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Conceptual visualization of drug design via complexation of amphipathic helice-
s(in red) compatible with the distribution of hydrophobicity in the fibril and exposing a
hydrophilic layer, which facilitates interaction with water. This idea in based on the
analysis of stop signals in proteins with linear propagation present in their structure.

If we support the conclusions which arise from applying the fuzzy oil
drop model to amyloid structures and proteins which contain solenoid frag-
ments, the process of designing drugs capable of arresting linear propagation
(which leads to unrestricted growth of the molecule) should begin with the
analysis of ways in which this kind of propagation is prevented in biological
proteins containing amyloid-like structures.

The solenoid is a supersecondary structure which results from linear
alignment of polypeptide chain fragments, much like in amyloids.
Proteins in which such structures appeardmostly lyases and antifreeze
proteinsdprovide “stop fragments” (or “caps”) which prevent unrestricted
propagation of solenoids. Following this observation, we performed an anal-
ysis of both groups of proteins, focusing on their caps. As it turns out, these
caps may adopt various conformationsdhelices (in most cases), random coils
and even short b-strands. Additionally, in a handful of cases, no obvious
“caps” can be identified; instead the terminal fragment of the solenoid itself
exhibits a distribution of hydrophobicity consistent with the micellar form.
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Such fragments can prevent further complexation without the need of a
dedicated “cap”.

When analyzing the role of fragments whose purpose is to prevent prop-
agation of complexation of additional molecules (resulting in elongation of
the solenoid), it is apparent that the fragment should, on the one hand, pre-
vent access to the ordered portion of the solenoid, while on the other hand
enabling contact with water and facilitating solubility.

Table 11.1 lists the structural properties of proteins where such “stopper”
fragments have been found. Figs. 11.1e11.19 present hydrophobicity pro-
files and 3D visualizations of these structures.

Analysis of data listed in Table 11.1 indicates that the “stopper” is typi-
cally a short helix, although in some cases it may adopt the conformation of a
random coil or even a short b-strand. The latter two structures must enter
into a specific relation with the remainder of the solenoid (Fig. 11.1).
From the point of view of drug design, the helical conformation is preferred.
The “stop” fragment should meet several conditions: (1) It should exhibit
affinity for the tip of the solenoid, i.e. its conformation should be compatible
with that of the outermost solenoid loop (or the outermost peptide in an
amyloid fibril); (2) Its outer surface should not repel water. A helixd
particularly an amphipathic onedcan fulfill both requirements simulta-
neously. In order to achieve this, the helix should be designed in such a
way as to remain compatible with the distribution of hydrophobicity pre-
sented by the solenoid (or peptide which needs to be locked out), and to
expose polar fragments capable of mediating contact with the aqueous envi-
ronment. Examples of such short helices which meet the stated conditions
and have been designed to math specific amyloid constructs are discussed
in Refs. [18,19].

Designing b-strand which possess the required characteristics and are able
to arrest propagation of amyloids is much harder due to requirements asso-
ciated with spatial alignment with the amyloid. By its nature, a b-strand is
capable of forming hydrogen bonds in two opposite directions, thus permit-
ting complexation with other b-strands. The alignment must be such as to
prevent the fold from attracting additional folds when the given fragment is
bound to the solenoid. As illustrated, the orientation of such folds is tricky
and complicated, and designing them poses substantial challenges. In most
cases, preventing complexation of additional folds calls for another fragment,
which must be oriented at an angle with respect to the surface of the amyloid
(see Fig. 11.2 for an example). This unusual alignment introduces a special
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Table 11.1 Values of fuzzy oil drop parameters calculated for selected structures
(structural units for which the 3D Gass function was defined) and “stop”
fragments found within their sequences. Asterisks (*) indicate that the b-strand
treated as stop fragment is an integral part of the solenoid First line describes the
protein (identified by “chain”)dfor this unit the 3D Gasuss function was calculated;
the second line (or more) describes status of polypeptide chain fragment treated as
“stopper”.
Protein Fragment RD Correlation coefficient Ref.

Structure Residues T-O-R T-O-H HvT TvO HvO

2ZU0 CHAIN 0.645 0.591 0.233 0.389 0.749 [1]
HELIX 94e104 0.259 0.372 0.446 0.818 0.745

Antifreeze proteins

1L0S CHAIN 0.526 0.418 0.399 0.470 0.752 [2]
BETA 12e15 0.217 0.140 -0.201 0.903 0.019
BETA 72e80 0.443 0.671 0.214 0.548 0.809

1M8N CHAIN 0.656 0.603 0.248 0.361 0.784 [3]
BETA* 2e15 0.395 0.472 0.268 0.636 0.723
BETA* 11e15 0.312 0.161 0.353 0.873 0.356
RC 106e112 0.567 0.316 0.125 0.327 0.937

3VN3 CHAIN 0.714 0.613 0.309 0.428 0.685 [4]
BETA 48e61 0.653 0.507 -0.050 0.397 0.160
HELIX 100e109 0.268 0.146 0.166 0.840 0.306

3P4G CHAIN 0.753 0.690 0.216 0.384 0.728 [5]
BETA 23e35 0.566 0.554 0.199 0.534 0.649
HELIX 285e302 0.216 0.137 0.660 0.846 0.850

1Z2F CHAIN 0.671 0.711 0.186 0.377 0.625 [6]
BETA 1e7 0.497 0.682 0.295 0.431 0.898
RC 102e117 0.476 0.486 0.472 0.622 0.616

1N4I CHAIN 0.480 0.398 0.362 0.556 0.787 [7]
RC 1e9 0.425 0.401 0.100 0.683 0.701
RC 71e78 0.313 0.458 0.218 0.752 0.673

3WP9 CHAIN 0.658 0.576 0.282 0.450 0.679 [8]
HELIX 40e54 0.671 0.640 0.243 0.069 0.618
MIXED 59e70 0.378 0.260 0.327 0.705 0.545

Lyases

1BN8 CHAIN 0.684 0.559 0.194 0.346 0.750 [9]
HELIX 37e47 0.314 0.326 0.826 0.760 0.950
RC 354e364 0.416 0.396 0.100 0.657 0.469

1PLU CHAIN 0.654 0.540 0.234 0.388 0.749 [10]
HELIX 26e37 0.354 0.303 0.782 0.679 0.862
RC 302e313 0.617 0.536 0.284 0.489 0.668

(Continued )
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requirement, which is difficult to satisfy when designing b “stoppers”. In
addition, a putative short b-strand capable of arresting amyloid growth,
may fail to retain its structural characteristics when isolated.

For the reasons stated above we believe that only a helical fragment,
which is highly stable on its own, may serve as an efficient “stopper”das
long as it remains compatible with the target amyloid.

The relationship between “stop” fragments and the entirety of the mole-
cule becomes even more transparent in the context of solenoids equipped

Table 11.1 Values of fuzzy oil drop parameters calculated for selected structures
(structural units for which the 3D Gass function was defined) and “stop” fragments
found within their sequences. Asterisks (*) indicate that the b-strand treated as stop
fragment is an integral part of the solenoid First line describes the protein (identified by
“chain”)dfor this unit the 3D Gasuss function was calculated; the second line (or more)
describes status of polypeptide chain fragment treated as “stopper”.dcont'd
Protein Fragment RD Correlation coefficient Ref.

Structure Residues T-O-R T-O-H HvT TvO HvO

2FKO CHAIN 0.457 0.405 0.332 0.584 0.744 [11]
BETA 1e6 0.207 0.257 0.487 0.896 0.633
BETA 137e144 0.400 0.163 0.531 0.652 0.794

1QRM CHAIN 0.475 0.471 0.363 0.661 0.737 [12]
RC 5e9 0.591 0.214 0.164 0.961 0.311
HELIX 176e183 0.373 0.223 0.523 0.685 0.846

1QRG CHAIN 0.418 0.418 0.400 0.716 0.745 [12]
RC 8e14 0.750 0.146 -0.317 0.712 0.138
HELIX 176e183 0.294 0.146 0.567 0.817 0.873

1IDJ CHAIN 0.722 0.650 0.216 0.313 0.737 [13]
HELIX 27e36 0.255 0.258 0.727 0.868 0.937

1OOC CHAIN 0.643 0.501 0.238 0.429 0.704 [14]
HELIX 39e50 0.369 0.296 0.809 0.716 0.829
RC 318e328 0.434 0.761 0.689 0.528 0.930

1O88 CHAIN 0.650 0.541 0.230 0.392 0.748 [15]
HELIX 25e37 0.382 0.325 0.781 0.644 0.856
RC 308e312 0.655 0.567 0.976 0.415 0.507

1JRG CHAIN 0.649 0.487 0.241 0.420 0.701 [16]
HELIX 41e50 0.376 0.322 0.824 0.711 0.844
RC 320e327 0.457 0.848 0.574 0.459 0.970

1JTA CHAIN 0.632 0.489 0.240 0.440 0.706 [16]
HELIX 40e51 0.402 0.344 0.832 0.650 0.811
RC 318e329 0.382 0.749 0.725 0.626 0.934

2BSP CHAIN 0.688 0.558 0.187 0.332 0.750 [17]
HELIX 37e46 0.304 0.615 0.783 0.740 0.932
RC 349e364 0.450 0.463 0.241 0.637 0.625
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Fig. 11.1 FOD characteristic of sufc-sufd complex involved in the iron-sulfur cluster
biosynthesis (2ZU0): (A)dhydrophobicity distribution profiles: T (blue), O (red); green
backgroundd“stopper(s)”. (B)ddetailed view of profiles from A, focused on “stop”
fragment(s) only. (C)d3D presentation of the protein (green colord“stopper(s)”,
N-terminal in the foreground).

Fig. 11.2 FOD characteristic of antifreeze protein from Choristoneura fumiferana (1L0S):
(A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).
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Fig. 11.3 FOD characteristic of antifreeze protein from Choristoneura fumiferana (1M8N):
(A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).

Fig. 11.4 FOD characteristic of fungal antifreeze protein from Typhula ishikariensis.
(3VN3): (A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).
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Fig. 11.5 FOD characteristic of bacterial antifreeze protein fromMarinomonas primoryen-
sis (3P4G): (A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C) 3D
presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).

Fig. 11.6 FOD characteristic of antifreeze protein from spruce budworm (Choristoneura
fumiferana.) (1Z2F): (A) hydrophobicity distribution profiles: T (blue), O (red); green
backgroundd“stopper(s)”. (B) detailed view of profiles from A, focused on “stop” frag-
ment(s) only. (C) 3D presentation of the protein (green colord“stopper(s)”, N-terminal
in the foreground).
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Fig. 11.7 FOD characteristic of antifreeze protein from Spruce budworm. (Choristoneura
fumiferana). (1N4I): (A) hydrophobicity distribution profiles: T (blue), O (red); green
backgroundd“stopper(s)”. (B) detailed view of profiles from A, focused on “stop” frag-
ment(s) only. (C) 3D presentation of the protein (green colord“stopper(s)”, N-terminal
in the foreground).

Fig. 11.8 FOD characteristic of antifreeze protein from an antarctic sea ice bacterium
colwellia sp (3WP9): (A) hydrophobicity distribution profiles: T (blue), O (red); green
backgroundd“stopper(s)”. (B) detailed view of profiles from A, focused on “stop” frag-
ment(s) only. (C) 3D presentation of the protein (green colord“stopper(s)”, N-terminal
in the foreground).
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Fig. 11.9 FOD characteristic of Bacillus subtilis pectate lyase (1BN8): (A) hydrophobicity
distribution profiles: T (blue), O (red); green backgroundd“stopper(s)”. (B) detailed view
of profiles from A, focused on “stop” fragment(s) only. (C) 3D presentation of the pro-
tein (green colord“stopper(s)”, N-terminal in the foreground).

Fig. 11.10 FOD characteristic of pectate lyase C from erwinia chrysanthemi with 1 luþ3
ion in the putative calcium binding site (1PLU): (A) hydrophobicity distribution profiles:
T (blue), O (red); green backgroundd“stopper(s)”. (B) detailed view of profiles from A,
focused on “stop” fragment(s) only. (C) 3D presentation of the protein (green colord“
stopper(s)”, N-terminal in the foreground).
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Fig. 11.11 FOD characteristic of carbonic anhydrase from Pyrococcus horikoshii. (2FKO):
(A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).

Fig. 11.12 FOD characteristic of carbonic anhydrase from Methanosarcina thermophila
(1QRM): (A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).
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Fig. 11.13 FOD characteristic of carbonic anhydrase from methanosarcina thermophila
(1QRG): (A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).

Fig. 11.14 FOD characteristic of pectin lyase from Aspergillus niger. (1IDJ):
(A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).
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Fig. 11.15 FOD characteristic of pectate lyase from Erwinia chrysanthem (1OOC):
(A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).

Fig. 11.16 FOD characteristic of pectate lyase C from Erwinia chrysanthemi (1O88):
(A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).
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Fig. 11.17 FOD characteristic of pectate lyase from Erwinia chrysanthemi (1JRG):
(A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).

Fig. 11.18 FOD characteristic of pectate lyase from Erwinia chrysanthemi. (1JTA):
(A) hydrophobicity distribution profiles: T (blue), O (red); green backgroundd“
stopper(s)”. (B) detailed view of profiles from A, focused on “stop” fragment(s) only. (C)
3D presentation of the protein (green colord“stopper(s)”, N-terminal in the foreground).
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with such “stoppers”. We discuss the structural properties of solenoid frag-
ments in a separate chapter (see Chapter 7).

When discussing potential drugs capable of counteracting linear propa-
gation of polypeptide chains (including amyloids), we should not neglect
to acknowledge other proposals [20e40]. While the presented work focuses
on peptide “stoppers”, much research has been directed toward investigating
organic compounds capable of meeting this goal [20e40]. Where peptides
are mentioned, the authors usually focus their attention at b-strandd
however, as noted above, designing such stoppers appears far more chal-
lenging than coming up with their helical equivalents. It is also worth
notingdwhen looking at the contents of Table 11.1dthat in all biological
proteins the role of “caps” falls to helical fragments.
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