
Leveraging SDN to Provide an
In-network QoE Measurement Framework

Arsham Farshad∗, Panagiotis Georgopoulos†∗, Matthew Broadbent∗, Mu Mu∗ and Nicholas Race∗
∗School of Computing and Communications, Lancaster University, UK

†Communication Systems Group, ETH Zurich, Switzerland
a.farshad@lancaster.ac.uk, panos@tik.ee.ethz.ch, m.broadbent@lancaster.ac.uk, m.mu@lancaster.ac.uk, n.race@lancaster.ac.uk

Abstract—Online video streaming using HTTP Adaptive
Streaming (HAS) is becoming the most popular content delivery
mechanism for media services. Network and content providers
would like to ensure a high degree of video Quality of Experience
(QoE) for their end-users. However, traditional network-level
metrics do not necessarily reflect the end-users’ true perception of
delivered content. We introduce an in-network QoE measurement
framework (IQMF) that provides QoE monitoring for HAS
streams as a service. The framework leverages Software Defined
Networking for its control plane functionality to streamline non-
intrusive quality monitoring and to offer a closed control loop for
QoE-aware service management. IQMF adopts two specifically
designed QoE metrics to capture the user experience of HAS
streams with respect to video fidelity and switching impact.
Finally, we used a pan-European SDN testbed to demonstrate
how IQMF can be used as a foundation for in-network QoE
measurement and service optimisation.

I. INTRODUCTION

Online video streaming has seen a huge growth in popularity
during recent years. In 2013, live and on-demand Internet
video traffic represented 66% of all global Internet traffic. It is
expected that this trend will continue further and video traffic
will be 79% of all Internet traffic by 2018 [1]. At the same
time, High Definition (HD) video traffic has already surpassed
that of Standard Definition (SD), and with the introduction of
Ultra-High Definition content, providers will continue to push
user expectations in the availability of higher video quality
and bitrates. Undoubtedly, high quality video streaming has
become an essential part of many consumers’ lives.

Network and content providers are thus immensely inter-
ested in ensuring a high degree of video Quality of Ex-
perience (QoE) for their end-users. Network level metrics
(e.g. bandwidth, latency, packet loss etc.), traditionally used
by network administrators, are not adequate to indicate how
satisfied a user is with their video streaming experience. In
addition, research shows that there is not always a direct or
deterministic correlation of the impact of the network-level
metrics to the users’ QoE [2]. Thus, the evaluation of video
streaming should be based on user-centric QoE metrics (e.g.
startup time, average playback bitrate, etc. [2]) that provide a
better indication of the satisfaction of the end-users.

Meanwhile, HTTP Adaptive Streaming (HAS) protocols,
such as Microsoft Smooth Streaming, Apple HLS, Adobe
HDS and MPEG-DASH [3], are becoming very popular for
online video streaming. This popularity is due to their unique

ability to adaptively select a bitrate to maximise video quality,
minimise video pauses and reduce buffering times for bet-
ter overall QoE. However, such bitrate adaptation operates
solely on the end-user’s device without any coordination with
network management, leading to a sub-optimal network-wide
QoE experience [4]. Overall, enabling network-wide QoE
monitoring requires an in-network transparent measurement
framework that does not require a user’s involvement (such as
installing plug-ins on their devices). Such a framework should
effectively and accurately assess the impact of changes in the
network to the video streaming experience of the user and
provide a closed control loop that allows QoE-aware service
optimisations to take place at run-time.

This paper introduces an in-network QoE Measurement
Framework (IQMF) that provides live network-wide QoE
measurements. The framework does not require the users’ par-
ticipation in the process, as it monitors relevant streams within
the network itself. IQMF adopts two specifically designed
QoE metrics to quantitatively measure the user experience
related to video fidelity and representation switching impact
over HAS streams. IQMF offers these measurements and the
respective analysis as a service to the network provider or
content distributor via an API. This service can be exploited
for different monitoring and management purposes including
as a feedback loop for QoE-aware service optimisation.

To achieve the required functionality within a network,
we leverage Software Defined Networking (SDN) to provide
the control plane interaction for the framework. This enables
IQMF to measure and analyse the end-users’ QoE in a flexible
and deterministic way. In addition, IQMF uses the dynamic
traffic management that SDN provides to offer performance
and scalability when deploying additional measurement agents
that can all be controlled by the same measurement controller.
Our deployment of IQMF in a large-scale pan-European
SDN testbed and the respective experiments, demonstrate how
IQMF can be exploited in order to assess and optimise HAS
video distribution.

The remainder of the paper is organised as follows. Section
II provides use cases that motivate our work, whilst Section
III presents related work in this problem domain. Section IV
introduces IQMF, its design, implementation and QoE metrics.
Evaluation is discussed in Section V and finally, Section VI
concludes our work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Northampton's Research Explorer

https://core.ac.uk/display/299821419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. USE CASES

The design of the QoE measurement framework is motivated
by the challenges faced in a number of real-life use cases:

1) Video-on-Demand Caching Optimisation: Most ISPs
or last mile networks employ caching services to optimise the
delivery of content to end-users. A QoE framework could
assist network administrators in monitoring the QoE of a
Video-on-Demand (VoD) streaming service and use such in-
telligence to optimise the distribution of VoD content between
cache servers or to use intelligent traffic engineering and
routing techniques to improve QoE dynamically. OpenCache
[5] is just one example of an OpenFlow-based in-network
caching service, that could highly benefit from in-network
QoE measurements to further optimise its caching behaviour.
The framework could provide measurements as input to any
caching service on the last mile or even, given appropriate
SLAs, to Content Delivery Networks (CDN) to optimise their
content placement and delivery [6], [7].

2) Live Streaming Optimisation: A QoE framework can
provide real-time QoE statistics of live video streaming ser-
vices in a network. Different run-time techniques could then
be used to further optimise streaming based on the QoE
measurement, such as interacting with the queueing disciplines
on network switches (e.g. using the corresponding OpenFlow-
based interface [8]) or invoking QoS mechanisms. The live
QoE feedback provided by the QoE framework can also be
exploited to avoid the over provisioning of network resources
when a target QoE level is met.

3) Network Utilisation Optimisation: There are multiple
routing schemes that are used in-network to optimise packet
delivery and ensure appropriate load-balancing of network
links. Quantitative QoE evaluations of different network re-
configurations must be in place to determine the optimal
solution to allocate network resources. With a QoE framework,
an administrator could preemptively estimate the impact of
certain network control to the user experience of related media
streams and deploy the best configurations accordingly.

III. RELATED WORK

To enhance video content delivery as well as increase the
QoE of the end-users, [9] proposed the Server and Network
Assisted DASH (SAND) architecture. SAND is a control
plane for video delivery that obtains QoE metrics from the
users (clients) and returns network-based measurements to
help the clients enhance their overall QoE. The third-party
measurement server in SAND, known as DANE (DASH-
assisting network element), provides measurement information
to the different parties in the delivery chains including CDNs,
ISPs and content providers. However, the heterogeneity of the
end-user devices (e.g. smartphones, tablets, laptops, IPTVs
etc.) and the diversity in video playback applications make
retrieving QoE measurements challenging. Realising architec-
tures that are reliant on end-user device feedback, such as
SAND, can therefore be particularly difficult to implement,
and hence only a few works in the literature have tackled this
problem this way.

MintMos is an application-independent client-side QoE
measurement tool [10]. MintMos is a Linux kernel module
loaded by video applications on the client’s device to infer
the QoE of a video stream as it passes up the protocol stack
to the application. To subjectively estimate the QoE, MintMos
uses the constructed k-dimensional QoE space. The authors
of [11] propose a client-independent and network-side mea-
surement approach for YouTube video traffic, using passive
traffic measurements. QMON [12] enhances previous work by
supporting more video codecs and by having a more advanced
measurement approach. Specifically, it estimates the playout
buffer levels and the number of stalls and their duration,
and then calculates the MOS (Mean Opinion Score) for the
played YouTube video. To identify the stalling, the authors of
QMON use the TCP segment timestamp and the timestamp
on the video and then estimate the buffer fill up levels or its
depletion. This measurement is obtained by conducting deep
packet inspection on the path the YouTube traffic is routed
via. QMON therefore only measures the stalling effect and
can only be used for YouTube traffic.

Our proposed framework is different from related work
(e.g. QMON, MintMos etc.) in a number of ways: it is
designed to address an additional number of QoE measurement
metrics; it only captures URL addresses and manifest files
from video traffic (hence requiring significantly less processing
resources comparing to those frameworks reliant on deep
packet inspection); and can easily be deployed and controlled
by leveraging SDN features of the network. Last but not least,
it provides the QoE measurements as a service that can be
used by third party applications and network elements.

IV. QOE MEASUREMENT FRAMEWORK

In this work, we look to build a QoE measurement frame-
work within the network. As such, a number of functional
building blocks (illustrated in Figure 1) are being brought
together to form the IQMF framework. At the core of this
framework is the measurement layer. This contains a number
of measurement agents that provide the actual QoE monitoring
(the implementation of which is discussed in Section IV-A).
Importantly, the measurement layer utilises functionality in
the underlying network layer, which uses a Software Defined
Network (SDN) to duplicate specific flows of interest to the
measurement agent for analysis.

Coupling these measurement and network layers together
is the control layer. This contains controllers for both the
network layer (SDN controller) and the measurement layer
(measurement controller). Through communication between
these two controllers, the measurement controller renders the
changes necessary to redirect flows in the network layer.
The measurement controller can also control the measurement
taking place on the agent. This is done through the API, which
is described in Section IV-B.

The measurement agents will report information back to
the measurement controller. This information can then be
requested by the application layer, which may contain a num-
ber of such applications. Furthermore, these applications may

Application Layer

C
ontrol Layer

Measurement Layer

Network Layer

Application

SDN
Controller

Measurement
Agent

Measurement
Controller

SDN Switch

Fig. 1. In-network QoE Measurement Framework (IQMF)

then make modifications to the network, via the measurement
controller, to the SDN controller. This pass-through is done
to ensure a level of consistency between the operation of the
framework and any requested changes.

A. Implementation

As mentioned previously, IQMF leverages an underlying
SDN to provide the flow duplication necessary for QoE
monitoring. More specifically, IQMF interacts with an ex-
isting OpenFlow controller responsible for maintaining the
forwarding behaviour of the network. Although the initial
implementation is limited to one SDN-technology (OpenFlow
[8]), providing the necessary functionality is available with
other technologies; there is little reason why they could not
be used as an alternative.

Once the necessary video streaming related traffic has been
replicated toward the measurement agent, it will be captured
and processed in two distinct stages, as illustrated in Figure 2.
Initially, traffic is passed through an HTTP packet filter in
order to identify HTTP GET requests and responses. This
separation prevents the management agent from processing un-
necessary information. Once this is complete, the management
agent will examine the GET requests in order to identify any
manifest files present (e.g. the Media Presentation Description
file (MPD)). These are then passed to the specific parser
for further inspection. These manifest files are particularly
important, as their presence typically represents a client about
to start, and in most cases their presence is required before
playback can commence.

The MPD parser will extract information from the MPD
file, including a description of the different representations.
This includes references to a multitude of qualities, resolutions
and playback codecs. The manifest file also contains other
useful information, such as the total duration of playback.
Once parsing is complete, the parser will pass this information
to the measurement engine.

With this information, the measurement engine can track
the behaviour of a client during playback. This is carried out
by combining this information with additional details from
the HTTP packet filter. More specifically, the measurement
engine will observe the content that a client is requesting,
match this with the information in the equivalent manifest
file, and thus ascertain various metrics related to their QoE.
For example, from a client request IQMF will obtain the
URL of the content the client wishes to retrieve. Without

Fig. 2. Prototype Measurement Agent

the information from the manifest file, it is impossible to
contextualise this information from just the URL. In particular,
it is hard to accurately determine the playback quality of the
request without additional information. With the use of IQMF,
this information is available, thanks to preemptive parsing of
the manifest, and as such, we can identify a particular request
with its associated quality level.

By periodically tracking this information, and intentionally
linking it back to the context described in the manifest file,
we can provide a number of metrics on a per-client and per-
session basis. These can then be used to form a feedback loop.
Using the QoE metrics ascertained through the agents, the
measurement controller can modify the underlying network to
remedy some of the deficiencies in QoE. As the underlying
network is software defined, the measurement controller can
modify the forwarding plane, through the SDN controller,
to better serve a client’s requests. This is carried out to
intentionally improve a client’s QoE. The process is cyclical:
as the measurement controller redirects flows, it will also
be able to observe, through its own measurement agents,
the effect of these changes. This allows the measurement
controller to determine the success of a particular action.

B. API

The measurement framework’s controller exposes an API
which allows other applications to access information derived
from the operation of the framework. This API contains a
number of methods, including start, stop and stat.
These are used to control the measurement framework and
explicitly define the content that is of interest. This is done
by specifying a manifest file in a call to the API, using
the start method. This manifest will contain the URLs of
the content in question. This allows an application or user
to define specifically the content that they want to monitor
the QoE for. Similarly, the stop method is used to halt the
monitoring of QoE for a given manifest file. The stat method
exposes the core reporting functionality of the measurement
framework. Using this method, an application can retrieve any
of the previously mentioned metrics for a given client or set
of content.

C. Performance & Scalability

IQMF takes into account a number of performance and
scalability considerations. As the replication of flows is done at
the network layer, there is no associated performance impact
on this process. As such, the user will notice no change in

their experience, and the framework itself will not adversely
effect QoE. In addition to this, the flow replication process
can also be to control the granularity of information; the flows
redirected to the measurement agents can include all traffic,
or can be limited to specific flows of interest. By determining
the volume of information a measurement agent receives, the
measurement controller can dynamically manipulate the load
on an agent. This is important if the measurement agent is in
any way resource constrained, or has an upper threshold for
the amount of flow information it can parse simultaneously.

The metrics observed by IQMF can also be updated in
near run-time as the analysis is a constantly ongoing process,
with the measurement controller being updated regularly. The
freshness of a metric is key to providing a suitable response to
any potential issues that may be significantly reducing the QoE
for one or more clients. If an action is deemed necessary, but
informed using stale metrics, modifications may be made on
a network that is not necessarily in the same state, potentially
compromising the situation further.

Due to its controller-node architecture, it would be simple
to add additional measurement agents to a deployment of
the IQMF framework. They simply need to connect to the
same measurement controller to be included. This architectural
arrangement is especially interesting when you consider the
availability and utilisation of an environment with rich com-
puting resources, such as a data centre. In this case, provision
can be scaled according to the load on the framework.

D. QoE Measurement Metrics

While the network performance and primary QoS metrics
can be monitored using conventional network measurements,
understanding the user experience of media streams requires
tailored-made QoE functions to capture key QoE metrics of
reference user applications. For HAS applications, the most
recognised QoE metrics are: quality switches, video quality
(picture fidelity), startup delay, and stalling [2], [13]. Accu-
rately measuring these QoE metrics as part of a transparent
in-network measurement framework, which does not require
real-time feedback from user devices, is a non-trivial task. We
focus on two QoE metrics video quality and quality switches,
which are good examples of how QoE metrics are designed
and incorporated. The modelling of startup delay and stalling
is planned for future work.

1) Video quality: Using HAS-based streaming services,
video content is encoded using specific frame resolution and
bitrate definitions (known as representations) for both generic
and specific end-user requirements (such as a mobile device).
With a pre-defined encoding scheme (e.g., GoP structure), a
higher encoding bitrate results in less compression loss and
therefore leads to higher video quality in term of picture
fidelity. Research has shown that the mapping between bitrate
and video quality is non-linear [4], hence the framework
exploits QoE utility functions to assess the quality of a video
stream from its bitrate. Figure 3(a) shows the measurement
results and the derived utility curves (for three representative

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 300 600 900 1200 1500 1800

Vi
de

o
Q

ua
lit

y

Bitrate (kbps)

360p
720p

1080p

(a) Video Quality

0

SI1
SI2

t1 t2
VR0

VR1

Sw
itc

hi
ng

 Im
pa

ct

Video Playback Time

Switching Impact
Video Bitrate

(b) Switching Impact

Fig. 3. Video Quality and Switching Impact Metrics

resolutions) of perceptual quality evaluation experiments re-
ported in our previous work [4].

Equation 1 is the generic QoE utility function. V R denotes
the video bitrate and V Q denotes the video quality within the
data range of (0, 1]. A V Q of 1 is the maximum possible
video quality (when no compression or lossless compression
is applied to the content). a, b, and c are the coefficients that
instantiate the utility function for certain video resolutions. For
example, Equation 2 is an instance of utility function for 720p
videos. The utility function is of low complexity (suitable for
real-time quality assessment) and yet offers high performance.
Equation 2 shows significant correlation (R2 of 0.9988 and
RMSE of 0.002923) to the observed experimental results [4].

V Q = aV Rb + c (1)

V Q720p = −4.85V R−0.647 + 1.011 (2)

2) Switching impact: HAS media streams are able to switch
between representations as the means to adapt to the available
network resource. The purpose of switches can be to increase
the bitrate and hence improve video quality or to reduce the
bitrate to avoid stalling. However, the switching process itself
may cause disturbance to the end-user. The impact of quality
switches is influenced by the amplitude and the distribution
of switch events [14]. The amplitude is determined by the
perception of video quality changes between representations.
We define such quality change as ∆V Q = |V Q − V Q′|
with V Q′ denoting the video quality after the representation
switch. A higher change of video quality leads to more severe
perceptual impact at the time of switch. In a related work,
Liu et al. observed that the impact caused by an “increasing
switch” is much smaller than a “decreasing switch” of the
same scale [13]. The modelling of this advanced feature
requires further subjective experiments, which will be carried
out in our future work. A crucial aspect when modelling the
HAS switching impact is the forgiveness effect, which captures
the psychological observations that, when followed by intact
content, the impact of quality distortion degrades over time.
The forgiveness effect related to video quality degradation was
first studied and modelled by Seferidis et al. [15] and Hands
[16]. One of the key findings from the user ratings is that the
impact of quality distortion is reduced to nearly 70% after 20
seconds. We incorporate the forgiveness effect (Equation 3) in
our framework based on the generalised model introduced by
Liu et al. [17]. Equation 3 is a function of intensity of quality

changes (∆V Q) and the duration of time since a switch event
(t− ti).

SI= Switching Impact

SIi(t) =(∆V Q)e−0.015(t−ti),

ti is the time of quality switch i
(3)

Figure 3(b) illustrates how switching impact is captured.
The switching impact is 0 prior to any quality switch. At t1,
a first switch of representation from V R0 to V R1 causes the
impact of SI1. At t2 the impact from the first switch has
been greatly reduced. However, the second switch (from V R1

back to V R0) is added to the overall switching impact. The
aggregated impact from both switches gradually diminishes as
playback continues.

Depending on the quality assessment scheme, it is also
possible to derive the accumulative impact over time on a
media session, as depicted by Equation 4.

CI =

i=N,t=te∑
i=1,t=0

SIi(t) (4)

Using the modelling of video quality and switching impact
as the QoE measurement metrics, we can capture the user
experience of HAS media streams influenced by the absolute
video quality as well as the dynamics of quality levels.

V. EXPERIMENTS AND EVALUATION

To demonstrate the exploitation of the proposed framework
for improved QoE-aware network services, we realised IQMF
within a large-scale pan-European SDN testbed and evaluated
a number of the use cases mentioned in Section II. Initially,
we evaluated the QoE measurement information that IQMF
provides in video streaming experiments and secondly, how
the output of the IQMF can be used to optimise VoD content
caching and distribution.

A. Experimentation Testbed & Setup

Experiments were carried out over a large-scale SDN
testbed, namely GOFF, provided by GÉANT. GOFF is com-
posed of a number of OpenFlow-capable software-based
switches (i.e. Open vSwitches) and virtualised computing re-
sources. These resources are located in five different countries
across Europe. The GOFF testbed offers an ideal platform
to evaluate our framework on, as it resembles operational
networks. The implementation components of IQMF related
to OpenFlow and the measurement agents are also directly
transferable to production environments. For our experimenta-
tion, we also developed Scootplayer1, an open-source DASH
player that facilitates large-scale unattended experiments and
is equipped with comprehensive logging modules.

Figure 4 shows our experimentation setup. We deployed
VoD servers, caches and video clients on virtual machines
across different sites. Scootplayer is deployed on the video
client at the Amsterdam site. With respect to network moni-
toring and control, a Measurement Controller (part of IQMF)

1http://github.com/broadbent/scootplayer

Fig. 4. The Experimentation Setup in the GÉANT OpenFlow Facility

and an OpenFlow Controller (i.e. Floodlight) are deployed in
the Frankfurt site. Such a cross-site deployment allows us
to truly evaluate the functionality of IQMF to provide QoE
measurements assisted by SDN. To further evaluate IQMF’s
performance and how it captures QoE degradation caused by
bad network conditions, we used a network emulator (i.e.
dummynet) to introduce packet loss, delay and delay variation
on the testbed’s links during our experimentation.

B. IQMF; Providing QoE Measurements

We measured the QoE metrics defined in Section IV-D
by deploying IQMF as depicted in Figure 4. We carried out
video streaming experiments by using Scootplayer in a VM
in Amsterdam that requests an MPEG-DASH version of the
reference Big Buck Bunny video (approximately 10 minutes
in length) from Cache 1 in Vienna. The test was repeated 20
times. The VoD traffic was monitored by the Measurement
Agent hosted in the same site as Scootplayer. Measurement
statistics are reported to the Measurement Controller and are
accessible through the designed API.

Table I gives an overview of the indicative QoE measure-
ments that the IQMF reports during this experiment. Further-
more, IQMF derives the two bespoke QoE metrics, Video
quality and Switching impact, which better characterise the
QoE of the end-users based on the particular media streams.

TABLE I
QOE MEASUREMENTS

Metric Average Measurement
Weighted average bitrate 2152 Kbps
Minimum bitrate 50 Kbps
Video bitrate changes 23.52
Minimum Video resolution 240p

Figure 5(a) shows the streaming video quality (VQ) of the
reference video with options to switch between different video
bitrates in 720p video resolution. The figure demonstrates the
non-linear mapping between the video bitrate and the video
quality. For example, a switch between two very high bitrates
shows less impact on the video quality compared with the
same amount of bitrate changes between representations of
lower bitrates. Such QoE measurements are valuable for both
single-stream quality optimisation and QoE fairness between
media streams. Switching impact accounts for the frequency

 0.95
 0.955

 0.96
 0.965

 0.97
 0.975

 0.98
 0.985

 0.99
 0.995

 1

 0 100 200 300 400 500 600
 800
 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

Vi
de

o
Q

ua
lit

y

Pl
ay

in
g

Bi
tra

te
 (K

bp
s)

Video Playback Time (s)

Video Quality
Video Bitrate

(a) Video Quality

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500 600
 800
 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

Sw
itc

hi
ng

 Im
pa

ct

Pl
ay

in
g

Bi
tra

te
 (K

bp
s)

Video Playback Time (s)

Switching Impact
Video Bitrate

(b) Switching Impact

Fig. 5. Video Quality and Switching Impact of video streaming from a server
in Vienna by a video client in Amsterdam.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500 600
 800
 1000
 1200
 1400
 1600
 1800
 2000
 2200

Sw
itc

hi
ng

 Im
pa

ct

Pl
ay

in
g

Bi
tra

te
 (K

bp
s)

Video Playback Time (s)

Switching Impact
Video Bitrate

(a) Cache 1,
∑

SI = 5.35

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500 600
 800
 1000
 1200
 1400
 1600
 1800
 2000
 2200

Sw
itc

hi
ng

 Im
pa

ct

Pl
ay

in
g

Bi
tra

te
 (K

bp
s)

Video Playback Time (s)

Switching Impact
Video Bitrate

(b) Cache 2,
∑

SI = 5.12

Fig. 6. Switching Impact for playing the same video from caches in different
sites

and distribution of changes over the playback time. As is
demonstrated in Figure 5(b), high switching impact can be
caused by high video quality variation or small, but temporally
close, changes.

C. IQMF Evaluation for VoD Caching and Distribution

Following up the VoD caching optimisation use case pre-
sented in Section II, we carried out another experiment to
demonstrate how the QoE measurements that IQMF provides
can be used as input for VoD content placement and distri-
bution. In particular, we wanted to evaluate how a third party
caching service can use IQMF’s measurements as input for the
selection of the most appropriate geographically distributed
cache. To enable the experiment, OpenCache [5], a caching
service, has been deployed on the GOFF testbed. OpenCache
makes use of OpenFlow to provide transparent, flexible and
highly configurable video content caching. It controls cache
nodes distributed over the network and communicates with the
OpenFlow controller to redirect and modify the traffic flows to
the most suitable cache. Scootplayer was instructed to request
a video and OpenCache worked to transparently redirect the
client’s requests to a cache (e.g. in Vienna or London).

IQMF measurement results (Figure 6(a) and Figure 6(b))
show that the streaming session from the two different caches
encountered almost the same number of oscillations in the
video bitrate. With the QoE metrics provided by IQMF, we
are able to quantitatively measure the accumulative switching
impact (Cache 1:

∑
SI = 5.35, Cache 2:

∑
SI = 5.12).

Hence, with this input OpenCache could potentially adjust
its behaviour and chose the appropriate cache based on the
QoE of the end-user. In practice, such measurements on either
probing traffic or production services provide insights into how
network traffic can be managed for better user QoE.

VI. CONCLUSION

This paper proposed IQMF; a new in-network measurement
framework that provides transparent QoE monitoring as a
service for HAS video streams. Without any user involvement
or application level configurations, IQMF offers the invaluable
quality monitoring closed control loop and novel QoE metrics
for QoE-aware media service assessment and optimisation.
IQMF leverages SDN to provide in-network functionalities
so that crucial service quality metrics can be measured, ex-
changed, stored and accessed efficiently. These measurements
can assist content distribution services or network management
to improve the overall experience of end-users. The framework
has also been implemented and deployed in a large-scale
SDN testbed to demonstrate its QoE measurement capabilities.
Using IQMF as a foundation, additional QoE metrics and real-
world deployment will be part of our future work.

VII. ACKNOWLEDGMENTS

This work has been funded by the EU FP7 GN3plus project
(FP7-INFRASTRUCTURES-605243).

REFERENCES

[1] Cisco Visual Networking Index: Forecast and Methodology, 2013-2018.
Technical report, CISCO, June 2014.

[2] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang. Understanding the Impact of Video Quality on User
Engagement. In Proc. of ACM SIGCOMM, 2011.

[3] ISO-IEC 23009-1:2012 Information Technology. Dynamic Adaptive
Streaming over HTTP (DASH).

[4] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race.
Towards Network-wide QoE Fairness Using Openflow-assisted Adaptive
Video Streaming. In Proc. of ACM SIGCOMM, Workshop on Future
Human-centric Multimedia Networking (FhMN), 2013.

[5] P. Georgopoulos, M. Broadbent, B. Plattner, and N. Race. Cache as
a Service: Leveraging SDN to Efficiently and Transparently Support
Video-on-Demand on the Last Mile. In Proc. of IEEE ICCCN, 2014.

[6] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai Network: A
Platform for High-performance Internet Applications. SIGOPS Oper.
Syst. Rev., 44, August 2010.

[7] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I Tube, You
Tube, Everybody Tubes: Analyzing the World’s Largest User Generated
Content Video System. In Proc. of ACM SIGCOMM IMC, 2007.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation
in Campus Networks. ACM CCR, 38, Mar 2008.

[9] ISO/IEC JTC1/SC29/WG11 (MPEG) Report. Technical report, ISO,
November 2013.

[10] M. Venkataraman and M. Chatterjee. Inferring Video QoE in Real Time.
IEEE Network, 25, 2011.

[11] R. Schatz, T. Hossfeld, and P. Casas. Passive youtube qoe monitoring
for isps. In Proc. of IMIS, 2012.

[12] M. Eckert, T. M. Knoll, and F. Schlegel. Advanced MOS calculation
for Network Based QoE Estimation of TCP Streamed Video Services.
In Proc. of ICSPCS, 2013.

[13] Y. Liu, S. Dey, D. Gillies, F. Ulupinar, and M. Luby. User Experience
Modeling for DASH Video. In Proc. of IEEE Packet Video Workshop,
2013.

[14] M.-N. Garcia, F. De Simone, S. Tavakoli, N. Staelens, S. Egger,
K. Brunnstrm, and A. Raake. Quality of experience and http adaptive
streaming: A review of subjective studies. In Proc. of QoMEX, 2014.

[15] V. Seferidis, M. Ghanbari, and DE. Pearson. Forgiveness effect in
subjective assessment of packet video. Electronics Letters, 28(21), 1992.

[16] DS Hands. Temporal characterisation of forgiveness effect. Electronics
Letters, 37(12), 2001.

[17] T. Liu, Y. Wang, J.M. Boyce, H. Yang, and Z. Wu. A novel video quality
metric for low bit-rate video considering both coding and packet-loss
artifacts. IEEE Journal of Selected Topics in Signal Processing, 3, 2009.

