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ONLINE DIMENSION OF PARTIALLY

ORDERED SETS

A b s t r a c t. We investigate the online dimension of upgrowing

partial orders. The problem is treated as a two-person game.

One person builds an order, one point at a time; the other person

maintains its online realizer. The value of the game (the number

of linear extensions used) is compared with the offline width of the

poset. We prove that the online dimension of width 2 upgrowing

orders is exactly 2. In general case we prove a lower bound of

b7d/4c − 2 for width d upgrowing orders.

A linear order Q = (X,≤Q) is called a linear extension of another partial

order P = (X,≤P ) if x < y in P implies that x < y in Q, for all x, y ∈ X.

For a fixed n-element poset P = (X,≤) define the family L of all linear

extensions of P. Note that the size of L may vary from 1 (in case when

P is a chain) to n! (in case when P as an n-element antichain). It is easy

to see that for two incomparable elements x, y of P there always exists a

linear extension L of P with x < y in L. This fact proves that
⋂

L = P

and justifies the correctness of the following definition.
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Definition 1 Let P = (X,≤) be a finite partial order. The dimension

of P, denoted dim(P), is the least positive integer d for which there exists

a family R = {L1, . . . , Ld} of linear extensions of P such that

⋂

R =
⋂d

i=1 Li = P.

Any such family R of linear extensions is called a realizer of P. A geometric

interpretation justifying the name of the term is the following. Let ϕ be a

mapping from X to distinct points in Z
d such that x < y in P iff each

coordinate of ϕ(x) is less than the corresponding coordinate of ϕ(y). The

dimension of P is the least positive integer d for which there exists such

mapping ϕ from X to Z
d.

The construction of Dushnik and Miller [2] shows there exist posets of

arbitrary large dimensions. Yannakakis [3] proved that it is NP-complete to

determine if a partial order has dimension at most 3. Determining whether

a poset has dimension at most 2 can be done in polynomial time. On the

other hand, from Dilworth’s theorem it can be deduced that the dimension

of an order never exceeds its width, i.e. the maximal size of an antichain.

An online dimension algorithm receives as input an online order, i.e.

elements of the order are presented one by one from the externally deter-

mined list. With a new element the algorithm learns the comparability

status of the existing elements to the new one. After adding a new element

to the order the algorithm calculates its online realizer – the new element

is put into existing linear extensions, while the order of the previous ele-

ments may not be changed. Performance of an online dimension algorithm

is measured by comparing the size of presented online realizer with the

offline width of the order.

Computing online dimension may be treated as a two-person game. The

players are called Alice and Bob. Alice represents an online algorithm, Bob

is responsible for presenting the online order. In the online dimension game

for orders of width d, Bob presents to Alice an order of width at most d.

Alice, in turn, maintains its online realizer. The game is played in rounds.

During one round Bob introduces a new point x to the order and reveals

comparability status between x and the previous points. Alice responds

by adding x to the existing linear extensions (or creates a new linear ex-

tension). The value of the game for orders of width d, denoted further by

dim on-line(d), is the largest integer n for which Bob has a strategy that
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forces Alice to output an online realizer consisting of n linear extensions.

Alternatively, it is the least integer n such that Alice has a strategy which

for width d orders outputs an online realizer consisting of at most n linear

extensions.

The described connection of online problems and games puts online

algorithms into the framework of logic. A winning strategy for Alice can

be expressed by a sentence of the form ∀∃∀ . . . ∀∃, i.e., for each move

of Bob there is a response of Alice such that whatever Bob does there is

a response of Alice. . . etc. Similarly, a winning strategy for Bob can be

represented by a sentence of the form ∃∀∃ . . . ∃∀.

Computing the online dimension of a poset is closely related to com-

puting its online width. In the game corresponding to determine online

width, Bob builds an online order while Alice maintains its online chain

partitioning (i.e. a partitioning of the order into pairwise disjoint chains).

The value of the game is compared with the number returned by an optimal

offline algorithm, i.e. with the width of the order. Denote the value of the

game by width upgrowing on-line(d).

In this paper we investigate the online dimension of upgrowing orders.

An online order P is upgrowing if each incoming point is maximal in P

at the time it arrives. In other words, points of the poset are presented

in some linear extension of the entire order. The known results about this

problem may be summarized in the following

Theorem 2 (Felsner [1]) For every d ∈ N we have

d ≤ dim upgrowing on-line(d) ≤ width upgrowing on-line(d) = d(d + 1)/2.

�

In the rest of the paper we improve upon the above result. First, we

show tight upper- and lower-bounds on the class of width 2 orders. In the

general case of width d posets we reformulate the problem as a variant of

the chain partitioning game and use the equivalent form of the problem to

prove a 7d/4 lower-bound.

Proposition 3 dim upgrowing on-line(2) = 2.

Proof. We induct on the number k of elements of a width 2 poset

P = (P,≤). For k = 1, i.e., P = {p1}, the 2-realizer is defined as follows:
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R1 = (p1), R2 = (p1). Now assume that the thesis holds for all k-element

partial orders of width 2. Let P = (P ∪ {a},≤) denote an arbitrary (k +

1)-element order of width 2, with a being the last added point. By the

induction hypothesis there exists a 2-realizer {R′
1, R

′
2} of order (P,≤). If

a is comparable with no element in P , we define R1 = (a,R′
1), R2 = (R′

2, a).

Otherwise, there exists b ∈ P such that b ≺ a (b precedes a in P ). Let us

partition P \ {b} into three sets S, I,G of elements: smaller, incomparable

and greater than b.

S = {p ∈ P : p < b}, I = {p ∈ P : p ‖ b}, G = {p ∈ P : p > b}.

Clearly, a ‖ G (if for some c ∈ G we had a > c, then a > c > b, which

contradicts the definition of b).

Suppose that I = ∅. Without loss of generality we may assume that the

2-realizer {R′
1, R

′
2} of (P,≤) is of the form R′

1 = (S, b,G), R′
2 = (S, b,G).

(Here (S, b,G) denotes any linear extension of P in which elements of S are

followed by b and then by elements of G). We define a 2-realizer {R1, R2}

of (P ∪ {a}) as follows:

R1 = (S, b, a,G), R2 = (R′
2, a).

Now consider the case when I 6= ∅. Note that I is a chain in P (if there

existed two incomparable elements c, d ∈ I, then set {b, c, d} would form a

3-element antichain in P , which would contradict the assumption that P

is of width 2). A similar reasoning (with a in the role of b) shows that G,

if not empty, is also a chain in P . Taking into account that b ‖ max(I)

and b ‖ min(I) we may assume without loss of generality that b < min(I)

in R′
1, b > max(I) in R′

2 and therefore

R′
1 = (S, b, I ∪ G), R′

2 = (S ∪ I, b,G).

If a > I or set G is empty then we define R1 and R2 as follows:

R1 = (R′
1, a), R2 = (S ∪ I, b, a,G).

If G is not empty and the inequality a > I does not hold, then G > I (as

otherwise, the set {max(I),min(G), a} would be a 3-element antichain in

G). Define two sets I1 and I2 as follows:

I1 = {p ∈ I : a ‖ p}, I2 = {p ∈ I : a > p}.
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Clearly, I1 > I2 and I1 ∪ I2 = I. Again, without loss of generality we may

assume that a 2-realizer {R′
1, R

′
2} for P is of the following form:

R′
1 = (S, b, I2, I1, G), R′

2 = (S ∪ I1 ∪ I2, b, G).

R1 and R2 are defined in this case as follows.

R1 = (S, b, I2, a, I1, G), R2 = (R′
2, a).

The proof of the induction step is now complete. �

As we have seen above, it is not very handy to deal with online realizers

of posets. In [1] Felsner proposed a variant of the chain partitioning game

called the adaptive chain covering game. Its rules are the following.

• to each new point p a non-empty set C(p) of numbers (chains) is

assigned,

• the set C(p) may shrink in the subsequent moves yet it may not

become empty,

• for every chain k the set {p ∈ P : k ∈ C(p)} is a chain in P.

Note, that the chain partitioning problem is exactly the adaptive chain

covering game with additional restriction that |C(p)| = 1 for every point p

of the poset. On the other hand, Felsner in [1] claimed that on the class of

upgrowing orders, the two games — adaptive chain covering and the online

dimension problem are equivalent. The proof of this fact turned out to be

incomplete. Below, we restate Felsner’s theorem and include its complete

proof.

Theorem 4 On the class of upgrowing online orders the two games —

online dimension and the adaptive chain covering game are equivalent, i.e.

adaptive chain covering(d) = dim upgrowing on-line(d).

Proof. To prove ≥-inequality we show how to solve the online di-

mension problem basing on the solution of the adaptive chain covering

problem. Let P = (P,≤) be an arbitrary upgrowing order. Suppose that

for P we have solved the adaptive chain covering problem with k chains

L1, L2, . . . , Lk. With each chain Li we associate a linear extension Ri ac-

cording to the following rules. For every incoming new point p do the

following:
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1. For every j ∈ C(p) append p at the end of Rj .

2. In the remaining linear extensions Ri let p go as deep in Ri as possible,

i.e., place p after the last (biggest) element smaller than p.

It remains to show that R1∩R2∩. . .∩Rk = P. The latter is a consequence of

the following fact: for every x and every j ∈ C(x) all elements dominating

x in Ri also dominate x in P . For a pair of incomparable elements a, b ∈ X

we have a < b in Rj for all j ∈ C(b). This proves that R1∩R2∩. . .∩Rk = P.

Before proving the ≤-inequality we need some preparations.

Definition 5 Let R = {R1, R2, . . . , Rn} be a family of linear exten-

sions of an order P = (P,≤). Choose an element p ∈ P . We will say that

the property (?) holds for p in Ri, if

∀q ∈ P : (q > p in Ri) ⇒ (q > p in P). (?)

We will say that the property (?) holds for x in R, if there exists i ∈

{1, 2, . . . , n} such that (?) holds for x in Ri.

We will say that the property (?) holds for R, if for every x ∈ X property

(?) holds for x in R.

Let P = (P,≤) be an arbitrary upgrowing online order, let R be its online

realizer (constructed by Alice). We will say that Alice’s strategy fulfills the

(?)-property if property (?) holds for R at any time in P.

Lemma 6 Let d ∈ N. The value dim upgrowing on-line(d) remains un-

changed if we additionally impose that Alice’s strategy fulfills the (?) prop-

erty.

Proof. Choose d ∈ N and let dim upgrowing on-line(d) = k (we know

from Theorem 2 that k is finite and k ≤ d(d + 1)/2). Let S denote Alice’s

strategy which maintains an online realizer of size at most k on the class

of width d upgrowing orders. We present a strategy S? which additionally

fulfills the (?) property.

From the game duality property we know that Bob has the strategy

K which forces Alice to use exactly k linear extensions on a certain order

(Pk,≤). We now describe the strategy S? for an arbitrary order P.
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1. Before Bob starts revealing the order P Alice builds k linear exten-

sions R1, R2, . . . , Rk of (Pk,≤); R1, R2, . . . , Rk are exactly the exten-

sions to which Alice would have been “forced” when Bob presented

(Pk,≤) online.

2. Bob presents order (P,≤). In response Alice follows the strategy S by

adding the incoming points in R1, . . . , Rk and additionally assuming

that (P,≤) dominates entire (Pk,≤).

3. As a result Alice presents extensions R′
1, . . . , R

′
k. They are exactly

R1, . . . , Rk constrained to the elements from (P,≤).

The idea of the algorithm is to force Alice to use k linear extensions

before presenting the order (P,≤). Thanks to this constraint, the property

(?) holds for {R′
1, R

′
2, . . . , R

′
k}.

Assume to the contrary that the property (?) does not hold for {R ′
1, R

′
2,

. . . , R′
k}. Let a be the first point from (P,≤) whose addition spoiled the

(?)-property, i.e., property (?) holds in the set P0 ⊆ P , and fails in the set

P ′ = P0 ∪ {a}.

We deduce there exists b ∈ P ′ such that

∀ i = 1, 2, . . . , k ∃ pi ∈ P ′ : pi ‖ b in P, but pi > b in R′
i. (‡)

Define the set b↑ of elements greater than or equal b.

b↑= {p ∈ P0 : b ≤ p in P}.

Note that a ‖ b↑ — if we had a > c ≥ b for some c ∈ b ↑ then every

pi from (‡) would be different from a; this in turn would contradict the

assumption that a is the first point violating (?). We deduce that width(b↑

) < d. We will show that Bob may add point z to P ′ in a way which

will force Alice to use k + 1 linear extensions on P ′ ∪ {z}. This fact,

together with the inequality width(P ′ ∪ {z}) ≤ d will contradict the fact

that dim upgrowing on-line(d) = k. It suffices now to declare z incomparable

to b↑ and greater than the rest of points, i.e.

z ‖p for every p ∈ b↑, z > p for every p ∈ P ′ \ b↑.

Note, that width(X ′∪{z}) ≤ d, because width(b↑) < d. Moreover, for wit-

nesses p1, p2, . . . , pk from (‡) we have z > pi, i = 1, 2, . . . , k. This together
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with pi >R′

i
b implies that z >R′

i
b for any i. If extensions R′

1, R
′
2, . . . , R

′
k

realized P then we would have z >P b, despite the assumption that z ‖ b.

We have shown that the order P ′ ∪{z} of width not exceeding d cannot be

realized by k extensions. The contradiction proves Lemma 6. �

We return to the proof of Theorem 4. It remains to show that

adaptive chain covering(d) ≤ dim upgrowing on-line(d).

Let R = {R1, . . . , Rk} be an online realizer of an upgrowing order P. We

may assume, due to Lemma 6, that the property (?) holds for R. For p ∈ P

define C(p) as follows.

C(p) = {i : property (?) holds for p in Ri, i = 1, 2, . . . , k}.

Property (?) for R guarantees that C(p) is never empty. Moreover, for

i = 1, 2, . . . , k the set {p : i ∈ C(p), p ∈ P} is a chain in P (if i ∈ C(p)∩C(q)

and p < q in Ri then (?) holds for p in Ri, hence p < q in P). The family

{C(p) : p ∈ P} solves the adaptive chain covering problem for P. �

Fact 7 dim upgrowing on-line(3) ≥ 4.

Proof. Consider the adaptive chain covering game for the following

order. At the beginning Bob presents a partial order P as seen on Figure

1.

x4 x5

x1 x2 x3

C(x4) = {1, 2} C(x5) = ?

C(x1) = {1} C(x2) = {2} C(x3) = {3}

x7x6

Figure 1.

Alice has two possibilities in defining C(x5). She may define either

C(x5) = {3} or C(x5) = {2, 3}, C(x4) = {1}. In the former case Bob re-

sponds with x7, in the latter with x6. Either way, Alice is forced to use



ONLINE DIMENSION OF PARTIALLY ORDERED SETS 109

the fourth chain (declaring C(x7) = {4} or C(x6) = {4}). The proof of the

Fact follows now from Theorem 4. �

We now generalize above schema on orders of arbitrary width. Still,

instead of constructing an online realizer we will solve the adaptive chain

covering problem.

Note that in the proof of Fact 7 every point y added above x6 (alterna-

tively above x7) may be designated exclusively to chain number 4. In other

words, chain number 4 is the only chain used so far which can be put into

set C(y) for y > x6 (alt. x7). Three such points could be used to repeat

the construction from the Fact 7 (see Figure 2).

x1 x2 x3

{1} {2} {3}

x4 x5

x6

{1, 2} {3} {4}

x7 x8 x9

{5} {6} {7}

x10 x11

{5, 6} {7} {8}

x13 x14 x15

{9} {10} {11}

x16 x17

{9, 10} {11}

x12 x18

{12}

x19

{4, 8}
x20

{12}
x21

{13}

Figure 2.

For triples of elements (x1, x2, x3), (x7, x8, x9), (x13, x14, x15) we simply

repeat the algorithm from the Fact 7, forcing Alice to use three new chains

4, 8, 12. In the end we repeat the procedure for the triple (x6, x12, x18),

forcing Alice to use the 13th chain.

In general we build an order of width 3k consisting of k layers. Layer

number j has width 3j and consists of 3j−1 zigzags from Example 7. Every

zigzag forces one new chain. For orders of width d = 3k we obtain the

following number of colors used.

3k + 3k−1 + . . . + 31 + 1 = d3d/2e − 1.

We now generalize the above result to orders of arbitrary width. Next

we outline the construction which raises the result to the value 7d/4 − 2.

The 3d/2 algorithm looks as follows.
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1 Construct d−element antichain A = (x1, x2, . . . , xd);

2 while |A| ≥ 3 do

3 build a zigzag on three arbitrary points x, y, z ∈ A

4 i .e . build an order of the form:

x

y z
{cx}

{cy} {cz}

{cx, cy} {cz}

p3

{cp3
}

p1 p2

5 A := A \ {x, y, z} ∪ {p3};

6 (p3 − point recycled from the built zigzag)

For d = 7 the resulting poset looks as on Figure 3.

x1 x2 x3

{1} {2} {3}

x8 x9

{1, 2} {3}

x10

x4 x5

{8}

{4} {5}

x11 x12

{4, 8} {5}

x13

x6 x7

{9}

{6} {7}

x14 x15

{6, 9} {7}

x16

{10}

Figure 3.

Denote by f(d) the result returned by Alice for orders of width d. From

the above algorithm we get

f(d + 2) = 3 + f(d) for d ≥ 3,

f(1) = 1,

f(2) = 2.

Simple transformations lead us to the desired formula

f(d) = d3d/2e − 1.



ONLINE DIMENSION OF PARTIALLY ORDERED SETS 111

Now we give a better lower bound of the value dim upgrowing on-line(d).

The new construction is much more technical than the previous one and

therefore we will only illustrate its main idea on the poset from Figure 3.

Note that points x8 and x9 may not be used as the base of the new

zigzag. We show how to reuse some of such points.

First Bob adds points x17 i x18 (see Figure 4).

x8 x9

{1, 2} {3}

x11 x12

{4, 8} {5}

x14 x15

{6, 9} {7}

x17 x18

{?} {?}

Figure 4.

Alice has (up to equivalent renumbering of points and chains) two pos-

sible answers:

i. C(x17) = {1, 2, 4, 8}, C(x18) = {6, 9}, or

ii. C(x17) = {1, 2, 4}, C(x18) = {8, 6, 9}.

In the first case Bob adds point x19 (see Figure 5).

x8 x9

{1, 2} {3}

x11 x12

{4, 8} {5}

x14 x15

{6, 9} {7}

x17 x18

{1, 2, 4, 8} {6, 9} {?}

x19

Figure 5.

We may assume that Alice’s response would be of the following form:

C(x18) = {6}, C(x19) = {9} (response C(x18) = {9}, C(x19) = {6} is
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symmetric, while adding a new chain is not an optimal move). Bob has

produced two points x19 i x15 which may be used in the future as the base

of the zigzag (above the point x19 Alice can use only chain number 9, above

the point x15 Alice can only use chain number 7).

Consider the second case, when C(x17) = {1, 2, 4}, C(x18) = {8, 6, 9}.

Bob adds points x19 and x20 (see Figure 6).

x8 x9

{1, 2} {3}

x11 x12

{4, 8} {5}

x14 x15

{6, 9} {7}

x17 x18

{1, 2, 4} {8, 6, 9}{?}

x19

{?}

x20

Figure 6.

Alice may answer in one of the following ways:

i. C(x19) = {3, 5}, C(x20) = {7}.

ii. C(x19) = {3, 5}, C(x20) = {7, 6}.

iii. C(x19) = {3, 5}, C(x20) = {7, 4}.

iv. C(x19) = {3, 5}, C(x20) = {7, 6, 4}.

v. C(x19) = {3}, C(x20) is anything legal.

Note that we do not consider cases when Alice brings to existence new

chains; it can be easily shown that such an action leads eventually to values

at least as high as the the values in cases (i)–(v).

In cases (i) and (ii) Bob adds points x21 > x14 and x22 > x15. Alice’s

response has to be of the following form.

In case (i) (see Figure 7):
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x8 x9

{1, 2} {3}

x11 x12

{4, 8} {5}

x14 x15

{6, 9} {7}

x17 x18

{1, 2, 4} {8}{3, 5}

x19

{7}

x20

{9}

x21

{6}

x22

Figure 7.

In case (ii) (see Figure 8):

x8 x9

{1, 2} {3}

x11 x12

{4, 8} {5}

x14 x15

{9} {7}

x17 x18

{1, 2, 4} {8}{3, 5}

x19

{7} or {6}

x20

{9}

x21

{6} or {7}

x22

Figure 8.

In cases (iii), (iv), (v) Bob adds points x21 > x8 and x22 > x9. Alice’s

response has to be of the following form.

In case (iii) (see Figure 9):

x8 x9

{1, 2} {3}

x11 x12

{8} {5}

x14 x15

{6, 9} {7}

x17 x18

{2} or {1} {8, 6, 9}{5}

x19

{7, 4}

x20

{3}

x22

{1} or {2}

x21

Figure 9.
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In case (iv) (see Figure 10):

x8 x9

{1, 2} {3}

x11 x12

{8} {5}

x14 x15

{9} {7}

x17 x18

{2} or {1} {8, 9}{5}

x19

{7, 6, 4}

x20

{3}

x22

{1} or {2}

x21

Figure 10.

In case (v) (see Figure 11):

x8 x9

{1} {3}

x11 x12

{. . .} {5}

x14 x15

{. . .} {7}

x17 x18

{. . .} {. . .}{3}

x19

{. . .}

x20

{2}

x22

{1}

x21

Figure 11.

In all possible cases points x21 i x22 may be used by Bob as the base of

further zigzags. A formalized version of the algorithm looks as follows.

1 Construct d−element antichain A = (x1, x2, . . . , xd);

2 B := ∅; {B contains points which are used to build zigzags}

3 while (|A| ≥ 3 or |B| ≥ 3) do

4 if (|A| ≥ 3)

5 build a zigzag on 3 arbitrary points x, y, z ∈ A;

6 A := A \ {x, y, z} ∪ {p3}; B := B ∪ {(p1, p2)};

7 if (|B| ≥ 3)

8 extract from B three pairs of points (p1, p2), (q1, q2), (r1, r2);

9 add points x1, y1 such that x1 > p1, x1 > q1, y1 > q1, y1 > r1;

10 if Alice responds according to the case ( i )
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11 add point z1 > r1; {z1 ≈ x19}

12 A := A ∪ {z1, r2};

13 else

14 add points x2, y2 such that x2 > p2, x2 > q2, y2 > q2, y2 > r2;

{x2 ≈ x19, y2 ≈ x20}

15 if Alice responds according to the case (i) or (ii)

16 add points z1 > r1, z2 > r2; {z1 ≈ x21, z2 ≈ x22}

17 else (scheme (iii), (iv), (v))

18 add points z1 > p1, z2 > p2; {z1 ≈ x21, z2 ≈ x22}

19 A := A ∪ {z1, z2};

Denote by f(m,n) the number of zigzags which can be constructed

when |A| = m, |B| = n. From the above algorithm we deduce the following

recursive formula:

f(m,n) =











1 + f(m − 2, n + 1), for m ≥ 3,

f(m + 2, n − 3), for m < 3, n ≥ 3,

0, for m < 3, n < 3.

After simple transformations we get

f(m, 0) =

{

b3m/4c − 1, for odd m > 2,

b3m/4c − 2, for even m > 2.

Alice returns for the constructed order of width d value not less than d +

f(d, 0). We have proved the following

Theorem 8 For every d ∈ N we have

dim upgrowing on-line(d) ≥ b7d/4c − 2.

�
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