL
10 0.6938 0.7142 0.7335 0.0245 0.0310 0.0407 0.0397 0.0153
20 06836 0.6951 0.7062 0.0258 0.0302 0.0354 0.0226 0.0096
40 0.7047 0.7111 0.7173 0.0246 0.0267 0.0292 0.0126 0.0046

Table 2 The posterior mean, variance and their corresponding 95% pointwise bounds of the ex-
pert’s density function using the trial roulette elicitation scheme with different number of chips.

5.2 Example: Gamma prior distribution

A commonly used prior distribution for the mean number of failures per unit time,
and for the scale and shape parameters of the fitted distributions (e.g., exponential,
Gamma, Weibull) to model failure time data (the most commonly used data to assess
component reliability) is the gamma distribution, which is denoted by G (α,β ) and
presented as:

f (θ | α,β ) =
1

β αΓ α
θ

α−1e−
θ

β , θ > 0, α > 0, β > 0.

Similar to the beta distribution example, we are interested in eliciting prior distribu-
tion for θ using the above elicitation method and modelling the imprecision, when
the expert is asked to present her probability statements with trial roulette elicitation
scheme. We assume the expert’s true prior is G (5,1). The expert allocates 10 and
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20 into 4 bins as shown in Table 3. The effect of rounding the expert’s probability
assessments for this prior is illustrated in Figure ??, where the dotted lines show the
facilitator’s pointwise 95% intervals for the expert’s distribution function. Similar
to the beta distribution example, accounting for this imprecision has resulted in a
wider range of distributions that might be consistent with the expert’s beliefs.

num. of chips P(0,2) P(2,4) P(4,6) P(6,∞)

10 0.10 0.30 0.30 0.30
20 0.05 0.30 0.35 0.30

Table 3 Stated probabilities given the combinations of chips and bins. True probabilities are gen-
erated from a G(5,1) distribution.

Fig. 3 Pointwise 95% intervals for the expert’s density function (dotted lines), and the G(5,1)
density function (dashed lines). Solid lines show the expert’s estimated density using the non-
parametric method.

We also study what such intervals would be developed, when the expert state her
true probability statements using different number of bins and chips. From Figure
3, it can be concluded that the facilitator’s uncertainty about the expert’s PDF will
grow by decreasing the number of chips and bins. This is simply because the expert
is forced to round her true probabilities to the nearest number using smaller number
of chips. Additionally, when we provide small number of bins, she cannot freely
decide to allocate the right number of chips in a large bin. In Oakley et al. (2010),
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we explored a close link between the number of chips and bins (used by expert
to express her beliefs) and the uncertainty induced by the imprecision of experts’
probabilities assessments.

6 Conclusions and Future Work

Acknowledging the imprecision in the expert’s probabilities increases the uncer-
tainty around the expert’s true density. We have considered two ways to model im-
precise probabilities: a uniform errors model; a Gaussian process model, as pre-
sented in (13).

We have used a very straightforward approach to implement the elicitation
scheme so called trial roulette. However, it is crucial to investigate whether or not
the trial roulette in itself is a good method for elicitation, and how it might work for
unbounded parameters, in particular, when the stated probabilities are very impre-
cise.
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