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Abstract. In this paper we introduce the notion of merging states

and merging systems and we use it for the classification of finite de-

terministic automata without initial and final states. We investigate

the dependencies between the structure of an automaton described by

merging systems and maximal lengths of minimal synchronizing words

for automata which structures belong to the given class of merging sys-

tems. Numerical results for certain classes of automata are presented.

We also give some properties of merging systems themselves. The work

is motivated by the famous, unsolved Černý Conjecture. The aim of

this paper is to propose the use of merging systems in the research on

the Conjecture.
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1. Introduction and motivation

Let A = (Q,A, δ) be a finite, deterministic and complete automaton
without initial or final states. If there is a word w such that for all states

1This research is supported by State Committee For Scientific Research (in Poland)
grant no. 3 T11C 010 27.
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p, q ∈ Q we have p.w = q.w then we say that w synchronizes A and call such
automaton a synchronizing one. If there is no shorter word we call w the
minimal synchronizing word for A. We denote by M(A) the length of the
minimal synchronizing word for A.

Černý Conjecture states that for n-state synchronizing automaton A we
have M(A) ≤ (n − 1)2. The Conjecture was stated in 1964 and is still
open. Černý proved that for each n there exists the n-state automaton which
possesses the minimal synchronizing word of length exactly (n−1)2, therefore
obtaining the upper bound from the Conjecture. Such automata are so-called
Černý automata.

A synchronization problem – that is finding synchronizing words – seems
to be only a nice combinatorial puzzle, but in fact it has many important
applications in the industry (particulary in so-called part orienters [12]), bio-
computing (reset problem [3]), network theory, etc. Therefore the problem
is of general interest. We would like to know if the (n − 1)2 bound is op-
timal (there is a gap between this O(n2) conjectured bound and the best
bound known so far, O(n3)) and what method would be the best for finding
the shortest possible synchronizing sequences. There are some polynomial
algorithms but the problem with finding the minimal synchronizing word is
NP-complete, so probably there arenot any polynomial algorithms which can
work in the optimal way in all cases.

The reader is referred to [1, 3, 10, 12] for more details on the role of the
synchronization problem and to [7, 16] for polynomial algorithms and the
proof of NP-completeness.

The Černý Conjecture turned to be true for some special cases (see for
example [1, 2, 5, 6, 7, 9, 15, 16]) but in general case it is still open. The best

known upper bound for M(A), where A has n states, is n3
−n
6

[11].
In this paper, motivated by the Černy Conjecture, we introduce the no-

tion of merging states and merging systems in finite automata and use them
to investigate the dependencies between the structure of an automaton de-
scribed by a merging system and maximal lengths of minimal synchronizing
words for automata which structures belong to the given class of merging
systems. Numerical results for certain classes of automata are presented.
We also give some properties of merging systems themselves. The aim of
this paper is to propose the use of merging systems in the research on the
Conjecture.
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2. Merging states

We will consider finite automata defined as triples A = (Q,A, δ), where
Q is a finite set of states, A is a finite alphabet and δ : Q × A → Q is a
function transforming states. It can be extended on a free monoid A∗ and
set of subsets of Q:

δ(P, aw) =
⋃

p∈P

δ(δ(p, a), w) a ∈ A, w ∈ A∗.

By δ−1(q, a) we understand the set of states which come to q under the letter
a: δ−1(q, a) = {p ∈ Q : δ(p, a) = q}. This function can be also extended:

δ−1(P,w) = {q : δ(q, w) ∈ P}, P ⊆ Q, w ∈ A∗.

Let A be an automaton. We say that w is a synchronizing word for A
if |δ(Q,w)| = 1. An automaton which admits a synchronizing word is called
a synchronizing automaton. If w is a synchronizing word and there is no
shorter one, w is called the minimal synchronizing word.

Definition 1. State q ∈ Q is a merging state of degree k for a ∈ A if

|δ−1(q, a)| = k.

In other words it means that there exist k different states p1, ..., pk ∈ Q

such that δ(pi, a) = q and these are the only states, which comes to q under
the letter a. The set of states {p1, ..., pk} will be called the merging system (for
a, of q and of degree k) and q will be called the merging state for {p1, ..., pk}.

Note that q can, although it hasnot to be, one of the pi’s. We will differ
these two situations:

Definition 2. Let P = {p1, ..., pk} be a merging system for a merging

state q. If ∃i : q = pi, then q will be called an internal merging state for P

and the set P – an internal merging system.

An external merging system is a system which is not internal. In this
situation we have q 6= pi∀i = 1, ..., k and we say that q is an external merging

state for P .
In Fig. 1 one can see the examples of two merging systems described

above.
Let us assume that P = {p1, ..., pk} is a merging system for a ∈ A or

q ∈ Q and let q be an external merging state for P . Then q belongs to
another merging system R = {r1, ..., rt} (P ∩R = ∅) for the same letter a but
cannot be the merging state for R. If s is a merging state for R then q 6= s
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Fig. 1. External and internal merging systems of degree 3

only if q ∈ R. In contradiction, if q = s then P and R would have to be one
merging system P = R = {p1, ..., pk, r1, ..., rt} with a merging state q = s.
It comes directly from the definition of a merging state and determinism of
automaton: each state, for a given letter, can be a merging state only for one
merging system (see Proposition 1).

p1

p2

q r

a

a

a a

Fig. 2. q as a merging state and in the same time as a part of other merging system

Fig. 2 illustrates this situation: q is a merging state for {p1, p2} and
belongs to another merging system {q, r}.

In the following we will assume that each time merging systems will be
considered for a fixed letter a ∈ A. We also assume that all automata are
deterministic and complete (it means that δ is a total function).
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A merging state of degree greater than 1 will be called a proper one.
Let A = (Q,A, δ), where |Q| = n, |A| = m. Let us introduce the notation

for describing all merging systems in A:

Definition 3. Let A for ai, i = 1, ..., m has λai
t external merging

systems of degree t, µai
t internal merging systems of degree t and maximal

degree of merging systems doesnot exceed ki. Then such automaton will be

described in the following way:

A ∼ [1λ
a1

1 1
µ

a1

1

∗ . . . k1

λ
a1

k1k1

µ
a1

k1

∗ ]a1
. . . [1λ

am
1 1

µ
am
1

∗ . . . km
λ

am
km km

µ
am
km

∗ ]am .

The above notation will be called a merging type of A.

Example 1. Let’s take n = 4, k = 3, n − k = 1 and fix the partitions:

k = 3 = 1 + 2, n − k = 1. The corresponding merging type is [11∗2∗] and it

is represented in an automaton in Fig. 3.

q0

q1

q2

q3

b

ab

b

ab

a

a

Fig. 3. An automaton with merging type [11∗2∗][1
22]

In the paper we will sometimes use the following convention: if there
arenot any proper merging systems for a given letter then this part of the
notation will be omitted. Also (especially in the section with numerical
results) the notation of systems of degree 1 will be omitted. This convention
will be used if there is no need for distinguishing external and internal merging
systems of degree 1.
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The following proposition and theorem are true. The proposition claims
that each state is involved in exactly one merging system, the theorem gives
the generating function for the formula counting the number of syntactically
different merging states for a single letter (that means, the number of different
notations like the one introduced in Definition 3).

Proposition 1. If the merging type for A = (Q,A, δ), |Q| = n is

[1λ11µ1

∗ ...kλkk
µk
∗ ] then

k
∑

i=1

i ∗ (λi + µi) = |Q| = n.

�

Theorem 1. The number L of different merging types for a letter a in

automaton A = (Q,A, δ), |Q| = n is

L =
n

∑

k=0

([xk]
n

∏

i=1

(1 − xi)−1 ∗ [xn−k]
n

∏

j=1

(1 − xj)−1) − 1,

where [xn] denotes the coefficient at xn.

Proof. Let’s divide the set of states into two classes K1 and K2: states,
which belong to internal merging systems will be in K1, states which belong to
external ones will be in K2. Obviously K1+K2 = |Q| = n. Let |K1| = k. This
k states can be divided into t groups of k1, k2, ..., kt elements, k = k1+k2+...+
kt. The i-th group (with ki elements) represents the internal merging system
of degree ki. The same situation is with n − k remaining states – but here
groups represent external merging systems (n−k = l1 + l2 + ...+ ls). One can
see that each such partition can stand for the partition of integers k and n−k.
Note that each pair of partitions for k and n− k (here: [l1l2...lsk1∗k2∗...kt∗])
has some representation in merging systems, although an automaton with
such structure is not a synchronizing one in general. Furthermore, for a given
partition of k and n−k there can be more than one automaton which structure
is induced by this partition (up to isomorphism). Because k was chosen
arbitrarily, we consider all possible pairs of partitions of k and n− k and we
sum the corresponding coefficients in generating functions which represent
above partitions. We must subtract 1 from the result because one partition
isnot possible (for k = 0 and partition n into one part there is no external
merging system). �
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One can bring out the formula which describes the dependence between
the merging system and the transition function for a given automaton (we
give here the version for merging only for one letter, for the sake of simplicity).

Proposition 2. Let A = (Q,A, δ) be of type [1λ11µ1

∗ ...kλkk
µk
∗ ]a. Then

|Q| − |δ(Q, a)| =

k
∑

i=2

(i − 1)(λi + µi).

Proof. Let Q = P1 ∪ P2 ∪ ... ∪ Pk ∪ R1 ∪ R2 ∪ ... ∪ Rk, where Pj (resp.
Rj) represents the union of all internal (resp. external) merging systems of
degree j. From Proposition 1 we know that the cross section of any two of

these sets is empty. Furthermore, if Pj = P 1

j + ... + P
λj

j , where P k
j is k-th

merging system of degree j, the cross section of any two sets P x
j and P

y
j is

empty. It is obvious that for given j we have |P 1

j | = |P 2

j | = ... = |P
λj

j | = j.

For each P
j
i we have |δ(P j

i , a)| = 1 and for each Pi we have |δ(Pi, a)| = λi.

Therefore |P j
i | − |δ(P j

i , a)| = |P j
i | − 1. The same facts are true for each Ri.

We have:

|Q| − |δ(Q, a)| = |
k

⋃

i=1

(Pi ∪ Ri)| − |δ(
k

⋃

i=1

(Pi ∪ Ri), a)|

=

k
∑

i=1

|Pi ∪ Ri| −
k

∑

i=1

|δ((Pi ∪ Ri), a)|

=
k

∑

i=1

((|Pi| − |δ(Pi, a)|) + (|Ri| − |δ(Ri, a)))

=
k

∑

i=1

((|Pi| − λi) + (|Ri| − µi))

=

k
∑

i=1

((λi ∗ |P
1

i | − λi) + (µi ∗ |R
1

i | − µi))

=

k
∑

i=1

(λi ∗ (i − 1) + µi ∗ (i − 1))

=

k
∑

i=1

(i − 1)(λi + µi)

=
k

∑

i=2

(i − 1)(λi + µi).

�
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3. Černý Conjecture

Černý Conjecture was stated in 1964 [4] and claims that the length of the
minimal synchronizing word for the n-state synchronizing automaton is not
greater than (n−1)2. It is known to be true for special cases (see [1, 5, 6, 7, 9])
but we do not know if it is true in general case. The best known general upper
bound is n3

−n
6

− 1 [11, 13]. For a good survey on the problem see the paper
of Salomaa [14].

Let M(A) be the length of the minimal synchronizing word for A and let
M([1λ1 ...k

µk
∗ ]) be the longest word among minimal synchronizing words for

automata of a given type.

It is known fact that for each n ≥ 2 there exists the n-state automaton for
which the conjectured upper bound (n− 1)2 is obtained. These are so-called
‘Černý automata’. The transition function for the n-state Černý automaton
with Q = {0, 1, ..., n − 1} and A = {a0, a1} is defined as follows:

δ(q, a) =







q + 1 (mod n) for a = a0

q for a = a1 ∧ q 6= n − 1
0 for a = a1 ∧ q = n − 1.

It turned out that for some n there exist automata which are non-isomor-
phic with Černý’s ones but also reach conjectured bound (M(A) = (n−1)2).
It is easy to give an example for n = 2, 3. Černý gave the example for n = 4.
We found it for n = 6 – it is the same automaton which was found by J. Kari.
He gave this example as the counterexample of Pin’s extended Conjecture [8].
For n = 5, 7, 8 there are no such automata for a 2-letter alphabet. Up to this
time it is unknown if each automaton of type [2∗] fulfills Černý Conjecture,
although it is known that for each n there exists such automaton of this type
for which the conjecture is true and the upper bound is obtained (Černý
automaton).

4. Numerical results. Merging states and synchronization

In the table we present the maximal lengths of minimal synchronizing
words for automata of certain classes. These classes are defined by merging
types – [k1] or [k1

∗
] for k = 2, ..., n − 1 for given n (it means that k states

produce one merging system and other n − k states are ‘single’ merging
systems of degree 1). Results were found by computer for n = 2, 3, ..., 9.
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Merg. type / n 2 3 4 5 6 7 8 9

2∗ 1 4 9 16 25 36 49 64

2 4 9 15 25 32 44 58

3∗ 1 4 9 16 25 36 49

3 4 9 17 25 33 44

4∗ 1 4 9 16 25 36

4 4 10 18 28 37

5∗ 1 4 9 16 25

5 4 11 21 31

6∗ 1 4 9 16

6 4 12 22

7∗ 1 4 9

7 4 13

8∗ 1 4

8 4

9∗ 1

Fig. 4. Numerical results for n = 2, 3, ..., 9

We will prove now that the ‘boundary’ values from the table are in fact
1, 4 and 4.

Theorem 2. M([n∗]) = 1.

Theorem 3. M([n − 1]) = 4.

Theorem 4. M([(n − 1)∗]) = 4.

Proof of Theorem 2. It’s trivial – for each automaton of type [n∗]a
|δ(Q, a)| = 1 and |a| = 1. �

Proof of Theorems 3 and 4. Let a ∈ A be the letter which synchronizes
n−1 states. Let awa be the shortest word which synchronizes A, w = b1...bm.
Suppose m ≥ 3. Then the kernels of δ( , b2...bma), δ( , b3...bma) and δ( , a) are
three different partitions of Q into two parts. If two of them, say δ( , b2...bma)
and δ( , b3...bma) coincide, then the word ab1b3...bma would synchronize A,
a contradiction. On the other hand, the 2-element image of Q under δ( , a)
should be a cross-section of each of the three partitions – indeed, if the
image is not a cross-section of the kernel of δ( , b2...bma), say, then the word
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ab2...bma synchronizes A, a contradiction. But one of the two parts of each of
the three partitions must be a singleton and since the partitions are different,
their singleton parts are different as well. So, no triple of such partitions can
share a common cross-section. Thus m ≤ 2, so the length of the shortest
synchronizing word cannot be greater than 4. �

For merging type [(n−2)] it is easy to show that M(A) ≥ n+4 for n > 4:
the transition function for the automaton with this property is defined as
follows: δ = (211...1n)(1345...(n − 1)n2): states 2, 3, ..., n − 1 merges into
state 1 under a, b induces a (n−1)-cycle on states 2, 3, ..., n−1, n and 1-cycle
on state 1.

One can ask if there are some relations between the structure of an au-
tomaton and the length of its minimal synchronizing word. Particulary we
would like to know if there are relations saying how the length of the mini-
mal synchronizing word changes if we change the type of an automaton. In
general, there are no such relations:

Let A = (Q,A, δ) be a synchronizing automaton and A′ = (Q,A, δ′) – an
automaton given by changing one value in δ from A:

δ′(q, a) =

{

δ(q, a) for q 6= q0 ∨ a 6= a0

q′ for q = q0 ∧ a = a0,

where q′ 6= δ(q0, a0).

Now we give 3 examples showing that in general case (that means, if we
change the transition function arbitrarily) there is no dependence between
changing one value in δ and the length of the minimal synchronizing word for
this new automaton. The notation for δ as (a1...an)(b1...bn) means: δ(q, a) =
aq. For example, if δ = (231)(112), then δ(q3, b) = 2, δ(q2, a) = 3 etc. In all
3 examples the merging type changes from [123∗]b into [122∗]b.

Example 2. Let δ = (31524)(33354), δ′ = (31524)(34354). Then M(A) =
5 < 7 = M(A′). Minimal synchronizing words for A and A′ are baaab and

baaabab, respectively.

Example 3. Let δ = (53412)(33354), δ′ = (53412)(35354). Then M(A) =
6 > 5 = M(A′). Minimal synchronizing words for A and A′ are babaab

and babab.

Example 4. Let δ = (52143)(33354), δ′ = (52143)(34354). Then M(A) =
5 = 5 = M(A′). The minimal synchronizing word for A and A′ is babab.
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From the other side we see that there is some regularity in the table and
it seems that there are relations such as mentioned above, if we consider
changing the number of states: the greater number of states is, the longest
is the minimal synchronizing word (in the given class of merging type). The
next step is to see if there are relations between the number of precisely
merging systems and the lengths of minimal synchronizing words.

In our computations we were interested only in automata with one merg-
ing system, because probably this is the sufficient condition which should be
fulfilled by n-state automata in order to find the minimal synchronizing word
of maximal length for a given n. Namely, we strongly believe in the following
conjectures.

Conjecture 1. If A is an n-state synchronizing automaton with k merg-

ing systems S1, S2, ..., Sk (k > 1), then there exists a synchronizing n-state

automaton B with k − 1 merging systems S1, S2, ..., Sk−1 such that

M(A) ≤ M(B).

Conjecture 2. If A is an n-state synchronizing automaton with merg-

ing system of degree k (k > 2), then there exists a synchronizing n-state

automaton B with merging system of degree k − 1 such that

M(A) ≤ M(B).

It intuitively seems that the first conjecture should be true. Computations
support the second conjecture: computer, for 4, 5 and 6-state automata with
one merging system P of degree greater than 2 found that for all of them, if
q∗ is the merging state and R = {q ∈ Q : δ−1(q, a) = ∅}, then there always
exist state p from P and r from R such that if we change the value δ(p, a)
from q∗ into r then the length of the minimal synchronizing word for the new
automaton is greater than the length of such word for the initial automaton.

Because we ask if Černý Conjecture is true, assuming the conjectures
1 and 2 are true it would be enough to prove Černý Conjecture only for
automata with one merging system of degree 2, so the problem would reduce
into one case:

Proposition 3. If Conjectures 1 and 2 are true, then Černý Conjecture

holds iff m(A) ≤ (n − 1)2 for each A of merging type [2] and [2∗].

Proof. Let Ak be an automaton with k merging systems. Then, ac-
cording to Conjecture 1, we can build the sequence of automata Ak, Ak−1,
..., A1 such that Ai has i merging systems and M(Ai) ≥ M(Aj) for i < j.



106

Then, applying the Conjecture 2 to the automaton A1 = At
1

with one merg-
ing system of degree t we can again build the sequence At

1
, ..., A2

1
such that

Ai
1

has one merging system of degree i and M(Ai
1
) ≥ M(Aj

1
) for i < j. For

automaton Ak we found automaton A2
1

such that M(A2
1
) ≥ M(Ak). So the

problem reduces into automata with only one merging system of degree 2. �

We would also like to investigate the dependencies between these val-
ues for different merging types. This is why we did the computations for
automata with one merging system but of different degrees.

5. Summary

We presented the classification of finite automata according to the merg-
ing type, described properties of merging systems and showed the results of
computations with aim to find the maximal lengths of minimal synchroniz-
ing words for automata of certain types. We proved three theorems on the
(constant for each n) lengths of minimal synchronizing words for automata
of type [n], [n − 1], [(n − 1)∗] and gave some lower bound for type [n − 2]
which seems to be also the upper bound. We stated some open problems and
showed that if Conjecture 1 and 2 are true, Černý Conjecture will reduce to
one case – the family of automata of type [2] and [2∗].

We think that the notion of merging systems, if developed more, can be
a good tool in the research on a synchronization problem. We are interested
in the following problem: what are the relations between values in the ta-
ble from Section 3 and how does the length of the minimal synchronizing
word behave if we change the stucture of the automaton by adding or remov-
ing one state or changing the merging type by redirecting one arrow in the
automaton? Answers to these questions can lead to some new facts about
synchronization, give some wide class of automata fulfilling the Conjecture,
reducing the Conjecture to the simpler problem or even prove or disprove the
Conjecture.

The results from this paper were presented at the ICALP’04, Workshop
on Synchronizing Automata in Turku, Finland.
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