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Effects of oral, smoked, and vaporized cannabis on
endocrine pathways related to appetite and
metabolism: a randomized, double-blind,
placebo-controlled, human laboratory study
Mehdi Farokhnia 1,2,3, Gray R. McDiarmid1, Matthew N. Newmeyer3,4, Vikas Munjal 1, Osama A. Abulseoud4,
Marilyn A. Huestis4,5 and Lorenzo Leggio1,2,6,7

Abstract
As perspectives on cannabis continue to shift, understanding the physiological and behavioral effects of cannabis use
is of paramount importance. Previous data suggest that cannabis use influences food intake, appetite, and
metabolism, yet human research in this regard remains scant. The present study investigated the effects of cannabis
administration, via different routes, on peripheral concentrations of appetitive and metabolic hormones in a sample of
cannabis users. This was a randomized, crossover, double-blind, placebo-controlled study. Twenty participants
underwent four experimental sessions during which oral cannabis, smoked cannabis, vaporized cannabis, or placebo
was administered. Active compounds contained 6.9 ± 0.95% (~50.6 mg) Δ9-tetrahydrocannabinol (THC). Repeated
blood samples were obtained, and the following endocrine markers were measured: total ghrelin, acyl-ghrelin, leptin,
glucagon-like peptide-1 (GLP-1), and insulin. Results showed a significant drug main effect (p= 0.001), as well as a
significant drug × time-point interaction effect (p= 0.01) on insulin. The spike in blood insulin concentrations
observed under the placebo condition (probably due to the intake of brownie) was blunted by cannabis
administration. A significant drug main effect (p= 0.001), as well as a trend-level drug × time-point interaction effect
(p= 0.08) was also detected for GLP-1, suggesting that GLP-1 concentrations were lower under cannabis, compared to
the placebo condition. Finally, a significant drug main effect (p= 0.01) was found for total ghrelin, suggesting that
total ghrelin concentrations during the oral cannabis session were higher than the smoked and vaporized cannabis
sessions. In conclusion, cannabis administration in this study modulated blood concentrations of some appetitive and
metabolic hormones, chiefly insulin, in cannabis users. Understanding the mechanisms underpinning these effects
may provide additional information on the cross-talk between cannabinoids and physiological pathways related to
appetite and metabolism.

Introduction
Perspectives on cannabis (marijuana) use are shifting

throughout the world, politically and scientifically.
According to the United Nations Office on Drugs and
Crime, cannabis is the most commonly cultivated, traf-
ficked, and used illicit drug worldwide, with an estimated
192.2 million users (3.9% of the global population)1. With
cannabis medicalization and legalization increasing, the
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prevalence of cannabis use, in various forms, is also pre-
dicted to increase2,3. Several studies indicate that recrea-
tional cannabis use can have detrimental effects on
physical and mental health4–7. On the other hand, con-
tinued work on cannabinoids for medical use resulted in
the Food and Drug Administration’s (FDA) approval of
cannabidiol (CBD), in the form of Epidiolex, for treating
rare and severe forms of epilepsy, and of synthetic Δ9-9
tetrahydrocannabinol (THC), dronabinol, and nabilone,
for preventing nausea and vomiting associated with che-
motherapy. Accordingly, understanding the physiological
and behavioral effects of cannabis use, recreationally or
medicinally, is of paramount importance.
Scientific knowledge about the pharmacological actions of

exogenous cannabinoids was considerably informed by the
discovery of the G protein-coupled cannabinoid receptors
(CB1 and CB2) and their endogenous ligands known as
endocannabinoids (anandamide and 2-arachidonoylglycerol
(2-AG)) which, along with their synthesis/degradation
enzymes, collectively constitute the endocannabinoid sys-
tem. Upon production and release, endocannabinoids bind
to cannabinoid receptors located on pre-synaptic mem-
branes and change neuronal excitability by modulating the
release of different neurotransmitters8–11. Cannabinoid
receptors are expressed not only in the brain, but also in the
gut and other peripheral organs involved in food intake,
metabolism, and energy homeostasis12–14. Previous studies
suggest that agonism of the cannabinoid receptors, by either
endocannabinoids or exogenous cannabinoids, acutely sti-
mulates food craving, intake, and reward, and promotes the
storage of energy in adipose tissues, whereas antagonism of
the cannabinoid receptors reduces food intake and body
weight15–19. On the other hand, chronic daily administra-
tion of THC suppresses weight gain, fat mass gain, and
caloric intake in diet-induced, obese rats20, and epidemio-
logical data indicate an association between chronic can-
nabis use and decreased prevalence of obesity and
diabetes21–26. These findings suggest that cannabinoids play
important roles in modulating appetitive behaviors and
metabolic processes. However, more studies are required to
shed light on the complexity of this cross-talk as, for
example, acute versus chronic cannabis use may lead to
different, and even opposite, outcomes27.
The hypothalamus plays a major role in food seeking and

consummatory behaviors, representing a central hub for
regulating appetite, metabolism, and energy homeostasis.
Specifically, the hypothalamus controls homeostatic feeding,
communicates with the mesolimbic system to modulate
hedonic feeding, and interacts with peripheral organs to
regulate endocrine pathways involved in hunger and sati-
ety28,29. Several hypothalamic orexigenic and anorexigenic
pathways are influenced by the endocannabinoid sys-
tem30,31. The majority of previous evidence suggest that
orexigenic actions of cannabinoids are linked to CB1

receptors located in the hypothalamus32–34, with some
research also implicating the role of CB2 receptors in
increased food consumption35. A close relationship also
exists between the endocannabinoid system and endocrine
pathways involved in metabolic regulation and food seeking
behaviors36–39. For example, investigators found that
orexigenic effects of systemically administered ghrelin (also
known as the “hunger hormone”) were abolished in CB1
receptor knockout mice40, and pharmacological blockade of
the CB1 receptor, via rimonabant administration, attenuated
ghrelin-induced activation of the mesolimbic dopamine
system – a key pathway involved in reward processing41.
Activation of cannabinoid receptors, on the other hand,
enhances leptin sensitivity42,43 and inhibits insulin secretion
and insulin receptor signaling44,45. Hypothetically, the link
between cannabis use and these endocrine pathways may be
bidirectional, as growing evidence suggests that appetitive
and metabolic hormones may play mechanistic roles in the
development and progression of drug seeking behaviors46,47.
While previous data point to a close link between can-

nabis use and energy homeostasis, clinical research in this
regard remains scant. In the only published human study,
to our knowledge, looking at appetitive and metabolic
hormones, smoked medicinal cannabis (as a treatment for
neuropathic pain) was tested in adult men positive for
human immunodeficiency virus (HIV). In this pilot,
crossover, double-blind study, cannabis administration
increased blood concentrations of ghrelin and leptin,
decreased peptide YY (PYY) concentrations, and had no
significant effects on insulin48. The goal of the present
study was to explore the effects of cannabis administra-
tion on peripheral concentrations of endocrine markers
related to appetite and metabolism in a sample of can-
nabis users and to build the foundation for future studies
in this regard. This study also aimed at exploring potential
differences in the effects of cannabis on endocrine out-
comes when administered via different routes. There are
at least two reasons why this additional aim is important.
First, the route of cannabis administration (oral, smoked,
or vaporized) alters THC pharmacokinetics, as well as its
cardiorespiratory and subjective effects49–52. Second,
cannabis legalization has led to an increase in the rates of
oral and vaporized use, as compared to smoking53.
Therefore, not only does assessing common routes of
cannabis use provide information relevant to real-world
conditions but may also elaborate on the general cross-
talk between cannabis and appetitive/metabolic pathways.

Materials and methods
Study design, participants, and procedures
This was a randomized, double-blind, placebo-

controlled study with a double-dummy, and crossover
design. Participants were recruited via newspaper and
radio advertisements, and by word of mouth. Potential
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candidates underwent a screening visit during which
comprehensive medical and psychiatric assessments were
performed to determine eligibility. Eligible individuals
provided written informed consent for participation in
this study. Participants were healthy adult cannabis users
who were determined to be either occasional user (i.e.,
self-reported average cannabis use of ≥2 times per month
but <3 times per week during the past 3 months) or fre-
quent user (i.e., self-reported average cannabis use of ≥5
times per week during the past 3 months, plus a positive
cannabinoids urine test at the screening visit) and were
not seeking treatment for drug use. For the full list of
eligibility criteria, see Appendix S1. All procedures were
conducted at the National Institute on Drug Abuse
(NIDA) Intramural Research Program and the Johns
Hopkins Bayview Clinical Research Unit. The protocol
was approved by the National Institutes of Health (NIH)
Addictions Institutional Review Board (IRB), FDA, and
the Drug Enforcement Administration (DEA), and was
registered at ClinicalTrials.gov (NCT02177513).
The purpose of the parent study was to examine phar-

macodynamic and pharmacokinetic parameters of oral,
smoked, and vaporized cannabis in occasional and fre-
quent users; a detailed description of this study is reported
elsewhere52. Briefly, each participant underwent four
dosing sessions in a randomized order. During each ses-
sion, participants received oral cannabis (or matched
placebo) at 9:50 a.m., followed by smoked or vaporized
cannabis (or matched placebo) at 10:00 a.m. Participants
were instructed to eat, smoke, or inhale each active or
placebo compound within 10 min, while they were not

required to finish the dose. Only one dose of active
cannabis per session was administered (Fig. 1): (A) Pla-
cebo condition: oral placebo followed by smoked or
vaporized placebo; (B) Oral cannabis condition: oral
cannabis followed by smoked or vaporized placebo; (C)
Smoked cannabis condition: oral placebo followed by
smoked cannabis; and (D) Vaporized cannabis condition:
oral placebo followed by vaporized cannabis. Of note, the
route of placebo administration (smoked or vaporized)
was randomized across conditions A and B for each
participant. The NIDA Research Technology Branch
provided active cannabis and placebo for this study.
Active compounds contained 6.9 ± 0.95% THC
(~50.6 mg), while placebo compounds contained 0.001 ±
0.000% THC. For the active smoked dose, one 6.9% THC
cigarette was administered. For the active inhaled dose,
the equivalent of one 6.9% THC cigarette was ground
and placed into the Volcano® Medic vaporizer (Storz &
Bickel GmbH & Co, Tuttlingen, Germany). For the
active oral dose, the equivalent of one 6.9% THC cigar-
ette was ground and prepared as a brownie, using
Duncan Hines® Double Fudge Brownie Mix. Placebo
doses were administered with the same methodology but
did not contain active ingredients. For additional details
see Appendix S2.
Participants were admitted to a secure inpatient unit the

night before the first dosing session to preclude acute
intoxication. A standard breakfast was served at 6:00 a.m.
which did not include the following food items: French
dressing, mayonnaise, ketchup, raw onions, pickle relish,
blue cheese, potato chips, peanut butter, butter, and

Fig. 1 Schematic outline of the study procedures and blood sampling time-points. Each participant underwent four sessions during which
placebo, oral THC, smoked THC, or vaporized THC was administred. The oral dose, either active or placebo, was always administered in the form of a
brownie. Blood concentrations of total ghrelin, acyl-ghrelin, leptin, GLP-1, and insulin were assessed. GLP-1 glucagon-like peptide 1, THC
tetrahydrocannabinol.
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margarine. The first blood draw was done at 8:30 a.m.;
participants did not have any food until after the last
blood draw at 11:30 a.m. (Fig. 1), when lunch was served.
Nicotine smokers could smoke on the unit, but not during
the 3-h experimental session. Occasional users remained
on the unit 54 h post-dose and had the choice to stay or
leave between sessions, as long as the dosing schedule did
not exceed their self-reported cannabis use frequency.
Frequent users remained on the unit 72 h post-dose and
left the unit for a minimum of 72 h between sessions.
These time-frames were selected based upon the window
of THC detection in oral fluid from previous studies54,55.
In order to prevent cannabis withdrawal, participants
were told that they could resume their routine cannabis
use between the sessions. All sessions were required to be
completed within a maximum of 1 year. Cannabis
administration procedures were performed consistent
with the National Advisory Council on Drug Abuse
Guidelines for Administration of Drugs to Human
Subjects.

Blood collection, processing, and assays
A saline lock intravenous catheter was inserted into the

antecubital fossa of participants’ non-dominant arm for
multiple blood samplings. For the purpose of this sec-
ondary study, blood samples were collected at five time-
points during each experimental session (Fig. 1): (T0)
80min before administration of the oral dose; (T1) 15 min
before administration of the oral dose; (T2) 15 min after
administration of the smoked/inhaled dose; (T3) 30 min
after administration of the smoked/inhaled dose; (T4)
90min after administration of the smoked/inhaled dose.
T0 and T1 included only one blood tube for THC and
hormones, respectively; T2, T3, and T4 included two
blood tubes to measure both. Therefore, blood THC and
hormones were each measured at four time-points during
the experimental session.
For THC measurements, blood was collected in gray top

potassium oxalate (8 mg)/sodium fluoride (10 mg) tubes
(BD Vacutainer®), kept in an ice bath until aliquoting
within 2 h into 3.6 mL Nunc® Cryotube vials (Thomas
Scientific), and stored in a −20 °C freezer until analysis. A
previously validated liquid chromatography–tandem mass
spectrometry (LC-MS/MS) method56 identified and
quantified cannabinoids blood concentrations. For more
details, see Newmeyer et al.52.
For hormones measurement, blood was collected into a

lavender top spray-coated K2EDTA tube (BD Vacutai-
ner®). This tube was pre-treated with 4-(2-aminoethyl)
benzenesulfonyl fluoride hydrochloride (Roche Diag-
nostics GmbH, Germany – Pefabloc® SC), dipeptidyl
peptidase IV inhibitor (EMD Millipore Corp., Billerica,
MA – Cat. #DPP4-010), and a protease inhibitor cocktail
(Sigma-Aldrich Inc., Saint Louis, MO – Cat. #P8340)

prior to blood collection and was inverted 10 times and
kept on ice after collection. The blood tube was cen-
trifuged within 30 min post-collection (relative centrifugal
force: 1700 × g, temperature: 4 °C, centrifugation time:
15 min); the extracted plasma sample was pipetted into
500 µL microtubes and stored in a −80 °C freezer until
analysis. All samples were run in duplicate and the assays
were carried out in accordance with manufacturer’s
instructions. Total ghrelin was measured with the Milli-
pore Human Ghrelin (Total) 96-Well Plate Enzyme-
Linked Immunosorbent Assay (ELISA) kit (EMD Milli-
pore Corp., Billerica, MA – Cat. #EZGRT-89K). The
optical density of each well was determined with the
GloMax®-Multi Detection System (Promega Corp.,
Madison, WI – Part #TM297) and a regression model was
applied to calculate total (i.e., acyl+ des-acyl) ghrelin
concentrations. The Millipore Human Metabolic Hor-
mone Magnetic Bead Panel 96-Well Plate MILLIPLEX®
MAP kit (EMD Millipore Corp., Billerica, MA – Cat.
#HMHEMAG-34K) was used to quantify the following
analytes: active ghrelin (here referred to as acyl-ghrelin),
leptin, active GLP-1 (here referred to as GLP-1), insulin,
active amylin (here referred to as amylin), and Peptide YY
(PYY). The assay was performed on fluorescence-coded
magnetic beads coated with capture antibodies specific for
each marker. Introduction of biotinylated detection anti-
body and streptavidin-phycoerythrin permitted simulta-
neous detection of all analytes on the MAGPIX®
instrument (Luminex Corp., Austin, TX). These multiplex
data were pre-processed and analyzed in the MILLI-
PLEX® Analyst software (Version 3.5 – EMD Millipore
Corp., Billerica, MA) to calculate the concentration of
each hormone. Values below the lower limit of quantita-
tion (LLOQ) were set to 1/2 of the LLOQ. Amylin and
PYY were removed from statistical analysis because more
than 20% of the data were marked as below the LLOQ. In
summary, the effect of cannabis administration on the
following endocrine markers was assessed: total ghrelin,
acyl-ghrelin, leptin, GLP-1, and insulin.

Statistical methods
Participants’ demographic data were summarized with

descriptive statistics (mean and standard deviation for
continuous variables, number and percent for categorical
variables). All data were examined for statistical outliers
and normal distribution; outliers were removed, and if
necessary, a logarithm transformation was applied. Leptin
and GLP-1 data were not normally distributed and,
therefore, were log10 transformed, which resulted in
normal distribution of these data. THC pharmacokinetic
parameters, including area under the blood concentration-
time curve (AUC) and maximum blood concentration
(Cmax), as well as baseline/pre-drug (T1) concentrations
of the hormones were analyzed by analysis of variance
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(ANOVA) tests. Repeated measurements of endocrine
markers were analyzed with linear mixed-effects (LME)
models, having drug condition (placebo, oral cannabis,
smoked cannabis, and vaporized cannabis), session
number (1, 2, 3, and 4), blood sampling time-point (T1,
T2, T3, and T4), and drug × time-point interaction as
fixed effects, individual subjects as a random effect (ran-
dom intercept and slope), and each hormone as the out-
come. Age, gender (male, female, other), body mass index
(BMI), race (Black or African-American, White or Eur-
opean-American, American Indian or Alaska Native,
Native Hawaiian or other Pacific Islander, Asian, other),
and sub-group (occasional user, frequent user) were tes-
ted as potential covariates in the initial run of each model;
significant covariates were retained in the final model
analysis. Pairwise comparisons between estimated mar-
ginal means of fitted models were adjusted using the
Bonferroni procedure. As an exploratory outcome, we
also evaluated the relationship between blood con-
centrations of THC and endocrine markers. To do so,
AUC was calculated for each measurement across the
four time-points (T0, T2, T3, T4 for THC; T1, T2, T3, and
T4 for each hormone). Placebo condition was removed, as
THC concentrations were steady, as expected, during the
placebo sessions. Pearson’s correlation coefficients eval-
uated bivariate associations between THC AUC and
hormones AUCs. Significant covariates in the main LME
models mentioned above were included in these analyses
as well. Finally, hysteresis plots provided a comprehensive
visualization of the relationship between blood con-
centrations of THC and endocrine markers. IBM SPSS
Statistics version 20.0 for Windows (Armonk, New York,
USA) and GraphPad Prism version 7.0 for Windows
(La Jolla, California, USA) were employed for data analysis
and graphing purposes. Significance level was set at
p < 0.05 (two-tailed) for all analyses.

Results
Study sample
Twenty individuals completed the study and their data

were analyzed (Fig. S1). Participants were predominantly
male and African-American. Demographic characteristics
of the study sample are summarized in Table 1.

THC concentrations
Blood THC concentrations (AUC and Cmax) were

significantly higher under smoked cannabis, compared to
both oral and vaporized conditions (Table S1). Vaporized
cannabis resulted in higher blood THC concentrations
than oral cannabis, but the difference did not reach sta-
tistical significance (p ≥ 0.05). For all participants, Tmax
(i.e., the time of Cmax) was +15min (T2) under the
smoked and vaporized conditions and +90 (T4) under the
oral condition.

Endocrine markers
Baseline concentrations of the endocrine markers at T1

were not significantly different across the four conditions
(p’s ≥ 0.05, Table S2). The results of our main analysis
(LME models) are summarized in Table 2 and graphed in
Fig. 2. Briefly, a significant drug main effect (p= 0.001), as
well as a significant drug × time-point interaction effect
(p= 0.01), was shown for insulin, suggesting that cannabis
administration blunted the increase in blood insulin
concentration observed under the placebo condition
(Fig. 2e). A significant drug main effect (p= 0.001), as well
as a trend-level drug × time-point interaction effect (p=
0.08), was detected for GLP-1. Post-hoc analysis showed
that blood GLP-1 concentrations under cannabis condi-
tions (oral, smoked, or vaporized) were lower compared
to the placebo condition. Also, a significant delayed (T4)
decrease in blood GLP-1 concentration was observed
under oral cannabis, but not other conditions (Fig. 2d).
Finally, a significant drug main effect (p= 0.01) was found
for total ghrelin, showing that blood total ghrelin

Table 1 Demographic characteristics of the study sample
(n= 20).

Variable Descriptive statistics

Age, years, M (SD) 28.25 (7.75)

Gender, n (%)

Male 15 (75)

Female 5 (25)

Race, n (%)

Black/African-American 15 (75)

White/European-American 5 (25)

Education, n (%)

Some high school education 1 (5)

High school diploma 7 (35)

Some college education 9 (45)

College degree 3 (15)

Nicotine smoker, n (%)

Yes 9 (45)

No 11 (55)

Weight, kg, M (SD) 77.21 (14.99)

BMI, kg/m2, M (SD) 25.92 (5.30)

Age at first cannabis use, years, M (SD) 15.60 (3.80)

Group, n (%)

Occasional user 9 (45)

Frequent user 11 (55)

BMI body mass index, M mean, n number, SD standard deviation.
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concentrations during the oral cannabis session were
higher than the smoked and vaporized cannabis sessions
(Fig. 2a). No significant effects on acyl-ghrelin or leptin

were found (Fig. 2b, c). Participants sub-group (i.e.,
occasional versus frequent user) was not a significant
covariate in any of the analyses (p’s ≥ 0.05).

Table 2 Drug, time-point, and drug × time-point effects on blood concentrations of endocrine markers during the
experimental session.

Drug main effecta Time-point main effectb Drug × time-point interaction effect

Total Ghrelin F3,279= 3.44, p= 0.01c F3,279= 2.02, p= 0.11 F9,279= 0.82, p= 0.59

Acyl-Ghrelin F3,279= 1.19, p= 0.31 F3,279= 2.12, p= 0.09 F9,279= 1.11, p= 0.34

Leptin (Log10) F3,280= 1.60, p= 0.18 F3,280= 1.33, p= 0.26 F9,280= 0.12, p= 0.99

GLP-1 (Log10) F3,279= 5.94, p= 0.001d F3,279= 2.09, p= 0.10 F9,279= 1.70, p= 0.08e

Insulin F3,276= 5.50, p= 0.001f F3,276= 7.61, p < 0.001 F9,276= 2.45, p= 0.01g

GLP-1 glucagon-like peptide 1.
aFour drug conditions: placebo, oral cannabis, smoked cannabis, and vaporized cannabis.
bFour time-points: T1, T2, T3, T4.
Pairwise Comparison:
cSmoked cannabis < oral cannabis (p= 0.03); vaporized cannabis < oral cannabis (p= 0.06). See also Fig. 2a.
dOral cannabis < placebo (p= 0.001); smoked cannabis < placebo (p= 0.008); vaporized cannabis < placebo (p= 0.01). See also Fig. 2d.
eT2: vaporized cannabis < placebo (p= 0.06); T4: oral annabis < placebo (p= 0.002), oral cannabis < smoked cannabis (p= 0.06), and oral cannabis < vaporized
cannabis (p= 0.004); oral cannabis: T4 < T2 (p= 0.02) and T4 < T3 (p= 0.001). See also Fig. 2d.
foral cannabis < placebo (p= 0.05); smoked cannabis < placebo (p < 0.001). See also Fig. 2e.
gT2: smoked cannabis < placebo (p= 0.003) and smoked cannabis < vaporized cannabis (p= 0.05); T3: oral cannabis < placebo (p= 0.06), smoked cannabis < placebo
(p= 0.005), and vaporized cannabis < placebo (p= 0.001); placebo: T4 < T1 (p= 0.06), T4 < T2 (p= 0.003), T4 < T3 (p < 0.001), and T1 < T3 (p= 0.03); oral cannabis:
T4 < T3 (p= 0.02). See also Fig. 2e.

Fig. 2 Blood concentrations of total ghrelin, acyl-ghrelin, leptin, GLP-1, and insulin during the experimental session. Blood concentrations of
a total ghrelin, b acyl-ghrelin, c leptin, d GLP-1, and e insulin during the experimental session. For analysis results, see Table 1. For M (SEM) of each
hormone per time-point per condition, see Table S3. GLP-1 glucagon-like peptide 1, M mean, SEM standard error of the mean.
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THC-hormones correlations
Table 3 outlines the results of correlation analyses

between THC and endocrine markers AUCs. During the
vaporized cannabis session, THC AUC was positively
correlated with total ghrelin AUC (r= 0.56, p= 0.01);
there was a trend-level positive correlation with acyl-
ghrelin AUC as well (r= 0.40, p= 0.07) (Fig. S2). No
other significant or trend-level correlations were found
(Table 3). Hysteresis plots of the link between blood
concentrations of THC and endocrine markers are
demonstrated in Fig. S3.

Discussion
To our knowledge, this study represents the first human

laboratory investigation of the effects of cannabis adminis-
tration, via different routes (i.e., oral, smoked, and vapor-
ized), on peripheral concentrations of appetitive and
metabolic hormones in a sample of occasional and frequent
cannabis users. To summarize the key results, the most
prominent influence of cannabis was on insulin, followed by
GLP-1 and total ghrelin, as further discussed below.
Blood concentrations of insulin were significantly

influenced by cannabis administration, as demonstrated
by significant drug and drug × time-point effects. Of note,
the oral dose (active THC or placebo) was always admi-
nistered as a brownie. The intake of the brownie caused
an expected spike in blood insulin concentrations under
the placebo condition; this acute insulin spike was blunted
by active cannabis administration (Fig. 2e). The effect was
most evident at T3, when insulin concentrations under all
THC conditions (oral, smoked, vaporized) were con-
siderably lower than placebo. The influence of cannabis
on insulin observed in this study is in line with the
established role of the endocannabinoid system in reg-
ulating glucose metabolism and, at large, energy bal-
ance57–59. This homeostatic function is carried out via
interactions between the endocannabinoid system and
multiple central and peripheral pathways (e.g., brain,
pancreas, liver). Through autocrine, paracrine, and
endocrine mechanisms, endocannabinoids modulate
pancreatic β-cells function, proliferation, and survival, as
well as insulin production, secretion, and resistance60.

Animal and human research suggest that increased
activity of the endocannabinoid system may lead to
insulin resistance, glucose intolerance, and obesity.
Accordingly, CB1 receptor antagonism is associated with
enhanced insulin sensitivity, improved metabolic out-
comes, and weight loss61. It is important to note that the
direction and magnitude of the relationship between
cannabinoids and insulin is not linear, and may depend on
multiple factors such as baseline metabolic state, duration
and frequency of exposure, etc. As an example, while the
aforementioned evidence suggests that overactivation of
the endocannabinoid system may have negative con-
sequences, activation of cannabinoid receptors expressed
by pancreatic β-cells can stimulate insulin secretion and,
therefore, may be beneficial in treating impaired glucose
tolerance and diabetes mellitus61,62. Cannabinoid recep-
tors are widely expressed in islets of Langerhans, and
several studies have investigated specific distribution and
mechanisms of CB1 versus CB2 receptors in relation to
pancreatic endocrine functions62–64.
The majority of previous studies suggest that cannabis use

acutely stimulates appetite and food intake, while chronic
cannabis use reduces the risk of obesity, insulin resistance,
and diabetes mellitus25,65–68. A recent meta-analysis on
multiple replication samples found an inverse association
between cannabis smoking and diabetes mellitus24. The
evidence, however, is not strong enough to draw causal
inference. Another large-scale study suggested that the
beneficial impact of cannabis use on insulin resistance may
not be direct, as this association was mediated through the
role of cannabis in lowering BMI69. While insulin is pri-
marily produced in the pancreas, feedback signals from
other organs that are sensitive to cannabis may also con-
tribute to the cross-talk between cannabis and insulin. A
recent study examined whether and how different doses of
THC may affect glucose uptake in the rat brain, and found
that low blood THC concentrations were associated with
increased glucose uptake, while high THC concentrations
had an opposite effect (i.e., decreased glucose uptake)70. Of
note, the present human laboratory study looked at acute
effects of cannabis administration under a controlled con-
dition in individuals who occasionally and frequently used

Table 3 Correlation analyses between THC and endocrine markers AUCs.

Total ghrelin AUC Acyl-ghrelin AUC Leptin AUC GLP-1 AUC Insulin AUC

THC AUC, oral cannabis session r= 0.02, p= 0.91 r= 0.08, p= 0.71 r=−0.16, p= 0.51 r=−0.01, p= 0.96 r=−0.09, p= 0.69

THC AUC, smoked cannabis session r= 0.16, p= 0.52 r= 0.08, p= 0.73 r= 0.27, p= 0.28 r=−0.07, p= 0.77 r=−0.17, p= 0.47

THC AUC, vaporized cannabis session r= 0.56, p= 0.01 r= 0.40, p= 0.07 r= 0.06, p= 0.80 r= 0.13, p= 0.57 r=−0.20, p= 0.39

THC AUC, three sessions combined r= 0.12, p= 0.35 r= 0.14, p= 0.27 r= 0.11, p= 0.39 r= 0.02, p= 0.85 r=−0.009, p= 0.94

AUC area under the curve, GLP-1 glucagon-like peptide 1, THC tetrahydrocannabinol.
THC AUC was calculated using measurements at T0, T2, T3, and T4. Hormones AUC was calculated using measurements at T1, T2, T3, and T4. See Fig. 1.
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cannabis. We administered a single dose of cannabis and
did not have blood glucose measurements. While cannabis
administration clearly suppressed the insulin spike (prob-
ably caused by the intake of brownie), the underlying
mechanism of this phenomenon (e.g., direct effect on
insulin production and/or secretion, interaction with glu-
cose metabolism, or epiphenomenon) remains unknown.
Cannabis administration in the present study also

modulated blood concentrations of GLP-1, an incretin
closely linked to insulin and glucose metabolism. While
there were no significant differences at baseline, a sig-
nificant drug main effect was found, indicating that GLP-1
concentrations were lower during cannabis administration
sessions (oral, smoked, and vaporized), compared to the
placebo condition (Fig. 2d). These results are parallel to, and
consistent with, the aforementioned effects on insulin. GLP-
1 is a 30-amino acid peptide primarily produced by endo-
crine cells in the intestines. Upon secretion, for example in
response to food intake, GLP-1 contributes to regulating
blood glucose levels, mainly by stimulating insulin secretion
and inhibiting glucagon secretion from the pancreas. GLP-1
also reduces food appetite and slows gastric emptying via
central (e.g., hypothalamus) and peripheral (e.g., stomach)
mechanisms71,72. The relationship between GLP-1 and
insulin appears to be bidirectional, as insulin stimulates
GLP-1 secretion from the enteroendocrine cells and insulin
resistance, in vitro and in vivo, is associated with impaired
GLP-1 secretion73. Hypothetically, the suppressing effect of
cannabis on GLP-1 observed in this study may not be
direct, but rather secondary to the suppressed insulin levels.
Indeed, some of the previous research does not support a
direct link between the endocannabinoid system and GLP-1
signaling. For example, increased activity of the endo-
cannabinoid system does not influence GLP-1 concentra-
tions74,75, and the effects of CB1 receptor antagonists on
appetite, food intake, and weight are not mediated by
GLP-176,77. However, some other studies point to a possible
direct link between the endocannabinoid system and GLP-1
signaling. For example, one study demonstrated that
endocannabinoid-like lipids can directly bind to GLP-1 and
increase its potency via conformational changes78. More
studies are required to understand whether and how exo-
genous cannabis administration, as well as different com-
ponents of the endocannabinoid system, may have direct
and/or indirect influences on the GLP-1 system.
A significant drug main effect, but no drug × time-point

effects, was found on blood total ghrelin concentrations.
Post-hoc analysis showed that total ghrelin levels during
the oral cannabis session were significantly higher than
the smoked and vaporized cannabis sessions. Ghrelin
levels during the oral cannabis session were also higher
than the placebo session, but the ghrelin spike at T2
under the placebo condition may have washed out the
statistical significance (Fig. 2a). In addition, a positive

correlation was found between THC and total ghrelin
AUCs, but only during the vaporized cannabis session
(Fig. S2). As the “hunger hormone”, ghrelin plays an
integral role in meal initiation, appetite, and food intake79.
Ghrelin is also involved in glucose homeostasis, as it
inhibits insulin secretion and modulates insulin sensitiv-
ity, ultimately leading to increased blood glucose
levels80,81. The opposing physiological actions of ghrelin,
compared to insulin and GLP-1, may justify the opposite
direction of changes in response to cannabis in this study,
i.e., increase in ghrelin levels, compared to decrease in
insulin and GLP-1 levels. Growing evidence indicates a
close link between the endocannabinoid system and the
ghrelin system. For example, endocannabinoids and
ghrelin stimulate the release and increase the activity of
each other, leading to a synergistic effect57,82. Systemic
administrations of a cannabis hydroalcoholic extract, an
endocannabinoid analog, or a CB1 receptor agonist
increased blood ghrelin concentrations in rats83,84. A pilot
human study found a positive correlation between blood
concentrations of an endocannabinoid (2-AG) and ghrelin
during hedonic eating85. In another pilot human study,
administration of smoked medicinal cannabis, compared
to placebo, significantly increased blood ghrelin con-
centrations in HIV-infected adult men48. While the
aforementioned findings are consistent with our results, it
is hard to interpret why the effects on ghrelin in the
present study were limited to specific routes of cannabis
administration. It also remains unclear why the effects
were specific for total ghrelin and not for acyl-ghrelin. On
the latter point, it is important to keep in mind that these
results are limited to the specific timeframe we studied
and to the specific experimental conditions of this study
(i.e., acute cannabis administration in cannabis users).
Mechanistic studies are needed to disentangle the
potential effects of cannabis on the synthesis, release,
acylation, and/or de-acylation of ghrelin.
The results of this study should be viewed within the

context of its limitations. The sample size was relatively
small. As a secondary investigation, the experiment was
not designed to a priori examine the outcomes presented
in this report. We looked at a limited number, and not all,
of the endocrine pathways involved in appetite/metabo-
lism, and did not have measurements on other relevant
biomarkers such as glucose and cholesterol levels. Given
the secondary nature of this study and the number of
statistical tests, we did not look at possible clinical/
behavioral implications of these endocrine effects – a
relevant question that was beyond the scope of the pre-
sent study and should be explored in the future. Never-
theless, a comprehensive report of the subjective and
physiological measures collected in this study was pre-
viously published51. While gender was tested as a cov-
ariate in all analyses, the small sample size and low
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percentage of enrolled females did not allow us to
investigate possible gender differences in endocrine out-
comes after cannabis administration. As a human
laboratory study, the standard setting was strictly con-
trolled before, during, and after each experiment. While
such a design provides a rigorous research platform, it
may not fully reflect a real-world setting. As an example,
the spike in insulin levels under the placebo condition
appears to be due to the intake of brownie and the effects
of cannabis administration on insulin and other hormones
found in this study may be dependent on this specific
aspect of the design. Furthermore, only one cannabis
dosage was tested, and all participants were cannabis
users, without a comparison group (e.g., people with no
cannabis use were not included due to ethical reasons).
Therefore, our findings may not be generalizable to other
feeding conditions, cannabis dosages and/or populations
without further investigation.
In summary, cannabis administration, via oral, smoked,

and vaporized routes, modulated blood concentrations of
some appetitive and metabolic hormones in cannabis users.
The most robust results of this study indicate that acute
cannabis administration in cannabis users blunted the
insulin spike secondary to the brownie intake. Future stu-
dies should investigate whether these findings may be
replicated in larger and more diverse study samples.
Understanding the mechanisms underpinning these effects
is also important, as it may provide additional information
on the cross-talk between cannabinoids and physiological
pathways that regulate appetite and metabolism.
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