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Abstract

Existing wireless communication interface has free space signal radiation which drastically reduces the received signal strength

and hence reduces the throughput efficiency of Hybrid Wired-Wireless Network-on-Chip (WiNoC). This paper addresses the issue

of throughput degradation by replacing the wireless layer of WiNoCs with a novel Complementary Metal Oxide Semiconductor

(CMOS) based waveguide communication fabric that is able compete with the reliability of traditional wired NoCs. A combination

of a novel transducer and a commercially available thin metal conductor coated with a low cost Taconic Taclamplus dielectric

material is presented to generate surface wave signals with high signal integrity. Our experimental results demonstrate that, the

proposed communication fabric can achieve a 5dB operational bandwidth of about 60GHz around the center frequency (60GHz).

Compared to existing WiNoCs, the proposed communication fabric a performance improvement of 13.8% and 10.7% in terms of

throughput and average packet delay, respectively. Specifically, under realistic traffic patterns, the average packet latency can be

reduced by 30% when the mm-Wave is replaced by the proposed communication fabric.
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1. Introduction

The projected issues of high latency and high power consumption of conventional on-chip networks for multi-core

design can be addressed by alternative wireline technologies such as three dimensional integrated circuits (3-D ICs)

design. However, although 3D ICs have shorter wire links between the stacked layers, they suffer from alignment,

yield and high temperature dissipation issues which affect the reliability of the system1. Hence wireless channels in

the form of millimeter wave (mm-Wave) for global communication while maintaining the wired network for local-

ized traffic as shown in Fig. 1(a)2, has been proposed. While the resulting Hybrid Wired-Wireless Network-on-Chip

(WiNoC) architecture has high performance benefits over traditional wired NoCs, the wireless layer has a poor reli-

ability. This is due to the three-dimensional free space signal radiation in the lossy wireless communication fabric

which lowers the overall reliability of the system. Consequently, traditional wires have extremely low bit error rate
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Figure 1. Wireless communication fabric for WiNoCs. In Fig. 1(b) a dielectric-coated plane surface with a loss tangent tan ∇ is used

(BER) of around 10−14 compared to that of mm-Wave (around 10−7). Moreover, the radiation patterns of the antenna

for existing wireless NoCs is limited by a distance of up to 23mm with significantly high power dissipation and losses

due to free space propagation.

In NoCs, a single message loss can have drastic effects on the performance of the multi-core system. Hence, novel

wireless communication fabrics that offer high data bandwidth as well as improved reliability with BER similar to the

wired communication fabric are required to provide a good trade-off for WiNoCs. We replace the wireless commu-

nication layer of WiNoCs with a reliable surface wave communication fabric for global communication. The hybrid

wired-surface wave network-on-chip architecture employs a 2-D guided wave for low power-fast global communica-

tion to give reasonably high performance to area ratio. Compared to traditional hybrid wired-mm-Wave NoCs, the

hybrid wired-SW NoC architecture has significantly reduced power consumption due to the propagation of wireless

signal in a 2-D guided medium.

2-D guided wave in the form of surface wave (SW) interconnect is an emerging wireless communication fabric that is

power efficient and has a highly reliable data throughput for long distance communication3,4. The surface wave propa-

gates in a specially designed sheet which is an inhomogeneous plane that supports electromagnetic transmission. The

signal generated in the 2-D sheet traverses in all directions providing a natural fan-out feature for supporting realistic

on-chip applications such as cache coherency where multicast is dominant. However, previous contributions on SW

have not focused on optimizing the communication fabric to improve the data throughput and reliability of wireless

channel3. In this paper, we propose a highly reliable SW communication fabric along with an efficient transducer

interface that is able to match the signal integrity of short range wired NoCs. By employing a novel CMOS based

2-D waveguide communication fabric implemented with a thin metal layer coated with low cost dielectric material

(Taconic RF-435) the proposed SW fabric as an alternative communication fabric for the wireless layer of WiNoCs.

Evaluated results show that a wide-band 5 dB operational bandwidth of about 40GHz to 60GHz can be achieved

around 60GHz operational frequency. The paper is organized as follows. Section 2 presents an improved wireless

communication fabric for WiNoCs. Section 3 evaluates the transmission strength of the proposed wireless communi-

cation fabric. Experimental results in Section 4 validates the performance efficiency of the proposed communication

fabric. Finally, the main findings are concluded in Section 5.

2. Improved Wireless Communication Fabric for NoCs

In order to solve the issue of throughput degradation due to the increased error rates in existing WiNoCs, we

replace the wireless channel with a reliable 2-D communication fabric which radiates signals in the form of surface

waves as shown in Fig. 1(b). Transverse Magnetic mode (TM) surface wave can be supported by a dielectric-coated

metal surface. To enable the field concentration in Medium 2 nearer to the surface of Medium 1 for TM-surface wave

propagation, a positive surface reactance is required. The surface reactance, Xs is given by4:

Xs = 2π fμ0

[
εr − 1

εr
l +
∇
2

]
(1) ∇ =

√
1

π fμ0σ
(2)

It can therefore be deduced from Eq. 1 that, the efficiency of the TM surface wave propagation depends on the
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operating frequency, f , dielectric constant, εr, thickness of the dielectric material, l, and the skin depth of the metal

conductor, ∇ (Eq. 2). Here σ is the conductivity of the metal conductor. Hence, our objective is to determine the

particular design parameters of the TM surface wave communication medium with a positive surface reactance Xs

along with a transducer to operate at a frequency f . The aim is to achieve the maximum transfer signal strength (S 21)

in the surface wave communication medium with a comparable BER to that of the wired layer.

To generate an efficient TM surface wave signal, the following considerations are made for the design of the 2-D

waveguide sheet. We use commercially available Taconic RF − 43 material5 with 0.2mm thickness as the dielectric.

The Taconic material employed is low loss cost-effective TacLamplus material which is laser ablatable, non-reinforced

microwave substrate that is ideal for very low loss substrate. By introducing the 0.25mm thick Taconic material, we

can achieve a surface reactance Xs of 30Ω to 150Ω over the wide frequency range of 20GHz to 100GHz for TM mode

surface wave. Our goal is to improve the gain between the transmitted signal and the received signal. Hence, we

investigate the design of an efficient transducer (Fig. 2) that is able to translate between wired and wireless signals

at the preferred operating frequency (60GHz in this paper). The designed transducer consists of a parallel waveguide

fed by a quarter-wavelength monopole through an open aperture. The transducer is coupled to a transceiver circuit

which is responsible for modulation, signal transmission and receiving capabilities. For a reliable transmission, a low

power consumption transceiver circuit which has a wide bandwidth with high data throughput must be considered.

Hence, we adopt the low-power non-coherent on-off keying (OOK) modulator for our implementation. Embedded in

the transmitter design is an up-conversion mixer and a power amplifier (PA) while the receiver is equipped with a low

noise amplifier (LNA), a baseband amplifier and a down-conversion mixer as shown in Fig. 2. A single injection-lock

voltage-controlled oscillator (VCO) is used for both the transmitter and the receiver to reduce the area overhead and

power consumption. More details on the implementation of the transceiver module along with the circuitry can be

found in6. At the nodes equipped with both wireless transmission and receiving capabilities, a CMOS-based circulator
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Figure 2. Transceiver and transducer block diagram for generating surface wave for on-chip communication. An inverted quarter-wavelength

monopole is stacked over the CMOS-based 2-D waveguide sheet for generating surface wave signals 3

is employed as a communication bridge between the transmitter, receiver and the 2-D waveguide medium, to enable

the use of a single wave feeder at the nodes. A system-level simulation using Simulink in TSMC 65-nm standard

CMOS process performed in6 have demonstrated that the transceiver is able to achieve a (BER) less than 10−14 at

data rate of at least 16Gb/s within 20mm which is comparable to that of the traditional wired network. Hence we

adopt this transceiver design in our implementation6. Therefore, the challenge is to demonstrate that the receive signal

power at the destination node is similar to the transmit signal power at the source node over the proposed wireless

communication fabric, which is demonstrated in the next section.

3. Transmission Strength of the Proposed Surface Wave Communication Fabric

To demonstrate the effectiveness of the proposed wireless communication fabric, we have performed simulations

in Ansys HFSS7 with a simulation setup presented in Fig. 3(a). The transducers are placed as far as 200mm (equiv-

alent to 40 free space wavelengths at operating frequency of 60GHz) apart. Moreover, we investigate the effect of

adopting an off-the-shelf transducer (patched antenna) on the signal strength of surface wave. As shown in Fig. 3(a),

the electric field distribution is concentrated on the designed surface which demonstrates that a high percentage of
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the transmitted signal is successfully launched into the communication fabric. Across the long distance separation of

200mm between the transducer and transceiver, a near constant electric field distribution is achieved. Also the electric

field decays exponentially away from the implemented surface, indicating that surface wave is successfully launched

and received with a high signal efficiency. It can be seen that, the reactive surface appears to have a flat S 21 response

Surface wave Received signal (S21)Exponential 
vertical decay

r Surface wave decay  1/r1/2

mm-Wave decay  1/r

200mm
Transducer

(Transmitter)
Transducer
(Receiver)

Radiation boundaries

Perfect 
magnetic 
boundary

(a) Simulated electric field distribution (b) S 21 (dB)

Figure 3. Simulation electric field distribution and S 21 (dB) over wide-band frequency on the reactive surface with different lossy dielectric

materials

over a wide frequency range and has a 3 dB bandwidth of almost 45GHz (from 30GHz to 75GHz with Tan Loss =

0.01), and a 5dB bandwidth of almost 60GHz (from 30GHz to 87GHz with Tan Loss = 0.01). Fig. 3(b) also demon-

strates that surface wave signal generated with an off-the-shelf transducer (eg. patch antenna) results in a much lower

S 21 (around -84dB) at the operating frequency (64GHz). Moreover, the S 21 of the zigzag antenna which is commonly

used in mm-Wave WiNoCs is around -36dB which is significantly lower than that of the proposed communication

fabric6.

Therefore, the proposed communication fabric is able to successfully excite and transmit high frequency-high band-

width surface wave signals with high reliability (S 21 of 0 to -2dB) of the NoC with a BER comparable to that of wired

NoCs.

4. Evaluation

In order to evaluate the performance of the proposed communication fabric, a cycle-accurate simulator is used

by extending Noxim simulator, an existing SystemC-based NoC simulator. We adapt the BER and the S 21 of the

communication fabric as the error model. In the simulation, a fixed packet size of 3 flits and buffer depth of 6 flits

are used. Both regular and non-regular mesh topologies are investigated. 5 evenly distributed nodes in the WiNoC

have both transmitting and receiving capabilities while all other nodes have only receivers. We consider deterministic

XY routing routing algorithm. The underlying routing algorithm is employed in the wired layer until a wireless node

with a transceiver is encountered. Packets are then sent to the destination node via the single-hop wireless channel.

In the experiments we compare the performance efficiency of the proposed communication fabric with mm-Wave in

WiNoCs. Both static and dynamic power of the router are calculated in Orion2.0 model for 45nm technology. The

wired links along the x and y dimensions are modeled as 3.6mm and 5.2mm, respectively. For the power analysis

along the surface wave and mm-Wave channels, we exploit the S 21 signal voltage gain between the transmitters and

receivers3:

S 21 = E + 20 lg e−αd (3)

where α is the attenuation constant of the wireless communication fabric, d is the separation between the transmitting

and receiving nodes and E is the loss constant due to the transducer. Based on extracted values from a Matlab

fitting tool3 and conducted experiments (see Section 3), α is calculated as 6.33 and E values of −23.8 and −1 are

calculated for mm-Wave and surface wave, respectively. These values have been imported in to the simulator for

power estimation.
4



419 Michael Opoku Agyeman et al.  /  Procedia Computer Science   56  ( 2015 )  415 – 420 

4.1. Performance Under Synthetic Traffic Patterns

We evaluate the effect of the wireless communication fabric on the average packet latency and data throughput

under random and two transpose traffic patterns. Fig. 4 shows that, the proposed hybrid wired-surface wave NoC

has less average packet delays and can sustain about 29% more traffic load compared to mm-Wave WiNoC under

deterministic XY routing in both random and transpose traffic patterns. This is due to the extra traffic load introduced

by the high rate of retransmitted erroneous packets which causes contention in mm-Wave WiNoCs. Fig. 5 shows

(a) Random traffic (b) Transpose1 traffic (c) Transpose2 traffic

Figure 4. Average packet latency under XY routing and different traffic patterns in 6 × 4 NoC

(a) Random traffic (b) Transpose1 traffic (c) Transpose2 traffic

Figure 5. Network throughput under XY routing and different traffic patterns in 6 × 4 NoC

the variation of throughput with traffic load in surface wave and mm-wave WiNoCs under different traffic patterns.

Similar to Fig. 4, the improved surface wave communication fabric outperforms mm-Wave in all scenarios. Both

communication fabrics have similar throughput at low traffic loads. However, the throughput of mm-Wave saturates

at a lower injection load. As can be deduced from Figs. 4 and 5, the maximum sustainable load has a significant effect

on the throughput of the communication fabric in the WiNoC. The error rate along the wireless channel in mm-Wave

is much higher than both wired and surface wave channel, hence packets in mm-Wave WiNoC experience longer

delays compared to surface wave.

Table 4.1 shows the average performance improvement of surface wave over mm-Wave WiNoC in terms of saturation

load, average packet latency and throughput of various NoC configurations under random traffic pattern with west-

first adaptive routing and random selection method. In general, surface wave improves the maximum sustainable

load, average packet latency and throughput by an average of 20.9%, 10.7% and 13.8% compared to mm-Wave.

The power consumption of surface wave is compared with that of mm-Wave under different traffic patterns and XY

Table 1. Improvement of surface wave over mm-wave WiNoC averaged over different virtual channels (2, 4 and 6) and buffer sizes (4, 6, 8, 10, 18)

Network Dimensions Saturation load (%) Latency (%) Throughput (%)
5 × 5 22.9 16.4 12.7

6 × 6 23 8.9 13.9

8 × 8 18.9 6.7 14.6

routing in 6 × 4 WiNoC. Compared to surface wave, mm-Wave consumes around 12%, 17% and 12% more power

in random, transpose1 and transpose2 traffic patterns, respectively. This is because the wireless channel in mm-

Wave WiNoC is lossy with high signal loss constant due to free space propagation while the proposed surface wave
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communication fabric transmits signals with high S 21. Therefore, the proposed surface wave communication fabric

has more promising power efficiency for long distance communications in WiNoCs compared to traditional mm-Wave.

4.2. Performance Under Real Applications

To further validate the performance benefits of the proposed communication fabric, M5 simulator8 is used to

acquire memory access traces from a full system running PARSEC v2.1 benchmarks9. 64 two-wide superscalar out-

of-order cores with private 32KB L1 instruction and data caches with a shared 16MB L2 cache are used. Netrace10 is

used to retrieve the memory traces which are post-processed based on the dependencies between transactions. Mem-

ory accesses are interleaved at 4KB page granularity among 4 on-chip memory controllers.

The normalized average average packet latency improvement of surface wave over mm-Wave in WiNoCs under PAR-

SEC benchmark is presented in Fig. 6. The proposed surface wave communication fabric has lower packet latency

compared with mm-Wave on-chip communication fabrics in all cases. Specifically, the performance improvements of

surface wave over mm-Wave is over 30% in high contention workload such as swaptions and channeal.

Figure 6. Normalized average packet latency under PARSEC benchmark suite

5. Conclusions

This paper proposes an improved wireless communication fabric for WiNoCs as a solution to the throughput and

reliability degradation of the wireless channel. A quarter-wave transducer and a commercially available thin metal

conductor coated with a low cost Taconic Taclamplus dielectric material are designed as the wireless communica-

tion fabric which generates reliable surface wave signals. HFSS and cycle-accurate evaluations show that, a high

bandwidth of up to 60GHz can be achieved with significant improvements in average packet latency, throughput and

power consumption compared to existing WiNoCs. Future work includes an efficient technique to improve transmis-

sion signal strength of the wireless channels in existing hybrid wired-wireless NoCs by a novel dynamic cooperative

management system.
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