
S C H E D A E I N F O R M A T I C A E

VOLUME 15 2006

Fast Solutions for DNA Code Words Test

Piotr Oprocha
AGH University of Science and Technology, Faculty of Applied Mathematics

Al. Mickiewicza 39, 30-059 Kraków, Poland, and
Jagiellonian University, Institute of Mathematics

Reymonta 4, 30-059 Kraków, Poland
e-mail: oprocha@agh.edu.pl

Abstract. An essential part of any DNA computation is to encode data
on DNA strands. Performing such computation we must be sure that
no undesirable hybridization will occur. The aim of this paper is to
present algorithms which can test if a given set of code words satisfies
certain coding and involutory properties, as it is necessary to prevent
undesirable DNA strands interactions. These algorithms are based on
the theory of codes and pattern matching methods.

If we denote by m sum of the lengths of words in a given set, then all

presented algorithms can be realized with O(m2) complexity both for

time and space.

Keywords: DNA, strings properties, code, complexity, algorithms.

1. Introduction

Every DNA molecule is an oriented sequence of nucleotides, so it can be
represented as a single word over alphabet ∆ = {A,C,G, T}. It is important
property of DNA that C is complementary to G, A is complementary to T
and two complementary sequences (single DNA strands) with opposite orien-
tations joint together (hybridize) forming a double stranded DNA molecule
(this property is called Watson-Crick complementarity).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/299811477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

42

It is interesting that DNA may be used in computational problems. As
DNA strands join together almost in a blink, it give the possibility to solve
some complicated problems (e.g. the existence the Hamilton Cycle problem)
very fast. There are many technical problems with such experiments, however
there is hope for some improvements in future. Main ideas and results in DNA
computing the reader may find in [6].

In laboratory experiments it is very important to avoid some unnecessary
hybridizations (see Fig. 1). A situation, when a part of a given DNA sequence
(longer than k) is complement to the other part of this sequence with the same
length, is undesired. For a given set of DNA sequences, a situation, when one
sequence is a reverse complement of the subword of another sequence or it is
a reverse subword of concatenation of other two sequences, is also unliked.

Fig. 1. Unallowed hybridizations

Papers [9, 6] define properties of words and languages, which if fulfilled by
a given set of DNA strands, prevent situations described above. Authors of
[7, 10] present methods and try to implement theoretical results in software
program. The most important part of this program is to perform tests of
generated sequences. The algorithm introduced there work in O(m4) time,
where m denotes the sum of the lengths of DNA sequences in a given set.

In this paper we describe how to construct algorithms with complexity
O(m2), which speed up whole process of DNA code words generation. In the
presented algorithms the theory of codes is used as well as string matching
algorithms like KMP or Aho-Corasick algorithm (see [3, 4]).

2. Basic definitions and properties

An alphabet Λ is any nonempty finite set. We will denote by ∆ the
alphabet {A,C,G, T} representing the DNA nucleotides.

The word w ∈ Λ∗ is a prefix (resp. suffix) of the word x ∈ Λ∗, which we
denote w ⊏ x (resp. w ⊐ x), if there exists word u ∈ A∗ such that wu = x
(resp. uw = x). The length of the word w = a1 . . . an we denote by |w| = n.

43

Definition 1. Let Λ be an alphabet. A subset X of the free monoid Λ∗

is a code over Λ if, for all n,m ≥ 1 and for all x1, . . . , xn, x′
1, . . . , x

′
m ∈ X,

the condition

x1x2 . . . xn = x′
1x

′
2 . . . x′

m

implies

n = m and xi = x′
i for all i = 1, . . . , n.

The flower automaton of X is by the definition the automaton A(X) =
(Q,E, I) containing a set of states Q, the labelling (transition) E ⊂ Q×Λ×Q
and state I which is the initial and terminal state at once. If we denote
I = {∗} then we may define the set of states as

Q = {∗} ∪ {qw
i : w = a1 . . . an ∈ X, i = 2, . . . , n}

and then the transitions in A(X) are

E = {(∗, a1, q
w
1) | w = a1 . . . an ∈ X} ∪ {(qw

n , an, ∗) | w = a1 . . . an ∈ X} ∪{
(qw

i , ai, q
w
i+1) | w = a1 . . . an ∈ X, i = 2, . . . , n − 1

}
.

We also define labelling function λ : E → Λ such that λ((q1, a, q2)) = a. The
labelling function can be extended to paths labelling in the usual way.

The automaton A(X) is unambiguous if for all p, q ∈ Q and w ∈ Λ∗ there
is at most one path form p to q with label w.

The square of A(X) is the automaton A′(X) = (Q′, E′, I ′) such that
Q′ = Q×Q, I ′ = {∗′} = {(∗, ∗)} and

E′ =
{
((p, q), a, (p′, q′)) | (p, a, p′), (q, a, q′) ∈ E, a ∈ Λ

}
.

Proposition 1. (see [2, chapt. IV thm. 2.1]) A finite set of words X is
a code if and only if the flower automaton A(X) is unambiguous.

The following proposition follows from the definitions

Proposition 2. The flower automaton A(X) is unambiguous if and only
if there is no path in A′(X) from a state (p, p) to a state (q, q) visiting a state
(r, s) with r 6= s.

Corollary 1. For any state (q, q) ∈ Q′ there is a path from ∗′ to (q, q)
and a path from (q, q) to ∗′.

44

Corollary 2. A finite set of words X is a code if and only if there is
no cycle in A′(X) from a state ∗′ visiting a state (r, s) with r 6= s.

We recall that oriented graph G is a pair (V,E), where V is any finite
set, and E ⊂ V × V . For any u ∈ V we will denote by Adj(u) the set
Adj(u) = {v ∈ V : (u, v) ∈ E}. If G = (V,E) then its transposition is the
graph GT = (V,ET), where ET = {(v, u) : (u, v) ∈ E}.

An involution θ : Λ → Λ of a set Λ is a mapping such that θ2 = idΛ.
We will define two special involutions ν and ρ of the set ∆∗. The mapping
ν is defined by ν(A) = T , ν(T) = A, ν(C) = G and ν(G) = C, and may be
extended to an involution of ∆∗. The mapping ρ is defined inductively as
ρ(s) = s and ρ(us) = ρ(s)ρ(u) = sρ(u) for any s ∈ ∆ and u ∈ ∆∗.

Definition 2. Let θ be an involution of a set Λ and let X ⊂ Λ∗ be a
finite set.

1. The set X is called θ(k,m1,m2)-subword compliant if for all u ∈ Λ∗

such that |u| ≥ k we have Λ∗uΛmθ(u)Λ∗ ∩X = ∅ for m1 ≤ m ≤ m2.

2. The set X is called θ-compliant if Λ∗θ(x)Λ∗ ∩X = ∅ for all x ∈ X.

3. The set X is called θ-free if X2 ∩ Λ∗θ(x)Λ∗ = ∅ for all x ∈ X.

4. The set X is called strictly θ if θ(x) /∈ X for all x ∈ X.

Corollary 3. The set X is θ(k,m1,m2)-subword compliant if and only
if for all u ∈ Ak we have A∗uAmθ(u)A∗ ∩X = ∅ for m1 ≤ m ≤ m2.

Example 1. Let us consider following sets of words

X1 = {AA,TT,CTT} , X2 = {AA,TAC,GT} .

Obviously both defined sets are prefix codes. Let X̃i = θ(Xi), where θ denotes
morphism θ = νρ. In this case

X̃1 = {AA,TT,AAG} , X̃2 = {TT,GTA,AC} .

Observe that X1 is not strictly θ as θ(AA) = TT ∈ X1. If we modify
X1 to X ′

1 = X1 \ {AA} then it becomes strictly θ but not θ-compliant as
Gθ(TT) = GAA ∈ X ′

1. Set X2 is strictly θ and θ-compliant but it is not
θ-free. We have that (X2)

2 = {AAAA,TACAA,GTAA, . . . , GTGT} and
GTAA ∈ θ(TAC)A ⊂ A∗θ(TAC)A∗. Set X2 is θ-compliant so it is also
θ(k,m1,m2)-subword compliant for any parameters k,m1,m2.

45

It is an important property of a single-stranded DNA molecule that its
two ends are physically different. By convention, one end is called 5′ end
and the other one is called the 3′ end. Let u ∈ ∆∗ denote DNA strand in
its 5′ → 3′ orientation. If we denote by ←−u the Watson-Crick complement of
the word u (i.e. oppositely-oriented complementary DNA strand which can
bind to u forming double-stranded DNA), also in orientation 5′ → 3′, then
it is easily seen that ν(ρ(u)) = ρ(ν(u)) = ←−u (word ←−u consists of symbols
(nucleotides) complement to symbols of u and its order is inverted).

We would like to test if a given set of words over alphabet ∆ (DNA
strands) is νρ-free and νρ-subword compliant (fulfills conditions (1)–(4) for
involution θ = νρ). These properties describe intermolecular hybridizations
which are unlikely for us. We will try to construct fast algorithms checking
all these properties.

3. Algorithms

We present algorithms checking if a given set is a code, θ-compliant and
θ-free. We will also show that the upper bound for the complexity function
of presented algorithms is O(n2). All algorithms will be presented in the
simplified pseudocode.

3.1. A test for a code

By Corollary 2 it is enough to check if there exists path from ∗′ to ∗′ going
through state (r, s), where r 6= s. It is also important that paths through
states (p, p) need not to be checked as the next state on the path is ∗′ or
(q, q) for some q.

The number of states n and the number of transitions m in the flower
automaton A(X) for a code X =

{
x1, x2, . . . , x|X|

}
are equal to

n = 1 +

|X|∑

i=1

(|xi| − 1) and m =

|X|∑

i=1

|xi|.

We will assume that |x| > 1 for each x ∈ X. With this assumption
m < 2n and automaton is “thin” so we will represent the flower automaton
by transition lists. In case of DNA we have only 4 symbols, so we will use
one list for each symbol a ∈ Λ.

46

First, we present an algorithm which for a given set of words X builds a
flower automaton A(X).

Flower-Automaton(X)

1: q ← 0

2: for each x ∈ X

3: do Add-Trans(Q[0],x1,Q[q + 1])

4: Add-Trans(Q[q + |x| − 1],x|x|,Q[0])

5: for i← 2 to |x| − 1

6: do q ← q + 1

7: Add-Trans(Q[q],xi,Q[q + 1])

8: return Q

States of the A(X) are stored in the table Q and state ∗ is represented
by Q[0]. Function Add-Trans(q, a, q′) add transition (q, a, q′) to the list of
transitions of the state q. This function may be realized in O(1), so the flower
automaton is build in linear time O(n + m) = O(m).

The next step is to build an A′(X) automaton. As we are only interested
in the existence of a special cycle visiting ∗′ it is enough for us to construct an
oriented graph G with the vertex set equal to Q′. There is an edge between
two vertices q and p if there exists a ∈ Λ such that transition (q, a, p) ∈ E′. In
fact there exists at most one such a. Vertices of graph G with its adjacency
lists are stored in table V [i][j], where i, j = 1, . . . , n.

Square-Graph(Q)

1: n← |Q|

2: for i← 0 to n− 1

3: do for j ← 0 to n− 1

4: do Add-Edges(i, j)

5: return V

47

Function Add-Edges(i, j) works as follows. For each a ∈ Λ it takes
transition list L(a, i) of the state Q[i] and transition list L(a, j) of the state
Q[j]. If transition (Q[i], a,Q[r]) ∈ L(a, i) and (Q[j], a,Q[s]) ∈ L(a, j) then
it adds an edge from V [i][j] to V [r][s] to the adjacency list of vertex V [i][j].
Observe that every pair of transitions is considered only once. It implies that
complexity of the procedure Square-Graph(Q) is equal to O(n2 + m2) =
O(m2).

The last part of the algorithm is construction of the procedure which
determines if there exists a cycle starting in vertex V [0][0] and visiting ver-
tex V [i][j] for some i 6= j. We will use some modification of the algorithm
Strongly-Connected-Components presented in [3] to check this prop-
erty. We will also use procedure Initialise-Colours which assigns colour
white to vertices V [i][i] and gray to vertices V [i][j], where i 6= j. It obviously
may be realized in O(m2) operations. Colours of vertices are stored in table
colour. We will also use temporary table visited.

Dfs-Visit(u, V)

1: visited[u]← true

2: for each v ∈ Adj(u)

3: do if visited[v] = false

4: then if colour[v] 6= black

5: then if colour[v] = gray

6: then colour[v]← black

7: if Dfs-Visit(v, V) = false

8: then return false

9: else return false

10: return true

Code-Test(X)

1: Q← Flower-Automaton(X)

2: V ← Square-Graph(Q)

3: Initialise-Colours(V)

4: u← V [0][0]

48

5: for each v ∈ V

6: do visited[v]←false

7: Dfs-Visit(u, V)

8: change G to GT

9: for each v ∈ V

10: do visited[v]← false

11: return Dfs-Visit(u, V)

Function Dfs-Visit(u) is a simple modification of standard DFS. When
it reaches gray vertex its colour is changed to black, which means that there
exists path from V [0][0] to this vertex. In the first use of DFS it is impossible
to reach a black unvisited vertex. White vertices are not considered as there
could happen anything “bad” on the path form such vertex to ∗′ or from
∗′. If there exists a path in GT from V [0][0] to an unvisited vertex coloured
black, Dfs-Visit will return false and then given set X is not a code.

For graph G defined by adjacency lists transposition graph GT may be
calculated with complexity O(|V [G]| + |E[G]|) (see [3, chapt. 23]), which
in our case equals to O(n2 + m2) = O(m2). It means that function Code-
Test(X) has complexity bounded by O(m2). Memory complexity is also
bounded by O(m2). Another approach to this problem (with the same com-
plexity) is presented in [4]. Both approaches are faster than the algorithm
introduced in [7] which has time complexity O(n4) = O(m4).

3.2. A test for θ-compliance and a strictly θ test

At the beginning we must recall KMP algorithm as it is necessary for us
to match patterns in linear time.

Suppose we are given text T = [1, . . . , t] and pattern P = [1, . . . , p]. We
will use notation Pq = P [1..q]. The basic part of this algorithm is to compute
the prefix function π defined as

π[q] = max {k : k < q , Pk ⊐ Pq} .

We will use Compute-Prefix-Function to compute π[i] for i = 1, . . . , p.
It may be done with complexity O(p) (see [3, chapt. 34, p. 975]). This func-
tion is the main part of KMP-Matcher which decides if P is a substring
of T . This function needs O(p + t) time and O(p) space [3].

49

We will use the naive algorithm to check if a given set X is strictly θ, as
it seems that there is no faster method.

Strictly-θ-Test(X)

1: for each x ∈ X

2: do w ← θ(x)

3: for each u ∈ X

4: do if |u| = |w| and KMP-Matcher(w, u)

5: then return false

6: return true

It is easy to see that complexity of this algorithm is bounded by

O(

|X|∑

i=1

(|xi|+ m)) = O(|X| m) ≤ O(m2).

To check θ-compliance we need only to remove condition |w| = |u| from
the line 4 of the Strictly-θ-Test function.

Next we will construct an algorithm testing if X is θ(k,m1,m2)-subword
compliant. Main idea of this algorithm is given by Corollary 3. We will use
modified KMP-Matcher which sets M [i] with true if T [i . . . i+ |P |−1] =
P and false otherwise, for all i = 1, . . . , |T |. We will call such table M
match table.

KMP-Compute-Match-Table(T, P, π,M)

1: for i← 1 to |T |

2: do M [i] = false

3: q ← 0

4: for i← 1 to |T |

5: do while q > 0 and P [q + 1] 6= T [i]

6: do q ← π[q]

7: if P [k + 1] = T [i]

8: then q ← q + 1

50

9: if q = |P |

10: then M [i] = true

11: q ← π[q]

Subword-Compliance-Test(k,m1,m2,X)

1: for each x ∈ X

2: do for i← 1 to |x| − k

3: do u← x[i . . . i + k − 1]

4: w ← θ(u)

5: πu ← Compute-Prefix-Function(u)

6: πw ← Compute-Prefix-Function(w)

7: for each y ∈ X

8: do KMP-Compute-Match-Table(y, u, πu,Mu)

9: KMP-Compute-Match-Table(y,w, πw,Mw)

10: i, j ← 1

11: while i ≤ |y| and j ≤ |y|

12: do if m2 < j − i− k or Mu[i] = false

13: then i← i + 1

14: if m1 > j − i− k or Mw[j] = false

15: then j ← j + 1

16: if m1 ≤ j − i− k ≤ m2 and

17: Mu[i] = true and Mw[j] = true

18: then return false

19: return true

51

Function Subword-Compliance-Test returns true if a given set is
θ(k,m1,m2)-subword compliant and false otherwise. Observe that lines 8
to 18 of the procedure are realized in linear time O(|y|). We may assume
that time complexity of these lines is bounded by Cy and constant C is
independent of y. We may also assume that k < m otherwise procedure
stops at line 2. Lines 3 to 6 need 4k operations. If we take C ′ = C + 4 then
complexity of the whole function may be calculated as follows

|X|∑

i=1

|xi|∑

j=1

(4k +
∑

y∈X

Cy) ≤

|X|∑

i=1

|xi|∑

j=1

(4 + C)m =

|X|∑

i=1

C ′|xi|m = C ′m2 = O(m2).

3.3. A test for θ freedom

The problem of θ freedom detection may be considered as the exact
matching problem with a set of patterns. Let us denote by P the set of all
involutions of elements of the set X, i.e. P = {θ(x) : x ∈ X} = {p1, . . . , pk},
and let T denote the set T = X2 = {uv : u, v ∈ X} = {t1, . . . , tl}, where
k = |X| and l = k2. Observe that X is θ-free iff pi is not a subword of tj for
any i = 1, . . . , k and j = 1, . . . , l.

To solve the problem, we will use Aho-Corasick algorithm. Main idea of
this algorithm is to build a keyword tree of the set P (see Fig. 2).

A

A

A

C

C

C

C G

G

G

TT

T

T

T

Fig. 2. Keyword tree for P = {agtaa,ctgct,agct,agtac,ctggt}

Let L(v) denote labelling of the path from root of K to node v. Define
lp(v) as the length of the longest proper suffix of word L(v) that is prefix
of some pattern in P. Then for node v let nv denote the unique node in K
labelled with the suffix of L(v) with length lp(v). When lp(v) = 0 then nv is
the root of K. We call ordered pair (v, nv) a failure link (see Fig. 3).

In fact a keyword tree with failure links may be constructed in linear time
(see [5, chapt. 3.4.]), i.e. the upper bound of time complexity is equal to
O(

∑
pi) = O(m).

52

A

A

A

C

C

C

C G

G

G

TT

T

T

T

Fig. 3. Keyword tree showing the failure links

Given a keyword tree with failure links and word tj we need only O(|tj |)
time to verify if there exists i such that pi is a subword of tj (see [5]). We
are searching for pattern matching in the set of texts T , so in our case time
complexity of the searching process is bounded by

O(
l∑

i=1

|ti|) = O(

|X|∑

i,j=1

|xi||xj |) = O(m2).

Then θ freedom test complexity has O(m2) as the upper bound (O(m) for
tree construction and O(m2) for words matching).

4. References

[1] Aho A.V., Hopcroft J.E., Ullman J.D.; The Design and Analysis of Computer
Algorithms, Addison Wesley, 1974.

[2] Bertsel J., Perrin D.; Theory of Codes, Academic Press, Inc. Orlando Florida,
1985.

[3] Cormen T.H., Leiserson C.E., Rivest R.L.; Introduction to Algorithms, Cam-
bridge 1991.

[4] Crochemore M., Rytter W.; Text Algorithms, Oxford University Press, 1994.

[5] Gusfield D.; Algorithms on Strings, Trees and Sequences, Cambridge 1997.

[6] Jonoska N., Mahalingham K.; Languages of DNA based code words, in: J. Chien,
J. Reif, (eds.), Preliminary Proceedings of the 9th International Meeting on DNA
Based Computers, 2003, pp. 58–68.

53

[7] Jonoska N., Kephart D.E., Mahalingam K.; Generating DNA Code Words, Con-
gressus Numerantium, 156, 2002, pp. 99–110.

[8] Jonoska N.; Trends in Computing with DNA, J. Comput. Sci. Technol., 19, 2004.

[9] Kari L., Konstantinidis S., Losseva E., Wozniak G.; Sticky free and overhang
free DNA languages, Acta Informatica, 40(2), 2003, pp. 119–157.

[10] Kephart D.E., LeFevre J.; CODEGEN: The Generation and Testing of DNA

Code Words, to appear in IEEE.

Received September 30, 2004

